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Abstract: In situ grown C0.3N0.7Ti and SiC, which derived from non-oxide additives Ti3SiC2, are
proposed to densify silicon nitride (Si3N4) ceramics with enhanced mechanical performance via
hot-press sintering. Remarkable increase of density from 79.20% to 95.48% could be achieved for Si3N4

ceramics with 5 vol.% Ti3SiC2 when sintered at 1600 ◦C. As expected, higher sintering temperature
1700 ◦C could further promote densification of Si3N4 ceramics filled with Ti3SiC2. The capillarity of
decomposed Si from Ti3SiC2, and in situ reaction between nonstoichiometric TiCx and Si3N4 were
believed to be responsible for densification of Si3N4 ceramics. An obvious enhancement of flexural
strength and fracture toughness for Si3N4 with x vol.% Ti3SiC2 (x = 1~20) ceramics was observed.
The maximum flexural strength of 795 MPa for Si3N4 composites with 5 vol.% Ti3SiC2 and maximum
fracture toughness of 6.97 MPa·m1/2 for Si3N4 composites with 20 vol.% Ti3SiC2 are achieved via
hot-press sintering at 1700 ◦C. Pull out of elongated Si3N4 grains, crack bridging, crack branching and
crack deflection were demonstrated to dominate enhance fracture toughness of Si3N4 composites.
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1. Introduction

Although several alternatives of structural ceramics have been proposed, silicon nitride
(Si3N4)-based ceramics remain competitive due to their superior properties, involving high strength
and hardness at elevated temperatures, high resistance to oxidation and chemical attack, low coefficient
of tribological friction and thermal expansion, and low dielectric permittivity, etc. [1–10]. As important
multifunctional materials, Si3N4 ceramics have found wide range of successful application towards gas
turbine engine components [10–14], cutting tools [11,15], radomes [2], and even integrated circuit [16,17],
optical devices [18,19], etc.

However, due to the high degree of covalent bonding, Si3N4-based ceramics are very difficult
to densify through the solid-state sintering process. Therefore, effective approaches to ensure
rapid consolidation and high mechanical performance of Si3N4-based ceramics are actively being
explored, including gas pressure sintering (GPS) [11], hot-pressing sintering (HPS) [20–26], hot isostatic
pressing sintering (HIP) [27], spark plasma sintering (SPS) [26,28,29], and microwave sintering [1,30],
etc. However, considering the requirement of high gas pressures for gas pressure sintering and
extra current devices for SPS with a significantly higher furnace costs, HPS allows the dense and
complex-shaped parts with medium cost [2]. Previous considerable efforts have demonstrated that
fully dense Si3N4 ceramics with superior strength could be achieved through liquid phase sintering by
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addition of rare-earth oxides to promote mass transport and accelerate the rate of α − β transformation,
most notably the rare-earth oxides involving Y2O3 [4,31,32]. A combination of various rare-earth
oxides and other metallic oxides, such as Y2O3, La2O3, Nd2O3, Sm2O3, Yb2O3, Lu2O3, Al2O3, and
MgO, also are effective sintering aids to densify Si3N4 [25,30,32–35].

Nevertheless, these oxides additives crystallized to intergranular glassy phase in the cooling
stage [31], which deteriorate the high-temperature performance of the ceramics such as creep and
high-temperature strength due to the relative low eutectic temperature [32,36]. As a result of the
early interest in hot-pressed Si3N4 ceramics as a high-temperature gas turbine material, attention was
directed to high-temperature strength and creep resistance. Therefore, it is quite essential to explore
novel heat-resistant sintering aids for high-performance Si3N4 ceramics from new view point.

