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Abstract: A two-step homogenization procedure is presented to investigate the stiffness of a
unidirectional continuous fiber-reinforced composite material containing voids of different shapes
and volume contents. Since the Mori–Tanaka scheme is limited to moderate volume contents of
the inhomogeneity phase, fiber and matrix are homogenized with semi-empirical relations with use
of the adjusted fiber volume content in a first step. In the second step, the Mori–Tanaka scheme is
applied to obtain the homogenized stiffness tensor of a transversely isotropic material containing
voids aligned with the fiber direction. The voids are modelled with infinite length, but an elliptic
base characterized by the aspect ratio. The tensor components of the Eshelby tensor for this case
are presented in closed form for a transversely isotropic material depending on the aspect ratio
and matrix material properties. The scheme is solved directly for easy implementation and the use
of fast calculations of the effective engineering constants of a composite material containing voids.
Experimental results from literature for different void contents and shapes are compared to the
predicted moduli with cylindrical voids. From the results it is further concluded that the aspect ratio
of the void and the manufacturing process of the composite should be considered.

Keywords: fiber-reinforced plastics; voids; Porosity; composites; Mori–Tanaka; Eshelby tensor;
transversal isotropic

1. Introduction

Voids in fiber-reinforced composites are common manufacturing defects and influence the
resulting stiffness and strength of the material. In recent decades, numerous researchers investigated
on the influence of voids on the resulting properties of composite materials. Early experimental
investigations by Lenoe focused on the effects of voids on the mechanical properties for unidirectional
and quasi-isotropic laminates for carbon fiber epoxy composites [1]. Void contents were estimated
between 1% and 5%. Longitudinal, transverse tension and shear tests were conducted. However,
no correlation function for void content and resulting properties was established. Experimental
investigations on the influence of voids on the flexural performance were performed for unidirectional
glass fiber-reinforced polypropylene by Hagstrand et al. [2]. They found a linear relationship between
the void content and the decrease in the effective modulus in fiber direction. (1.5% loss in bending
stiffness for 1% higher void content).

Varna et al. investigated a unidirectional glass fiber vinylester pre-preg material containing
voids [3]. The resulting fiber volume content was 66%, with the void content range from 0% to 5%.

Gürdal et al. investigated quasi-isotropic laminate lay-ups and the influence of voids on the
mechanical properties [4]. They related the strength to the void content. Liu et al. manufactured cross
ply laminates and evaluated the flexural modulus and the tensile modulus [5]. They used carbon
fiber epoxy specimens with a fiber volume content of 60%± 2%. The void volume content was varied
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between 0.5% and 3.5%. They reported that the tensile modulus is insensitive to voids. However,
a linear relationship with a low gradient between the tensile modulus and the void content could
be obtained.

Other experimental investigations including the consideration of the shape of a void are found in
the review article of Mehdikani et al. [6]. The voids are characterized as micro-, meso and macro-voids
with different shapes. The relevant meso and macro-voids often show a pancake-like appearance,
with the main axis of the voids aligned to the fiber direction. The dimension in fiber direction is
significantly larger than in the lamina plane.

The aim of the research presented is to propose a method to calculate the resulting engineering
constants of a composite material including elliptic cylindrical voids. The method is based on a
two-step homogenization procedure.

Two-step homogenization procedures have been employed by a lot of authors in the past.
Peng et al. [7] used a self-consistent scheme in the first step and the Mori–Tanaka estimate in the
second step to calculate the resulting properties of a particulate composite with different constituents.
Kushch et al. developed a solution for multiple interacting inclusions based on potential theory and
homogenization with the Maxwell scheme [8]. Barboura et al. used a gradual two-step homogenization
scheme [9]. Cohen et al. estimated the transverse modulus of a three-phase composite with void and a
rectangular filler embedded in matrix material. They proposed a very simple two-step homogenization
scheme [10]. The double inclusion method for the effective elastic properties of elastic particles
embedded in another elastic phase has been developed by Hori et al. [11].

The method presented within this article employs simple mixing rules in the first step to calculate
the engineering constants of a composite - with respect to the processing route. The void content and
the effect of the voids’ simplified geometry is subsequently homogenized with the composite phase
via the Mori–Tanaka scheme.

