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Abstract: The differences in microstructural characteristics, mechanical properties, and corrosion
behavior of the as-cast and solution-treated Mg-xGd-1.5Nd-0.5Zn-0.5Zr alloys (Mg-xGd, x = 1, 3,
and 5) were studied and discussed. The as-cast Mg-xGd alloys mainly consisted of an α-Mg and
island-like eutectic (Mg,Zn)3RE phase, a few cuboidal phases (REH2), and a ZnZr phase. With the
increase of Gd content, the grain sizes of the as-cast Mg-xGd alloys decreased. Compared to the
microstructure of the as-cast Mg-xGd alloys, the eutectic (Mg,Zn)3RE phase disappeared and the
cuboidal REH2 phases existed in the solution-treated Mg-xGd alloys. A large amount of ZnZrx

phase was precipitated from α-Mg in the Mg-3Gd alloy and demonstrates a flower-like distribution.
The ultimate tensile strength (UTS) and yield strength (YS) of the solution-treated Mg-xGd alloys
increased with an increasing Gd content, with the UTS and YS of the Mg-5Gd alloys reaching 217.5
and 125.2 MPa, respectively. Immersion and electrochemical tests showed that the as-cast Mg-3Gd
alloy presented the best corrosion resistance with a corrosion rate of 0.285 mm/yr. The corrosion
resistance of the solution-treated Mg-3Gd alloy attained the lowest value (0.973 mm/yr), due to the
large quantities of ZnZrx with a flower-like phase distribution, forming series of galvanic couple
groups with the α-Mg.

Keywords: magnesium alloys; microstructure; mechanical properties; corrosion resistance

1. Introduction

Magnesium for biomedical applications has received considerable attention due to its good
biodegradation, non-toxicity, and biocompatibility [1–4]. Mg that is utilized in biodegradable implanting
materials needs to provide an appropriate structural support (good mechanical properties) [5,6] and
have a suitable dissolving/degradation process (low corrosion rate [7–9] and suitable corrosion process)
without being harmful to humans (a suitable quantity of non-toxic elements). Erinc [10] suggested that
available Mg alloys for biodegradable implants application should achieved the following properties:
1) the corrosion rate in simulated body fluid (SBF) needs to be < 0.5 mm/year (mm/yr); 2) the yield
strength (YS) > 200 MPa and the elongation (EL) > 15%. To affect the mechanical properties and corrosion
resistance of pure magnesium, alloying and heat treatments are the most effective and inexpensive
methods [11,12].

Al is reported to enhance the mechanical properties of Mg-Al (denoted as AZ) series alloys,
such as the AZ31 (Mg-3Al-Zn), AZ61 (Mg-6Al-3Zn), and AZ91D (Mg-9Al-Zn) [13] alloys. However,
excessive doses of Al in humans may be associated with a possible rise of Alzheimer disease [14], which
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limits the application of the AZ series magnesium alloys as implant materials [1]. When choosing
the alloying elements, their cytotoxicity and content should be taken into consideration [15]. A small
quantity of Zn has a certain effect on the grain refinement [16]. An appropriate content of Zr is
routinely added as a grain refining element and impurity removal reagents [8]. Rare earth (shortened
to RE, such as Gd and Nd) elements not only improve the mechanical properties of magnesium alloys,
but also improve several unique performances of Mg alloys [15,17]. This results from good solid
solubility of RE elements and induced precipitations in the Mg matrix, thus contributing to solution
strengthening and precipitation strengthening [18,19]. Adding RE to form magnesium alloys generally
enhances their corrosion properties, due to the formation of a protective oxide film, RE2O3 [20–22].
Considering that the addition of these elements results in better mechanical properties than those of
pure magnesium, Mg-RE-Zn alloys have been widely investigated [17,23,24]. Liu et al. [17] found
that most of the Mg-RE alloys, such as Mg-1Gd, improved the ultimate tensile strength (UTS, to the
value around 213 MPa), yield strength (YS, to the value around 180 MPa), elongation (EL, to the
value around 20.5%) and corrosion resistance (to the value around 0.4 mm/yr for immersion 72 h) of
pure Mg. Mao et al. [23] showed that extruded Mg–Nd–Zn–Zr (wt.%: 3.09Nd, 0.22Zn, 0.44Zr, and
balance Mg) alloy displayed good corrosion resistance with a corrosion rate of 0.337 mm/yr while
that of the WE43 alloy with similar extrusion process was 0.714 mm/yr. Among those rare earth
elements, a high solid solution of Gd in the Mg matrix improved the solution strength [25], and the
corrosion potential of Nd—being similar to that of Mg—reduced the galvanic corrosion tendency in
Mg-RE alloys [4], making Gd and Nd the most studied elements in Mg-RE alloys. The quantities of
elements in alloys play an important role, affecting their application as biomedical implant materials.
Zhang et al. [24] studied the mechanical properties and corrosion behavior of Mg-2Zn-0.2Mn-xNd
with various Nd contents, and found that the UTS is significantly improved by Nd addition, due to
refinement and second-phase strengthening. Researchers also showed a wide interest in the effects
of heat treatment on magnesium alloys. Janbozorgi et al. [11] studied the mechanical and corrosion
properties of Mg–2Zn–1Gd–1Ca (wt.%) of as-cast and different heat-treated conditions and found that
precipitations improved the ultimate shear strength up to 32%, due to the aging treatment. Prabhu et
al. [12] found that the corrosion resistance of Mg-4Zn alloy increased with solution heat treatment, but
decreased with precipitation heat treatment. These studies indicate that heat treatment is a promising
technique, to alter the mechanical and corrosion properties of Mg-based alloys.