The last two decades have been witness to the dramatic development on MAX phase cermets
with the hexagonal symmetry due to their unique combination of characteristics of both ceramics and
metals (M is an early transition metal, A is a group A element, X is either carbon and/or nitrogen),
especially the layered ternary carbide titanium aluminum carbide (Ti3AlC2) and titanium silicon
carbide (Ti3SiC2) [37–39]. The crystal structure of these MAX cermets can be described by alternately
stacking of TiC6 and Al/Si atomic planes. The unique combination of excellent properties of Ti3AlC2 or
Ti3SiC2, including high melting point, high hardness, high elastic modulus, good thermal and electrical
conductivity, and considerable chemical stability, make them to be fascinating candidates for various
application. Moreover, elemental metal powder-derived MAX materials have demonstrated to be
effective reinforcement in TiB2 [40–42], Al2O3 [43–45] composites with enhanced mechanical properties
by in situ reaction. More recently, as explicated in our previous work [46–50], titanium aluminum
carbide (Ti3AlC2) was chosen as an effective sintering aid to effectively densify B4C ceramics with
enhanced sintering ability and mechanical performance simultaneously. High hardness and toughness
values of 28.5 GPa and 7.02 MPa·m1/2 respectively were achieved for B4C composites sintered with
20 vol.% Ti3AlC2 at 1900 ◦C. The mechanisms of the enhanced sinterability of high-performance
ceramics in previous works [1,10,46–50] could be classified into two aspects: Firstly, the decomposed
metals from Ti3SiC2 or Ti3AlC2 at high-temperature can form liquid phase which promote sintering
effectively. Secondly, in situ reaction sintering between matrix and titanium carbon compound would
also promote densification and mechanical performance. The main competitive advantage of MAX
aids is considered to be formation of reaction bonding between Si3N4 matrix and aids, rather than
intergranular glassy phase. Motivated by such an idea [46–50], these non-oxides cermets are highly
expected to play a multifunctional role in densification and enhancement of mechanical properties of
Si3N4 ceramics.

It is also noteworthy that Al decomposed from Ti3AlC2 and residual O originated from raw
Si3N4 powders would be dissolved into Si3N4 grains during high-temperature sintering procedure,
which is harmful to the purity and thermal performance of Si3N4-based ceramics. As Y. Zhou et
al. illustrated [51], a tendency of decreasing fracture toughness with increasing Al dopant could be
observed. Moreover, even the 0.4 wt.% concentration of Al would lead to a drastically reduce of
thermal conductivity by 36.9% (from 91.9 to 58.0 W·m−1

·K−1) for Si3N4 ceramics. Therefore in this
work, Ti3SiC2 were introduced to densify Si3N4 ceramics in order to demonstrate that it provided
any advantages over the rare-earth oxide system. Besides, the effect of Ti3SiC2 volume fraction on
the microstructure, hardness, flexural strength and fracture toughness was also studied. It is believed
that Ti3SiC2 or other members of MAX family would lead to new scientific and technological data
providing new insight into functionalization of Si3N4 ceramics.

2. Experimental Procedure

2.1. Preparation of Samples

Commercially available α-Si3N4 powder (purity > 93%, d50 = 0.7 µm, Jinshenghao New Materials
Co. Ltd., Anyang, China) was used as a starting material. As a novel sintering aid, Ti3SiC2 powders
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(d50 = 5 µm, purity > 98%) were kindly provided by Forsman Scientific Co., Ltd., Beijing, China. To
investigate the effect of Ti3SiC2 content on the mechanical properties, experiments were conducted
with various amounts of Ti3SiC2 powders (1 to 20 vol.%) embedded in α-Si3N4 powders. To ensure
the homogeneity of the mixed powders, α-Si3N4 with x vol.% Ti3SiC2 powders (x = 1~20) were wet
ball-milled for 10 h by using ethanol as ball-milling media. The substance was dried at 80 ◦C, and sieved
with a filter with a mesh size of 63 µm, then placed in a graphite die coated with BN powder to avoid
reaction between the powder and graphite die. Hot-press (HP) sintering was performed on vacuum
hot press sintering furnace (ZT-63-21Y, Shanghai Chenhua Technology Co., Ltd., Shanghai, China)
with ramp of 10 ◦C /min 1600 ◦C and 1700 ◦C for 90 min in flowing nitrogen under 30 MPa uniaxial
pressure during the whole cycle. After natural cooling to room temperature inside furnace, samples
were polished and ultrasonic cleaned before characterization. For comparison, α-Si3N4 powders with
2 wt.% Alumina (Al2O3, AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) and 5 wt.%
yttria (Y2O3, AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were hot-pressed at the
same sintering condition.