For the use in the first step, various approaches and homogenization procedures have been
proposed in the past. For transverse moduli of a composite, the simple rules of mixtures assuming
same stress or same strain in the constituents give the Reuss-Voigt bounds [12]. Narrower bounds,
without considering the shape of the composite constituents, give the Hashin–Shriktman bounds [13].
Semi-empirical models like Halpin-Tsai model can be connected with Hashin–Shriktman bounds to
give reasonable estimates of the fit parameters to calculate engineering moduli [14].

McLaughlin and Norris applied the differential homogenization scheme to transversely isotropic
materials [15,16]. Equations for the calculation of the in-plane Poisson ratio and for the in-plane
shear modulus for unidirectional layers were established by Craig et al. [17]. The transverse through
thickness Poisson ratio can be calculated as published by Christensen [18] or Philippidis et al. based
on the stiffness tensor [19].

Tandon and Weng used the Mori-Tanka Scheme for estimation of the engineering constants
with aligned spheroidal inclusions for different aspect ratios being defined via the length of the
inclusion. They apply their solution to calculate the resulting properties of a composite consisting
of fibers in an isotropic matrix based on the work of Mura [20,21]. Benveniste et al. also applied
the Mori–Tanaka scheme to calculate the resulting composite properties [22]. Ju and Chen derived
effective composite properties based on a noninteracting solution of the eigenstrains [23]. Other dilute
or self-consistent homogenization schemes based on the Eshelby solution are found in the literature
review of Tucker et al. [24].

Fit equations from finite element calculations for calculation of the transverse Young’s modulus
and shear modulus are presented by Bleier [25].

Huang et al. applied the Mori–Tanaka Scheme to compare the results of the finite element
method (FEM) to experimental data of composite specimens with voids of different aspect ratios [26].
The Eshelby tensor was integrated from Green’s function numerically. However, they did not present
the Poisson numbers and did not differentiate between different processing routes. Farouk et al.
derived the change in modulus by voids via application of a multi-phase equivalent inclusion
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homogenization [27]. Chao et al. used the same method to obtain the elastic constants for porous
aluminum composites [28].

Chiang proposed an asymptotic closed form analytical expression for the general ellipsoidal
case of an inclusion with three different semi-axes of the inclusion [29]. The closed form has been
presented in the same paper of Chiang for an infinite cylinder with circular basis. The results contain
the solution of Whiters, who gave closed form expressions for the Eshelby tensor for a transversely
isotropic matrix and a spheroidal inclusion [30]. The resulting properties of the Mori–Tanaka scheme
are not reliable when it comes to higher fiber volume fractions, since the fiber distribution and the
interaction of the fibers are not accounted for correctly. However, the void content found in composite
materials does not exceed moderate values. The Mori–Tanaka scheme therefore is applicable for the
integration of voids into a transversely isotropic matrix in a second step, with the properties of the
matrix being the properties of a composite. With the recent closed form formulation of the Eshelby
tensor by Chiang et al. [29], it is now possible to separate the two homogenization steps and to obtain
easy-to-use equations for the calculation of the elastic constants of composites with voids.

2. Modelling

Composite materials consist of fibers in a matrix phase containing voids. The fiber direction is
defined as “3” direction and the transverse directions are known as “1” direction (in the lamina plane)
and “2” direction in the thickness direction. Voids show a much larger dimension in fiber direction
compared to the other directions [4,31]. Therefore, the voids are modelled as cylinders with infinite “3”
axis but different semi-axes in “1” and “2” directions. For the scope of the research presented, the void
semi-axes are aligned to the “1” and “2” directions. The domain within the void is called “void domain
(Ωv)” and the region outside the void is called “composite domain (Ωc)” (Figure 1). All properties
regarding the composite domain or the void domain are indexed with “c” or “v”.

Figure 1. Definition of fiber and void orientations and their domains.