In summary, designing a series of magnesium alloys with suitable alloying elements and
investigating how heat treatments and element contents affect the mechanical properties and corrosion
rates will help to promote the application of magnesium alloys as biodegradable materials. In this paper,
Gd and Nd were chosen as the primary alloying elements to enhance the mechanical properties and
corrosion resistance. Zn and Zr were chosen as micro elements to refine the grain size. Mg-xGd-1.5Nd-
0.5Zn-0.5Zr alloys (referred to as Mg-xGd, x = 1, 3, and 5) were prepared with casting and heat
treatment. The effects of alloy conditions and Gd contents on the microstructure, mechanical properties
and corrosion properties were investigated to identify the optimum alloy composition, exhibiting
desirable properties.

2. Materials and Methods

The Mg-xGd-1.5Nd-0.3Zn-0.3Zr (hereinafter wt.%, shortened as Mg-xGd) alloys were prepared by
gravity casting with raw materials consisting of pure Mg (99.9%), pure Zn (99.9%), and master alloys:
Mg-25%Gd, Mg-30%Nd, and Mg-25%Zr. The detailed casting process is described in our previous
study [26]. The casting ingot was conical-shaped, its diameter ranged from 50 to 60 mm, and its height
was 100 mm. The compositions of the as-cast Mg-xGd ingots are shown in Table 1, and were named
as Mg-1Gd, Mg-3Gd, and Mg-5Gd, respectively. The as-cast alloy was homogenized at 540 ◦C for
16 h in a vacuum furnace with a vacuum pressure of 10−2 Pa, and then quenched in water at room
temperature. These heat-treated ingots are herein referred to as the solution-treated ones.
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Table 1. Compositions of the as-cast Mg-xGd-Nd-Zn-Zr alloys (wt.%).

Gd Nd Zn Zr Fe Mg

Mg-1Gd 1.25 1.53 0.56 0.23 0.009 balance
Mg-3Gd 2.63 1.60 0.48 0.39 0.009 balance
Mg-5Gd 4.75 1.42 0.59 0.37 0.009 balance

All samples for testing were cut from the center of the Mg-xGd billets. Tensile tests were conducted
on a SANSCMT 5105 universal testing machine with a strain rate of 1.0 × 10−3 s−1 at room temperature.
Microstructure observation of the samples was investigated by optical microscopy (Leica, DMI 5000,
Wetzlar, Germany), and an scanning electron microscope (SEM) (Pheom proX, Phenom-World B.V.,
Eindhoven, Netherlands) equipped with energy-dispersive X-ray spectrometry (EDS). X-ray Diffraction
(XRD, D8 ADVANCE, Burker, Bremen, Germany) analysis was utilized to analyze the phases of
the samples.

To evaluate the corrosion properties of the studied Mg-xGd alloys, static immersion tests were
conducted in Hanks’ solution. The compositions of the Hanks’ solution are listed in Table 2 [27]. The
surface area of the samples used for the immersion tests were 10 cm2. Each side of the samples was
ground up to 2000 grit utilizing series sand papers, and then cleaned with ethanol and distilled water,
and dried in a stream of warm air. The ratio of volume of Hanks’ solution (mL) to specimen surface
(cm2) was 20:1. The immersion tests were conducted in Hanks’ solution for 120 h at 37 ◦C. After the
weight loss experiments, the samples were removed and cleaned in a detergent in an 80 ◦C water bath
for 5 min to observe the corroded surfaces.