2.2. Characterizations

Before microstructure and mechanical performance characterizations, all hot-pressed samples
with diameter of 50 mm were cut into bars and cuboids with help of inside diameter slicer. To
reduce surface roughness of samples and guarantee sufficient experimental precision, the abrasive
SiC papers with grit size of P320, P600, P1200 and P2000 were used in chronological order during the
polishing process. Final manual polishing was carried out with polishing cloth containing alumina
suspension with particle size 0.3 µm. The bulk density of each sample was determined according
to the Archimedes principle in distilled water. X-ray Diffraction (XRD) patterns were recorded on
X’pert PRO (PANalytical B.V., Almelo, Netherlands). Phase identification and quantitative analysis
were performed on MDI Jade software (version 6.0, MDI, Livermore, CA, USA) according to Rietveld
method. The microstructures of polished surfaces and fracture surfaces were observed using scanning
electron microscopy (SEM, Nova NanoSEM 230, FEI Company, Hillsboro, OR, USA) with an energy
dispersive X-ray (EDX) analyzer. The Vickers hardness was performed on micro hardness tester (VTD
512, Beijing Weiwei Technology Co., LTD, Beijing, China) under load of 9.8 N with a dwell time of 10 s,
and determined by the Vickers diamond indentation method using the following equation:

HV = 0.102
F
S
= 0.102

2F sin 136
2

d2 = 0.1891
F
d2 (1)

where P is the indentation load on the polished surface and d is the average diagonal length of the
Vickers indentation. For accuracy, 11 Vickers indentations on each specimen were applied. After
indentation, the microstructures were immediately observed by optical microscopy (ECLISPE LV150N,
Tokyo, Japan). As a simple way of estimating toughness, indentation techniques were applied from
observed corner cracks and calculated Vickers hardness using the Anstis equation:

KIC = 0.016
( E

HV

) 1
2
(

P

c
3
2

)
(2)

where E is the Young’s modulus and c is the half-length of cracks formed by the indentation. According
to the international standard of test method for flexural strength of fine monolithic ceramics at room
temperature which described in ISO 14704-2000, three-point flexural strength of specimens with size of
3 mm × 4 mm × 36 mm was performed on the mechanical testing machine (Instron 3369, INSTRON
Corporation, Norwood, MA, USA) at a cross head speed of 0.5 mm/min.



Materials 2020, 13, 1428 4 of 13

3. Results and Discussion

Figure 1 illustrates the density of Ti3SiC2 filled Si3N4 ceramics as a function of Ti3SiC2 volume
fraction. For Si3N4 ceramics which HP sintered at 1600 ◦C without aids, the density is only 2.58
g·cm−3. Partial densification may be attributed to the residual SiO2 liquid phase during firing at
high-temperature which always present on Si3N4 powder particles. A remarkable increase to 3.11
g·cm−3 could be observed for Si3N4 ceramics filled with only 5 vol.% Ti3SiC2 when sintered at the
same temperature. The enhanced density is even more noticeable than the Si3N4 ceramics with
7 wt.% Y2O3-Al2O3 aids. These observed results demonstrate Ti3SiC2 to be a effective sintering
aid to densify Si3N4 ceramics. However, further increase in Ti3SiC2 content dose not bring any
appreciable consolidation.
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As expected, higher sintering temperature 1700 ◦C could further promote densification of Si3N4