The aim is to investigate the influence of different void geometries and void contents on the
properties of the fiber-reinforced composite. For the solution of the problem, the overall stiffness tensor
of the composite with voids of different shapes and contents must be determined to calculate the
resulting engineering properties.
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2.1. Two-Step Homogenization Scheme

To overcome the limitations of the Mori–Tanaka scheme, a two-step homogenization approach
is developed. The approach presented uses the solution of the Eshelby tensor in a transversely
isotropic matrix and is different from a two-step homogenization where the Mori–Tanaka method
is applied in two subsequent steps or a multi-inclusion method in isotropic matrix as described by
Nemat et al. [32]. In the first step, fiber and matrix are homogenized with a semi-empirical relationship
for the engineering constants of a composite calculated from the properties of fiber and matrix. Since
the first homogenization step only focusses on the domain outside the void, special attention is drawn
to the fiber volume content of the composite domain (ϕ∗f ). The “adjusted” fiber volume content in the
composite domain can reach higher values than the global fiber volume content (ϕ f ), depending on the
manufacturing process. An increasing fiber volume content in the composite domain is a reasonable
assumption for all manufacturing processes of composites, where the amount of fibers per part is
controlled as well as the part’s geometry. This applies to manufacturing processes like resin transfer
molding (RTM) or pultrusion processes. In these processes, the voids are found as meso or macro-voids
in the matrix phase. For manufacturing processes that allow for a change in cross section geometry
of the specimens, like filament winding without thickness control or hand lay-ups, the global fiber
volume content should be used instead, since the voids’ cross section adds to the total cross section of a
specimen, without changing the fiber volume content of the composite domain. However, this is seen
to be a lower bound here, since different pressure profiles during curing e.g., in autoclave processes
may lead to a fiber volume content in between the two bounds depending on the void volume content.

ϕ∗f ≈
{ ϕ f

1−ϕv
e.g., for pultrusion or RTM processes

ϕ f e.g., for filament winding
(1)

With the adjusted fiber volume content, the resulting properties are calculated assuming
transversely isotropic behavior of the composite domain. For the Young’s modulus in fiber direction
the mixing rule is used, where index “ f , ij” stands for fiber stiffness tensor components in “i, j” and
“m” denotes the matrix properties:

Ec
33 = E f ,33 · ϕ∗f + Em · (1− ϕ∗f ) (2)

The remaining engineering constants are calculated within this article with the equations
published and investigated by Bleier [25]. However, the method is not limited to the use of
this specific rules. Other semi-empirical or self-consistent calculation schemes may be used
(compare [17,19,24,32,33]).

Ec
11 = Ec

22 =
Em

2
· 1 + f 0.68

ε

(1− ϕ∗f ) +
√

ϕ∗f · (1−
Em

E f ,11
)

(3)

Gc
13 = Gc

23 = Gm ·
0.67 + 0.33 · f 0.89

γ

(1− ϕ∗f ) + ϕ∗f ·
√

Gm
G f ,32

(4)

With the following factors:

fε =
1

1− 2√
π
·
√

ϕ∗f · (1−
Em

E f ,11
)

(5)

fγ =
1

1− 2√
π
·
√

ϕ∗f · (1−
Gm

G f ,23
)

(6)
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Under the assumption of transverse isotropy in the composite domain, the modulus G12 can be
calculated as:

Gc
12 =

Ec
22

2 (1 + νc
12)

(7)

With the Poisson number νc
12 following Christensen’s calculation from transverse isotropy of the

composite domain [18]:

νc
12 = νc

31 ·
1− νc

13
1− νc

31
(8)

The remaining Poisson numbers are calculated with the rule of mixtures and with the help of the
symmetry of the stiffness tensor:

νc
31 = ν f ,31 · ϕ∗f + νm · (1− ϕ∗f ) (9)

νc
13 =

Ec
11

Ec
33
· νc

31 (10)

Improvements to the quality of the calculated engineering constants in the first step are not the
focus within this article and may be found elsewhere [17,19,34]. However, all calculation rules show a
reasonable agreement compared to the finite element solution, except for differences of the Poisson
number νc

12 (see Section 4). For autoclave processes, when the assumption of the adjusted fiber volume
content being equal to the global fiber volume content is reasonable, the first homogenization step may
be omitted by measurements of the moduli and Poisson numbers. Since all engineering constants for
the unidirectional continuous fiber composite domain are now defined, the fourth rank compliance
tensor can be unfolded with the Mandel (Kelvin) notation, for a transversely isotropic material with
“3” being along the six-fold symmetry [35]:

Cc−1 =



1
Ec

11
− νc

12
Ec

11
− νc

13
Ec

11
0 0 0

− νc
12

Ec
11

1
Ec

11
− νc

13
Ec

11
0 0 0

− νc
13

Ec
11
− νc

13
Ec

11

1
Ec

33
0 0 0

0 0 0 1
2 Gc

13
0 0

0 0 0 0 1
2 Gc

13
0

0 0 0 0 0 1
2 Gc

12


(11)

The elasticity tensor can be noted in Mandel (Kelvin) notation as:

Cc =



Cc
11 Cc

12 Cc
13 0 0 0

Cc
12 Cc

11 Cc
23 0 0 0

Cc
13 Cc

23 Cc
33 0 0 0

0 0 0 Cc
44 0 0

0 0 0 0 Cc
44 0

0 0 0 0 0 Cc
66


(12)

In a second step, the Mori–Tanaka solution is used, where the (already homogenized) composite
domain and the void domain are homogenized. The Mori–Tanaka scheme results in the following
equation [36], with bold symbols denoting the fourth rank tensors:

Cmt = (1− ϕv) · Cc : [(1− ϕv) · I + ϕv · (I − S)−1]−1 (13)

Since the composite domain is now a transversely isotropic material, the Eshelby tensor changes
compared to the solution of an inhomogeneity in an isotropic matrix. A solution is given by Chiang for
a cylinder inclusion with elliptic base in a transversely isotropic matrix, which is now represented with
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the composite domain [29]. The solution of Chiang is simplified and the components of the Eshelby
tensor are explicitly given in Appendix A. The solution is identical to the solution of Withers in the
case of a spheroidal inclusion (a1 = a2, a3 6= a2) [30]. The unfolded Eshelby tensor for a3 −→ ∞ in
Mandel (Kelvin) notation is given by:

S =



S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0

0 0 0 0 0 0
0 0 0 2 S2323 0 0
0 0 0 0 2 S3131 0
0 0 0 0 0 2 S1212


(14)

With the elements S3311 = S2233 = S1111 = 0 in the case of a cylinder with the axis aligned to the
“3” direction. The fourth rank identity tensor I reduces to the 6× 6 identity matrix for the Mandel
(Kelvin) notation, with δij = 1 for i = j:

Eij = δij for i, j = 1...6 (15)

Equation (13) is now solved by replacing the fourth rank tensors with the tensors in Mandel
(Kelvin) notation and application of matrix calculation rules:

Cmt = (1− ϕv) · Cc · [(1− ϕv) · E + ϕv · (E− S)−1]−1 (16)

The inversion of Equation (16) (with application of (A · B)−1 = B−1 ·A−1) delivers the engineering
constants of the composite material including voids:

Cmt−1
=

1
1− ϕv

· [(1− ϕv) · E + ϕv · (E− S)−1] · Cc−1 (17)

With superscript “∗” denoting the effective properties of a composite containing voids after the
two-step homogenization scheme and the subscript “11” indicating the element in row and line 1 of the
inverse of the Mori–Tanaka stiffness matrix, the effective elastic constants of the void and composite
domain can be calculated as follows, resulting in an orthotropic material:

E∗11 = 1/Cmt
11
−1 E∗22 = 1/Cmt

22
−1 E∗33 = 1/Cmt

33
−1 (18)

2 G∗23 = 1/Cmt
44
−1 2 G∗13 = 1/Cmt

55
−1 2 G∗12 = 1/Cmt

66
−1 (19)

ν∗12 = −Cmt
12
−1/Cmt

11
−1

ν∗13 = −Cmt
13
−1/Cmt

11
−1

ν∗23 = −Cmt
23
−1/Cmt

22
−1 (20)

The presented procedure is straightforward to implement to computer programs and allows for
the estimation of the effective engineering constants including voids. However, for practical purposes,
the explicit solutions of the engineering constants are favorable to analyze the dependence of the
engineering constants on the shape of the void and of the void volume content. The explicit solutions
are discussed in the next chapter.