Table 2. The compositions of Hanks’ solutions [27].

Composition Concentration (g/L)

NaCl 8.0
CaCl2 0.14

MgCl2·6H2O 0.1
KCl 0.4

NaHCO3 0.35
MgSO4·7H2O 0.06

KH2PO4 0.06
Na2HPO4·12H2O 0.06

C6H12O6 1.0
pH 7.4

An electrochemical workstation (IM6ex, Zahner, Kronach, Germany) and a three-electrode cell
with a platinum electrode as the counter electrode, samples as the working electrode, and a saturated
calomel electrode (SCE) as the reference electrode were utilized to study the electrochemical properties.
Samples were immersed in the Hanks’ solution at the open circuit potential (OCP) for 30 min to
evaluate the change of potential. After the potential achieved a constant value, potentiodynamic
polarization test was undergo at a scanning rate of 5 mV/s. The voltage span for potentiodynamic
polarization testing was −5 mV to 5 mV on the basis of the constant potential obtained through the
OCP test. Three specimens were evaluated for each alloy.

The average corrosion rates were calculated through weight loss after immersion tests (PW) or the
hydrogen evolution tests (PH), by the following Equations (1) and (2) [27]:

PW =
87600∆W

ATρ
(1)

PH = 2.088VH (2)
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∆W(g) is the weight loss during the immersion test, A (cm2) is the contact area of the samples
with solution, T (h) is the testing time, ρ is the density of Mg-xGd alloys, and VH (mL·cm−2

·d−1) is the
rate of hydrogen evolution.

3. Results

3.1. Microstructure of Mg-xGd Alloys

Grains of the as-cast (referred to as AC) Mg-xGd alloys mostly exhibit an equiaxed morphology,
as shown in Figure 1. Grain sizes of the Mg-xGd alloys with different Gd contents were measured
through the linear intercept method, with values of 52.3, 49.2, and 40.9 µm, respectively, obtained.
Grain growth was restrained due to the addition of Gd during the melting solidification process.
A large quantity of eutectic phases was distributed around the grain boundaries. A slight granular
phase was present in the as-cast Mg-xGd grains.
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Figure 1. Optional microstructure of the as-cast Mg-xGd alloys: (a) Mg-1Gd (AC (as-cast)), (b) Mg-3Gd
(AC), and (c) Mg-5Gd (AC).

To further investigate the phases present in the as-cast Mg-5Gd alloy, SEM analysis was carried
out, as shown in Figure 2. Four kinds of phases in the as-cast Mg-5Gd alloy were shown to exist,
as presented in Figure 2a: One phase was the matrix α-Mg (as marked at position “I”), one phase was
the island-like eutectic phase distribution around grain boundaries (as marked at position “II” and
“III”), one phase was a globular-like ZnZrx phase (as marked in circles), and one phase was cuboid-like,
rich in Gd and Nd, which most likely was REH2 (as marked in rectangles) according to [28]. EDS
analysis of points “I”, “II”, and “III” was carried out as shown in Figure 2b–d). The EDS results are
shown in Table 3. According to the EDS results, the island-like eutectic phase was most likely Mg3Gd,
which was formed according to the eutectic equation L→α-Mg + Mg3Gd during non-equilibrium
solidification [29]. As a result of the addition of Nd and Zn, some Gd and Mg atoms were replaced by
Nd and Zn atoms, therefore, the Mg3Gd phase was transformed into the (Mg,Zn)3RE phase. A similar
phenomenon was found in [30].

Table 3. Corresponding of the energy-dispersive X-ray spectrometry (EDS) results of points in the
as-cast Mg-5Gd alloy in Figure 2a (atom, %).