ceramics filled with Ti3SiC2. Besides, experimental points are inclined to distribute on a straight
line with coefficient of determination (R2) above 0.99. To investigate the composition evolution after
sintering, XRD patterns of Si3N4 ceramics filled with different volume fraction of Ti3SiC2 sintered at
1600 and 1700 ◦C, as well as 7 wt.% (Al2O3-Y2O3) densified Si3N4 ceramics are shown in Figure 2. As
seen in Figure 2a, both α and β phase of Si3N4 could be detected when sintering temperature is 1600 ◦C,
which suggests only a partial transformation of α phase to the more stable β phase. In contrast, when
further improving sintering temperature to 1700 ◦C, all diffraction peaks of α-Si3N4 phase disappear
(see in Figure 2b). This completely transformation of α to β-Si3N4 phase is believed to be essential to
the enhancement of densification and mechanical performance [1,52].

Another important feature should be noted here is that the characteristic diffraction peaks of the
raw Ti3SiC2 powder nearly disappear completely after sintering. This could be ascribed to the fact that
Ti3SiC2 powder is thermal stable up to ~800 ◦C, and the following reaction can be responsible for the
decomposition of Ti3SiC2 [53]:

3Ti3SiC2
∼800◦C to 1400◦C

→ 4TiCx + Ti5Si3Cy + (6− 4x− y)C (3)

where the value of x ranges from 0.6 to 0.8 and y ≤ 1. Besides, the TiCx phase appears to result in more
rapid deterioration of the Ti3SiC2 phase. Also noted that the decomposition usually accomplished
with decomposition of Ti3SiC2 to form nonstoichiometric TiCx and gaseous Si, as demonstrated
previously [54]:

Ti3SiC2
∼1300◦C
→ 3TiC 2

3
+ Si (4)
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The Si is believed to be act as lubricating phase between Si3N4 grains to promote densification of
Si3N4 ceramics through capillarity. Meanwhile, nitriding of TiCx which originated from interatomic
diffusion of C and N [10] during high-temperature sintering process would lead to the formation of new
phase C0.3N0.7Ti. In addition, the residual Si would further react with nitrogen to form Si3N4 [55–57].
On the other hand, further heating during insulation stage will result in the likely loss of gaseous
silicon. Therefore, it is reasonable to assume that the decomposition products of Ti3SiC2 would further
react with Si3N4 through diffusion of C and N according to the following reactions:

Ti5Si3Cy → Ti5Cy + 3Si (5)

TiCx + Si3N4 → (3.333x− 10)C0.3N0.7Ti + 3SiC + (5.5− 1.167x)N2 (6)

Ti5Cy + (4.5− y)C + Si3N4 → 5C0.3N0.7Ti + 3SiC + 0.25N2 (7)

3C + Si3N4 → 3SiC + 2N2 (8)

C + Si→ SiC (9)

or
TiCx + Ti5Si3Cy + (9.45− x− y)C + 1.55Si3N4

→ 6C0.3N0.7Ti + 7.65SiC + N2
(10)

It is reasonable to claim that the in situ reaction is responsible for the additional characteristic
diffraction peaks of C0.3N0.7Ti and SiC in XRD patterns.

Furthermore, detailed refinement parameters by means of Rietveld method are summarized in
Table 1. Detailed refinement parameters, including weight fraction and R factor, of Ti3SiC2 doped
Si3N4 ceramics are illustrated in Figures S1–S6 (see in Supplementary Materials). Obviously, the weight
fraction of both C0.3N0.7Ti (Fm-3m, PDF# 42-1448) and moissanite-3C SiC (F-43m, PDF# 29-1129) are
inclined to increase with Ti3SiC2 content, which in turn confirms the in situ densification sintering
mechanism discussed above. In addition, theoretical density could be derived with help of Rietveld
method. Results have shown that nearly full densification for Ti3SiC2 doped Si3N4 ceramics sintered
at 1700 ◦C could be achieved.
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Table 1. Refinement parameters of Ti3SiC2 doped Si3N4 ceramics.