3. Analytical Investigation

For the following analytical interpretation of the influence of the void shape and void content on
the effective properties of a composite material including voids, the equations are solved explicitly.
For the geometry of the voids, the aspect ratio f is defined as f = a2/a1:
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3.1. Young’s Modulus in Fiber Direction

The Young’s modulus in fiber direction can be solved in a straightforward manner from
Equation (17):

Cmt
33
−1

=
1

1− ϕv
· Cc

33
−1 (21)

That gives the final result for the fiber parallel modulus:

E∗33 = Ec
33 · (1− ϕv) (22)

Since the modulus of the composite domain is calculated with the adjusted fiber volume content,
Ec

33 may be a function of the void content. As discussed in Section 2.1, ϕ∗f depends on the manufacturing
process. Introducing the definition of the adjusted fiber volume content into Equation (22) and the
mixing rule from Equation (2) results in:

E∗33 =

{
Ec

33,0 − Em · ϕv e.g., for pultrusion or RTM processes

Ec
33,0 · (1− ϕv) e.g., for filament winding processes

(23)

With Ec
33,0 as the initial modulus calculated with the global fiber volume content. Since the

Young’s modulus of the matrix is orders of magnitude smaller compared to the fiber or composite
modulus, it is expected that the decrease of the Young’s modulus for RTM or pultrusion processes is
smaller compared to filament winding processes. In this case the formula coincides with the mixing
rule with a reduced matrix volume content in the composite domain. As expected for both processes,
the effective Young’s modulus of a composite in fiber direction is linear dependent on the void volume
content, but not of the shape of the void.

3.2. Shear Moduli

For the shear modulus in the plane “2− 3” Equation (17) simplifies to:

Cmt
44
−1

=
1− 2 S2323 · (1− ϕv)

(1− 2 S2323) · (1− ϕv)
· Cc

44
−1 (24)

The Eshelby tensor components are replaced by the components of Appendix A giving the final
equation for G∗23

G∗23 = Gc
23 ·

f · (1− ϕv)

f + ϕv
(25)

The shear modulus in the “1− 3” plane is derived analogous:

G∗13 = Gc
13 ·

1
f · (1− ϕv)

1
f + ϕv

(26)

Both moduli depend on the void volume content and the aspect ratio of the void. As expected,
the shear modulus G∗13 can be calculated with the same equation as G∗23 except for the inverse of the
aspect ratio f . For manufacturing processes in which the adjusted fiber volume content is changed by
the void content, the shear moduli from the first homogenization step Gc

23 and Gc
13 are still functions of

the void content. For the shear modulus Gc
13 this leads to the phenomenon that for low aspect ratios

f << 1 a stiffening effect is predicted because of the higher fiber volume content in the composite
domain. To emphasize this effect, Equation (26) is normalized with the initial modulus without any
void and separated into the parts from the first and the second homogenization step:
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G∗13
Gc

13,0
=

Gc
13(ϕ∗f )

Gc
13,0︸ ︷︷ ︸

(I) From 1st step

·
1
f · (1− ϕv)

1
f + ϕv︸ ︷︷ ︸

(II) From 2nd step

(27)

A stiffening effect can be observed, if the normalized properties are higher than 1, or equally,
if the function

F = (I I)− 1
(I)

(28)

reaches values higher than zero.
The same development is done for the shear modulus in the “1− 2” plane, resulting in:

G∗12 = Gc
12 ·

(1− 2 S1212) · (1− ϕv)

1− 2 S1212 · (1− ϕv)
(29)

With replacing the component of the Eshelby tensor with Equation (A18) (Appendix A) and the
components of the composite domain with the engineering constants (Equation (12)), Equation (29)
can be reordered to:

G∗12 = Gc
12 ·

(1 + νc
12) · f · (1− ϕv)

(1− νc
23 νc

32) · (1 + f )2 · ϕv + (1 + νc
12) · f · (1− ϕv)

; (30)

For manufacturing processes with increasing fiber volume content in the composite domain,
also the modulus G∗12 may show a stiffening effect from the higher adjusted fiber volume content.
The condition for the stiffening effect can be derived from Equation (28) by changing the terms (I) and
(II) from the terms of Equation (30).