Position Gd Nd Zn O Mg

I – – – – 100.0
II 18.2 13.0 7.8 4.7 56.4
III 67.2 9.4 – 5.1 18.3

To obtain a further understanding of the phases present in the Mg-xGd alloys, XRD analysis was
carried out, as shown in Figure 3a. The Mg-xGd alloys mainly consisted of α-Mg peaks according
to the standard ICCD (International Center for Diffraction Data) card: PDF#89-5003, as displayed in
Figure 3b. The other displayed peaks in accordance with the Mg3Gd-type phase according to the
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standard peaks of (PDF#65-0040). A small migration in 2θ was due to the solid solution of Nd and Zn
in the Mg3Gd phase; therefore, it was identified as the (MgZn)3RE phase. The XRD results were in
accordance with the above EDS results. The globular-like ZnZrx phase and cuboid-like REH2 phase in
SEM did not appear in the diffraction peaks as their total amounts were too few to be identified by the
XRD analysis.
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Figure 3. The X-ray Diffraction (XRD) pattern of the as-cast Mg-xGd alloys (a), phase comparison and
corresponding ICCD cards (b).

Microstructures of the Mg-xGd alloys were different between the as-cast alloys and the
solution-treated (referred to as ST) alloys. Firstly, the grain sizes of the two kinds of the as-cast
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and solution-treated alloys are different. The microstructures of solution-treated Mg-xGd alloys with
different Gd contents are shown in Figure 4. The grains of the solution-treated samples generally
grew to 68.5, 55.6, and 48.2 µm, respectively. Compared to the as-cast Mg-xGd alloys, the grain sizes
of the solution-treated Mg-xGd alloys increased by 31%, 13%, and 18%. Among which, Mg-1Gd
demonstrated an evident increase due to having too few eutectic phases to restrain its growth. Then,
the morphology of the phases changed after solution treatment. Most elements of the original eutectic
phases in the as-cast condition were solid solution into the α-Mg matrix. Only part of the cuboid-like
phase still existed in the solution-treated alloys. New phases were precipitated in the solution-treated
alloys. A large amount of irregular precipitates distributed like flowers precipitated from the α-Mg
matrix in the solution-treated Mg-3Gd and Mg-5Gd samples, as shown in Figure 4b,c. A similar
phenomenon was found in [31], and this contributed to the precipitation of the ZnZrx phase during
the solution-treating process.
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Figure 4. Microstructure of the solution-treated (ST) Mg-xGd alloys: (a) Mg-1Gd (ST), (b) Mg-3Gd (ST),
and (c) Mg-5Gd (ST).

For further elucidation of the phase transformations of the solution-treated Mg-xGd alloys, XRD
analysis of the solution-treated Mg-xGd alloys was carried out. The XRD results of the solution-treated
samples are shown in Figure 5. The intensities of the diffraction peaks of the eutectic phase (Mg,Zn)3RE
decreased dramatically in the solution-treated Mg-5Gd alloy, compared to that in the as-cast Mg-5Gd
alloy. Certain diffraction peaks of the eutectic phase (Mg,Zn)3RE completely disappeared in the
solution-treated Mg-3Gd alloy, compared to the as-cast Mg-3Gd alloy. This result indirectly indicated
that the eutectic phase (Mg,Zn)3RE was incorporated into the α-Mg matrix.
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3.2. Mechanical Properties of the Mg-xGd Alloys

The tensile stress versus strain curves of the studied Mg-xGd alloys are depicted in Figure 6.
The UTS, YS, and tensile fracture elongation (shortened as EL) obtained from these curves are also
listed in Table 4. The as-cast Mg-3Gd alloy presented the lowest mechanical properties values: with
UTS at 160.0 MPa, YS at 85.8 MPa, and EL at 11.2%—among the three as-cast Mg-xGd alloys. The UTS
and YS of the as-cast Mg-3Gd alloy were enhanced by 21.5% and 30%, respectively, through the solution
treatment. The UTS and YS of the Mg-xGd alloys increased with increasing Gd content after solution
treatment, and the solution-treated Mg-5Gd alloy showed the highest values, with UTS at 125.2 MPa
and YS at 217.5 MPa.

Materials 2019, 12, x FOR PEER REVIEW 7 of 15 

 

compared to that in the as-cast Mg-5Gd alloy. Certain diffraction peaks of the eutectic phase 

(Mg,Zn)3RE completely disappeared in the solution-treated Mg-3Gd alloy, compared to the as-

cast Mg-3Gd alloy. This result indirectly indicated that the eutectic phase (Mg,Zn)3RE was 

incorporated into the α-Mg matrix. 

 

Figure 5. The XRD pattern of Mg-xGd alloys after solution treatment. 