Si3N4−x vol.%
Ti3SiC2

Weight Fraction R Factor of
Rietveld

Theoretical
Density (g·cm−3) Densification

β-Si3N4 C0.3N0.7Ti SiC

x = 1 97.3% 0.9% 1.8% 4.76% 3.21 99.26%
x = 3 97.1% 0.9% 2.1% 4.55% 3.21 99.89%
x = 5 92.8% 4.1% 3.1% 3.46% 3.25 99.92%
x = 10 87.3% 7.6% 5.1% 3.42% 3.30 99.73%
x = 15 82.3% 11.7% 6.0% 3.47% 3.35 99.98%
x = 20 78.4% 14.6% 7.0% 4.07% 3.39 99.79%

Figure 3 shows the micromorphology of polished surface of Si3N4 with different volume fractions
of Ti3SiC2 sintered at 1700 ◦C. Due to the lack of sufficient sintering aids, lots of pores could be observed,
and grain growth of β-Si3N4 is not complete for monolithic Si3N4 ceramic (see Figure 3a). However, the
microstructures of Ti3SiC2-Si3N4 ceramics (see Figure 3b–g) exhibit much more close-grain structure
and consist of randomly oriented elongated Si3N4 grains which is accordant with XRD results in
Figure 2. The average diameters of grains present slight increasing trend from 0.68 to 0.98 µm
by quantitative image analysis as the amount of Ti3SiC2 increased. Besides, the bright contrasted
phase which uniformly embedded in Si3N4 matrix could be observed and are inclined to aggregate
especially when Ti3SiC2 content exceeds 15 vol.%. Furthermore, as shown in Table 2, energy dispersive
spectrometer (EDS) at spot A in Figure 3e suggests dominant phase of Si3N4 and SiC, which is
associated with reaction described by Equation (10). Additional O element may be originated from
surface of raw α-Si3N4 powders. Meanwhile, the bright region at spot B is proved to be enriched by Ti
according to the EDS results in Table 2. Combined with the results of XRD analysis, it is reasonable to
claim that the dispersive bright regions consist of C0.3N0.7Ti and SiC, which are believed to affect the
mechanical performance of reaction bonded Si3N4 ceramics.
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Figure 3. Polished surface of Si3N4 ceramics with different content of Ti3SiC2 sintered at 1700 ◦C:
(a) 5 wt.% Y2O3-2 wt.% Al2O3, (b) 1 vol.% Ti3SiC2, (c) 3 vol.% Ti3SiC2, (d) 5 vol.% Ti3SiC2, (e) 10 vol.%
Ti3SiC2, (f) 15 vol.% Ti3SiC2, (g) 20 vol.% Ti3SiC2, (h) EDS spectra at spot A and B.

Table 2. EDS chemical analysis (at.%) at different positions in Figure 3g.

Location Si N O Ti C Possible Phases

Spot A 52.21 35.43 2.04 1.29 9.03 Si3N4, SiC
Spot B 5.10 27.18 - 50.13 17.59 C0.3N0.7Ti, SiC

The mechanical properties, including Vickers hardness, flexural strength, and fracture toughness,
of dense Si3N4 ceramics with different Ti3SiC2 content sintered at 1700 ◦C are illustrated in Figure 4.



Materials 2020, 13, 1428 7 of 13

Clearly, the Vickers hardness of Si3N4 ceramics has been upgraded after modification of Ti3SiC2, and
presents slight increase compared with that of Si3N4 ceramics containing conventional oxides aids.
Besides, an obvious enhancement of flexural strength and fracture toughness could be observed. A
maximum flexural strength of 795 MPa could be achieved for 5 vol.% Ti3SiC2 doped Si3N4 composites,
which is almost twice that of 7 wt.% (Y2O3-Al2O3)-Si3N4 ceramics prepared at the same condition.
This enhancement of flexural strength could be attributed to the C0.3N0.7Ti and SiC which originated
from reaction bonding between Ti3SiC2 and Si3N4 [10]. However, further increment of Ti3SiC2

content reduces the flexural strength of Si3N4 ceramics which may be ascribed to the enhanced
residual stresses around grain boundary [58,59]. Please note that this residual stress is believed to
result in microcracks and intergranular fracture mode which will be discussed later. Moreover, the
fracture toughness of Si3N4 composites is also effectively boosted after Ti3SiC2 decoration, and reaches
maximum value of 6.97 MPa·m1/2 for 20 vol.% Ti3SiC2-Si3N4 ceramics which is 37% higher than that of
7 wt.% (Y2O3-Al2O3)-Si3N4 ceramics.
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Figure 5 illustrates the typical optical micrographs of the Vickers hardness indents and the induced
cracks of Si3N4 ceramics with different Ti3SiC2 contents, as well as 7 wt.% (Y2O3-Al2O3). Clearly, the
polished surfaces of Ti3SiC2 doped Si3N4 ceramics become much smoother than the monolithic Si3N4

ceramic which HP sintered at 1700 ◦C, corresponding to the enhancement of densification. Besides, it
can be seen that the area of indentation presents no obvious change for Ti3SiC2 doped Si3N4 ceramics,
which is consistent with the stable Vickers hardness. However, the cracks obviously become shorter
especially when the Ti3SiC2 contents exceed 10 vol.%, which is responsible for the enhancement of
fracture toughness.

To illustrate the fracture behaviors and activated toughening mechanisms, micromorphology and
crack paths are investigated on cross-sectional fracture surfaces and polished surfaces, respectively.
Comparison of typical fracture surfaces between Si3N4 doped with Al2O3-Y2O3 and Ti3SiC2 is
illustrated in Figure 6. As can be seen from Figure 6a, a small number of pores occur in the Si3N4-7
wt.% (Al2O3-Y2O3) composites, which is harmful for the mechanical performance. In contrast, the
Si3N4-Ti3SiC2 specimen presents a much more close-grain fracture surface owning to the higher
density. As marked by red arrows in Figure 6b, large amounts of dimples corresponding to the
transgranular fracture could be observed. In addition, this fracture mode is considered to make a
dominant contribution to the superior flexural strength of Si3N4-Ti3SiC2 composites [10]. Besides, as
marked by yellow arrows, lots of interface debonding between the Si3N4 grains and grain boundary
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phase could be observed. This intergranular fracture mode may result from the pullout of elongated
β-Si3N4 grains, which is believed to make a contribution to the enhancement of overall fracture
toughness [60–62].Materials 2020, 13, 1428 8 of 13 
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Another mechanism of the enhanced fracture toughness of Si3N4-Ti3SiC2 composites could be
ascribed to the crack branching, deflection, and grain bridging by in situ derived C0.3N0.7Ti and SiC
grains embedded in Si3N4 matrix, which illustrated in Figure 7. Due to the superior hardness of
C0.3N0.7Ti and the thermal mismatch between Si3N4 and C0.3N0.7Ti, there exists residual stress around
C0.3N0.7Ti grains during cooling, giving rise to the microcracks inside composites. When subjected
to the external mechanical stress, these microcracks tend to be activated and the propagation path of
cracks tends to be split by C0.3N0.7Ti hard-phase and deflected along the interface. Such mechanisms
consumed more fracture energy during the crack propagation which leads to crack arrest [63–67].

A comparison of mechanical properties of Si3N4-based ceramics obtained in the present work
and selected previous works with conventional oxide aids is shown in Table 3. Clearly, the Vickers,
flexural strength, and toughness of Ti3SiC2 doped Si3N4 ceramics present the same level or even better
compared with Si3N4 ceramics sintered with oxide aids. Moreover, due to the superior mechanical
and thermal properties of in situ formed C0.3N0.7Ti and SiC, Si3N4 ceramics obtained in this work are
believed to have a significant competitive advantage and to promote the development of Si3N4-based
ceramics at high temperatures.
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Table 3. Selected results on mechanical properties of Si3N4 ceramics by pressure-assisted sintering.

Composition Sintering Conditions
Vickers

Hardness
(GPa)

Flexural
Strength

(MPa)

Fracture
Toughness
(MPa·m1/2)

Ref.