3.2. Mechanical Properties of the Mg-xGd Alloys 

The tensile stress versus strain curves of the studied Mg-xGd alloys are depicted in Figure 

6. The UTS, YS, and tensile fracture elongation (shortened as EL) obtained from these curves 

are also listed in Table 4. The as-cast Mg-3Gd alloy presented the lowest mechanical properties 

values: with UTS at 160.0 MPa, YS at 85.8 MPa, and EL at 11.2%—among the three as-cast Mg-

xGd alloys. The UTS and YS of the as-cast Mg-3Gd alloy were enhanced by 21.5% and 30%, 

respectively, through the solution treatment. The UTS and YS of the Mg-xGd alloys increased 

with increasing Gd content after solution treatment, and the solution-treated Mg-5Gd alloy 

showed the highest values, with UTS at 125.2 MPa and YS at 217.5 MPa. 

 

Figure 6. The stress–strain curves of the Mg-Gd alloys under different conditions. 
Figure 6. The stress–strain curves of the Mg-Gd alloys under different conditions.

Table 4. The mechanical properties of Mg-xGd alloys.

Samples YS (MPa) UTS (MPa) Elongation (%)

Mg-1Gd AC 136.1 172.8 13.2
Mg-3Gd AC 85.8 160.0 11.2
Mg-5Gd AC 103.3 201.9 15.6
Mg-1Gd ST 102.0 188.5 22.0
Mg-3Gd ST 111.7 194.4 22.9
Mg-5Gd ST 125.2 217.5 22.7

3.3. Immersion Tests of the Mg-xGd Alloys

Hydrogen evolution curves of the as-cast and solution-treated Mg-xGd alloys were recorded
during an immersion test in Hanks’ solution for 5 days, as shown in Figure 7. The hydrogen evolution
volume increased with the immersion time. The rate of hydrogen evolution fluctuated within a narrow
range during the immersion period. The results of the corrosion rate preliminarily displayed that
Mg-3Gd (ST) > Mg-1Gd (AC) > Mg-5Gd (AC) > Mg-5Gd (ST) > Mg-1Gd (ST) > Mg-3Gd (AC).

Corrosion rates of the Mg-xGd alloys were calculated according to Equations (1) and (2) as shown
in the former part. The calculated results are displayed in Figure 8. The lowest corrosion rate appeared
in the Mg-3Gd (AC) sample, which was 0.285 ± 0.050 mm/yr, while the Mg-3Gd (ST) sample presented
the highest value of corrosion rate of 0.973 ± 0.100 mm/yr. These results indicated that Mg-3Gd (AC)
shows a good corrosion resistance (<0.5 mm/yr) among the studied as-cast Mg-xGd alloys.
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Figure 8. Corrosion rates of the as-cast, solution-treated Mg-xGd alloys in Hanks’ solution for 5 days at
37 ◦C.

To elucidate the corrosion mechanism of Mg-xGd alloys, the surface morphologies of the corroded
Mg-xGd alloys after the removal of corrosion products were obtained through SEM. Most regions
of the corroded surface of the Mg-xGd alloys were well protected by oxidation films. The seriously
corroded surface regions of the Mg-xGd alloys are displayed in Figure 9. The as-cast Mg-xGd alloys
presented intergranular corrosion modes. The corrosion process appeared initially in the α-Mg matrix
around grain boundaries, due to micro galvanic corrosion forming between the α-Mg matrix (as the
anode) and eutectic (Mg,Zn)3RE (as the cathode). Then, the corrosion process expanded to inside the
α-Mg matrix and finally formed corrosion pits. The size and depth of the corrosion pits were used to
evaluate the corrosion resistance of the as-cast Mg-xGd alloys. The Mg-3Gd (AC) alloy displayed the
highest corrosion resistance, followed by the Mg-1Gd (AC) alloy and then, the Mg-5Gd (AC) alloy,
as displayed in Figure 9a–c. After being solution-treated, the Mg-1Gd alloy presented a relatively good
corrosion resistance, while the Mg-3Gd (ST) and Mg-5Gd (ST) possessed more serious corrosion pits
compared to the as-cast Mg-xGd alloys.
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4. Discussion