α-Si3N4 + 4 wt.% Al2O3 + 6 wt.%
Y2O3

Hot isostatic pressing at 1700 ◦C, 20 MPa,
3 h 16.4 730 6.5 [27]

α-Si3N4 + 5 wt.% Al2O3 + 5 wt.%
Y2O3

Hot press at 1800 ◦C, 30 MPa, 1.5 h 16.1 - 5.2 [20]

α-Si3N4 + 4 wt.% Al2O3 + 6 wt.%
Y2O3

Hot press at 1700 ◦C, 50 MPa, 1.5 h 17.01 - - [21]

α-Si3N4 + 30 vol.% β-Si3N4
whiskers + 5 wt.% Al2O3 + 5 wt.%

Y2O3 + 5 wt.% CeO2

Hot press at 1700 ◦C, 30 MPa, 30 min 19.0 794 8.6 [22]

α-Si3N4+4 wt.% Al2O3+4 wt.%
Y2O3+15 vol.% SiC whiskers Hot press at 1800 ◦C, 30 MPa, 30 min 16 680 6.1 [68]

α-Si3N4 + 5 wt.% Al2O3 + 4 wt.%
Y2O3 + 3 wt.% TiC Gas pressure sintering at 1750 ◦C, 2 MPa 16.4 475 7.6 [11]

α-Si3N4 + 5 vol.% Ti3SiC2 Hot-pressed at 1700 ◦C for 90 min 19.78 795 4.88 This work
α-Si3N4 + 20 vol.% Ti3SiC2 Hot-pressed at 1700 ◦C for 90 min 20.11 549 6.58 This work

4. Conclusions

In summary, we proposed non-oxide Ti3SiC2 (one of typical MAX cermets) as a novel sintering
aid to densify Si3N4 ceramics with enhanced mechanical properties. A remarkable relative density
increment of 20.5% (from 2.58 to 3.11 g·cm−3) could be observed for 1600 ◦C hot-press sintered Si3N4

ceramics doped with only 5 vol.% Ti3SiC2 compared with Si3N4 ceramics without aids. Further
increase in sintering temperature to 1700 ◦C brought appreciable consolidation of nearly full dense
Ti3SiC2-Si3N4 ceramics. XRD and EDS investigations demonstrated the formation of C0.3N0.7Ti and
SiC which resulted from in situ reaction between Ti3SiC2 and Si3N4 through diffusion of C and N.
The Vickers hardness of Ti3SiC2 doped Si3N4 ceramics increased slight compared with that of Si3N4

ceramics containing conventional oxides aids. Nevertheless, an obvious enhancement of flexural
strength and fracture toughness could be observed. A maximum flexural strength of 795 MPa could be
obtained for 5 vol.% Ti3SiC2 doped Si3N4 composites. Moreover, the fracture toughness of Ti3SiC2

densified Si3N4 composites exhibited a remarkable increase with increasing in volume fraction, and
reached maximum value of 6.97 MPa·m1/2 for 20 vol.% Ti3SiC2-Si3N4 ceramics. Pull out of elongated
Si3N4 grains, crack bridging and deflection were demonstrated to promote fracture toughness of
Ti3SiC2 densified Si3N4 composites. With these successes, MAX phase densified Si3N4 ceramics with
enhanced strength and toughness will be necessary to meet demands of potential future markets for
advanced ceramics. Further efforts are encouraged to be devoted to thermal properties investigations
of MAX enabled Si3N4 composites.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/6/1428/s1,
Figure S1: Quantitative report of Si3N4-1 vol.% Ti3SiC2, Figure S2. Quantitative report of Si3N4-3 vol.% Ti3SiC2,
Figure S3. Quantitative report of Si3N4-5 vol% Ti3SiC2, Figure S4. Quantitative report of Si3N4-10 vol.% Ti3SiC2,
Figure S5. Quantitative report of Si3N4-15 vol.% Ti3SiC2, Figure S6. Quantitative report of Si3N4-20 vol.% Ti3SiC2.
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