4.1. The Effection Factors on Mechanical Properties

The UTS and YS of the as-cast Mg-xGd alloys did not increase with the Gd content. The Mg-3Gd
alloys presented the lowest values of UTS, YS, and elongation compared with other Mg-xGd alloys in
the as-cast condition. Depending on the XRD pattern, the (Mg,Zn)3RE phases during the casting were
roughly estimated by the WPF method (whole pattern fitting and Rietveld refinement) [32]. As can
be seen in Figure 10, the quantity of the (Mg,Zn)3RE phases in the as-cast Mg-3Gd alloy was greater
than the other as-cast Mg-xGd alloys. Large quantities of the (Mg,Zn)3RE phase around the grain
boundaries intensified the dendritic segregation and stress concentration simultaneously [26], which
decreased the UTS and YS of the as-cast Mg-xGd alloys. After solution treatment, the (Mg,Zn)3RE
phase dissolved into the α-Mg matrix, which eliminated the negative effect of the eutectic (Mg,Zn)3RE
phase on the plasticity. The dissolved atoms in the solution-treated Mg-xGd alloys resulted in solution
strengthening. The solution strengthening effect increased with increasing Gd content, inducing the
UTS and YS of the solution-treated Mg-xGd alloys to synchronously increase with the Gd content.
Owing to the solution strengthening effect, the Mg-xGd alloys display better mechanical properties in
the solution treated condition compared to those of the as-cast condition. However, the mechanical
properties of the Mg-1Gd alloy decreased after solution treatment. This is because the grains of the
solution-treated Mg-1Gd alloy dramatically increase in size to 31% greater than those of the as-cast
Mg-1Gd. When grains increase in size, the grain boundaries decrease, which leads to a decrease in the
grain boundary strengthening. The degree of grain growth of the Mg-3Gd and Mg-5Gd alloy is 13%
and 18% after solution treatment. Therefore, that the effect of the grain boundary strengthening on the
Mg-3Gd and Mg-5Gd alloy is less than that of the Mg-1Gd alloy.
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In summary, the addition of Gd, Nd, and Zn contributes to forming the (Mg,Zn)3RE phases as well
as effecting the grain size of the as-cast Mg-xGd alloys according to the microstructure. The (Mg,Zn)3RE
phase in the as-cast Mg-xGd alloys distributed around the grain boundaries and played a negative effect
on the mechanical properties due to the dendritic segregation and stress concentration. The addition of
Zn and Zr contributes to forming the ZnZrx phase, the amount of ZnZrx is a few in the as-cast Mg-xGd
alloys, while a lot of ZnZrx phase precipitated from the matrix during the solution-treating process,
which acted as a positive effect on the mechanical properties due to the precipitation strengthening.

4.2. The Effect of Gd Content on the Corrosion Properties of the Mg-xGd Alloys

The immersion tests demonstrated that the corrosion resistance of the Mg-3Gd alloy was completely
different from those of the other studied Mg-xGd alloys. While according to the previous studies [33–35],
the as-cast and solution-treated Mg-RE alloys presented better corrosion resistance with increasing Gd
content, which was in contrast to the research results found in this paper.

To obtain a better understanding of the corrosion properties of different Mg-xGd alloys,
potentiodynamic polarization and corrosion characteristics of the as-cast and solution-treated Mg-3Gd
alloys were investigated, as shown in Figure 11. In the as-cast samples, the corrosion potential of
Mg-3Gd (AC) was−1.319 V, which is higher than Mg-1Gd (AC) (−1.700 V) and Mg-5Gd (AC) (−1.549 V).
This demonstrated that, compared with other as-cast Mg-xGd alloys, Mg-3Gd (AC) was not easily
corroded in Hanks’ solution. The Mg-3Gd (ST) presented the lowest value of the corrosion potential,
and was the easiest to corrode among the three solution-treated Mg-xGd alloys. The corrosion current
density (icorr) of Mg-3Gd (AC) obtained the lowest value (10.7 µA/cm2) and that of the Mg-3Gd
(ST) obtained the highest value (36.1 µA/cm2). This indicates that the as-cast Mg-3Gd corroded the
slowest. In other words, the as-cast Mg-3Gd showed the highest corrosion resistance in Hanks’ solution.
The results of potentiodynamic polarization curves were in accord with the corrosion rates calculated
through the immersion tests.

On account of other researchers’ former work on the corrosion properties of Mg-RE alloys, grain
size, variety and microstructure of the second phase (usually referred to as the eutectic phase and
precipitated phase, such as the (Mg,Zn)3Gd phase and ZnZrx phase) played an important role in the
corrosion resistance. Song et al. [36] found that grain refinement resulting from ECAP (equal channel
angular pressing) process played two-sided effects on the corrosion properties of the magnesium alloy.
On the one hand, fine grains induced more corrosion pits and evident filiform-like corrosion, on the
other, the fine grains and uniformly distributed second phase can decrease the affection of galvanic
corrosion and inhibit the pitting corrosion [37].
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Among the studied Mg-xGd alloys, although the grain size of Mg-xGd alloys decreased with
Gd content, the grain size of all of the Mg-xGd alloys was of the same order of magnitude, and the
impact of grain size on the corrosion resistance was low. The observed differences in the corrosion
properties in the studied Mg-xGd alloys are due to the second phases, which include a eutectic phase
and precipitates phase. The influence of the second phase was relatively complex. The existence of
the second phase inevitably brought about the interaction with the α-Mg matrix. In the Mg-3Gd (ST)
sample there existed large amounts of fine precipitated ZnZrx phase (distributed like flowers). Because
of large amounts of precipitates that appeared in the solution-treated Mg-3Gd alloy, the precipitates
and the α-Mg formed into a series of galvanic couple groups which would exacerbate the corrosion
process and lead to the fastest corrosion rate. On the other hand, owing to the presence of the eutectic
(Mg,Zn)3Gd phase around the grain boundary, the island-like eutectic (Mg,Zn)3Gd phase acted as
a “wall” to stop corrosion propagation along the grains. The solution-treated Mg-3Gd alloy displayed
the largest quantity of eutectic (Mg,Zn)3RE phase around the boundary, resulting in the highest value
of corrosion rate (lowest value of corrosion resistance) in the Hanks’ solution. The Mg-1Gd (ST) alloy
showed a homogeneous corrosion pattern resulting from the disappearance of its microstructural the
eutectic (Mg,Zn)3RE phase, which failed to form galvanic couples between the eutectic (Mg,Zn)3RE
phases and around α-Mg.

The authors of Ref. [38] show that the side effects of Gd depending on its presentation: free ion
(toxic) and chelated (very low toxicity). The amount of Gd content as well as Gd concentration in vivo
make it difference. Myrissa et al. [39,40] found that the corrosion rate in vitro of the raw material
Mg-10Gd (Gd, 10 wt.%) is around 0.56 mm/yr and the Mg-10Gd alloy presents Gd concentration below
the limit of detection after implanting in the Sprague–Dawley® rats. Giving an extended application,
the Mg-3Gd (lower concentration of Gd in the raw materials compared to the Mg-10Gd) in our study
with the in vitro corrosion rate of 0.285 mm/yr (lower corrosion rate compared to that of Mg-10Gd in
Ref. [39]) should have a lower concentration of Gd in the rats compared to the result in Ref. [40].
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5. Conclusions

In this paper, the microstructure, mechanical properties (UTS, YS, and EL), and corrosion properties
of the as-cast and solution-treated Mg-xGd-Nd-Zn-Zr alloys were studied and the conclusions are
listed as follows:

(1) The as-cast Mg-xGd alloys consisted of an α-Mg matrix. The island-like eutectic (Mg,Zn)3RE
phase was distributed around the grain boundaries, along with the cuboidal phases (REH2) and
globular-like ZnZrx phase. The grain size of the as-cast Mg-xGd alloys decreased with increasing Gd
content. After solution treatment, the eutectic (Mg,Zn)3RE phase in the as-cast Mg-xGd alloys solid
soluted into the α-Mg matrix. Meanwhile, the fine ZnZrx phase precipitated from the α-Mg matrix
and exhibited a flower-like distribution in the solution-treated Mg-xGd alloys.

(2) Mg-3Gd (AC) presented the lowest value of UTS (160 MPa) and YS (85.8 MPa) among the
as-cast Mg-xGd alloys, resulting from the fact it exhibited the largest quantity of eutectic (Mg,Zn)3RE
phases, which enhanced to intensify the dendritic segregation and stress concentration. After solution
treatment, UTS and YS of the Mg-xGd alloys increased with increasing Gd content, and UTS and YS of
the solution-treated Mg-5Gd reached 217.5 MPa and 125.2 MPa, respectively.

(3) Mg-3Gd (AC) showed the lowest value of corrosion rate among the as-cast Mg-xGd alloys,
with a corrosion rate of 0.285 ± 0.050 mm/yr, while the Mg-3Gd (ST) displayed the highest corrosion
rate in the solution-treated Mg-xGd alloys (0.973 ± 0.100 mm/yr).

(4) The effect of microstructure, including the quantity of eutectic phases, precipitations and grain
sizes on the corrosion rate of the Mg-xGd alloys is integrative.
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