Approximate Solution for Out of Plane Shear Modulus

With νc
23 · νc

32 � 1 Equation (30) simplifies to:

G∗12 ≈ Gc
12 ·

(1 + νc
12) · f · (1− ϕv)

(1 + f )2 · ϕv + (1 + νc
12) · f · (1− ϕv)

; (31)

3.3. Young’s Modulus Transverse to Fiber Direction

Solving Equation (17) for the first entry delivers:

Cmt
11
−1

=
1

1− ϕv
· [(1− ϕv +

ϕv

∆
· (S2222 − 1)) · Cc

11
−1

− ϕv

∆
· S1122 · Cc

21
−1

− ϕv

∆
· (S1133 + S1122 · S2233 − S1133 · S2222) · Cc

31
−1]

(32)

With ∆:
∆ = S1111 + S2222 − S1111 · S2222 + S1122 · S2211 − 1 (33)

Finally, this leads to the result of the perpendicular Young’s modulus of the composite and void
domain in the lamina plane:

E∗11 = Ec
11 ·

∆ · (1− ϕv)

∆ · (1− ϕv) + ϕv · (S2222 − 1) + ϕv · S1122 · νc
12 + ϕv · Σ11 · νc

13
(34)

With:
Σ11 = S1133 + S1122 · S2233 − S1133 · S2222 (35)
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The same development is done for the modulus in thickness direction “2”:

E∗22 = Ec
11 ·

∆ · (1− ϕv)

∆ · (1− ϕv) + ϕv · (S1111 − 1) + ϕv · S2211 · νc
12 + ϕv · Σ22 · νc

23
(36)

With:
Σ22 = S2233 + S1133 · S2211 − S2233 · S1111 (37)

Giving the final results for both moduli:

E∗11 = Ec
11 ·

1− ϕv

1 + 2 · f · ϕv · (1− Ec
33/Ec

11 · νc
13

2)
(38)

E∗22 = Ec
11 ·

1− ϕv

1 + 2 · 1
f · ϕv · (1− Ec

33/Ec
11 · νc

13
2)

(39)

Again, both moduli depend on the aspect ratio and of the void content.

Approximate Solution for Transverse Young’s Moduli

The Eshelby tensor components require Cc
12

Cc
11

and Cc
13

Cc
11

:

Cc
12

Cc
11

=
νc

12 · Ec
11 + Ec

33 · ν2
13

Ec
11 − Ec

33 · νc
13

2 (40)

Cc
13

Cc
11

=
Ec

33 · νc
13

(
Ec

11 ·
(

νc
12

2 − 1
)
+ 2 Ec

33 · νc
13

2 ·
(
1 + νc

12
))(

Ec
11 − Ec

33 · νc
13

2
)
·
(

2 Ec
33 · νc

13
2 + Ec

11 ·
(
νc

12 − 1
)) (41)

With νc
13

2 � Ec
11

Ec
33

they simplify to:

Cc
12

Cc
11

= νc
12 (42)

Cc
13

Cc
11

=
Ec

33
Ec

11
· (νc

13 · (1 + νc
12)) (43)

The ratios are introduced into Equations for the Eshelby tensor in the Appendix A and then
into Equation (33). Since Σ11 and Σ22 are linear functions of the minor Poisson ratio νc

13, the terms in
Equations (34) and (36) for νc

13 Σii ϕv are omitted. After some further reordering the Young’s moduli
can be easily calculated as:

E∗11 = Ec
11 ·

1
f
· 1− ϕv

1
f + 2 ϕv

(44)

E∗22 = Ec
11 · f · 1− ϕv

f + 2 ϕv
(45)

As already seen for the shear moduli G∗23 and G∗13, the moduli can be determined by the inverse
of the aspect ratio from each other.
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3.4. Poisson Ratios

From Equation (18) the minor Poisson numbers are obtained. With the symmetry of the orthotropic
stiffness tensor in Mandel (Kelvin) notation the other Poisson numbers are calculated. After reordering
this gives the final result:

ν∗12 =
Ec

11 · νc
12 + Ec

11 · ϕv − Ec
11 · νc

12 · ϕv − 2 Ec
33 · ϕv · νc

13
2

Ec
11 + 2 Ec

11 · f · ϕv − 2 Ec
33 · f · ϕv · νc

13
2 (46)

ν∗21 =
Ec

11 · νc
12 + Ec

11 · ϕv − Ec
11 · νc

12 · ϕv − 2 Ec
33 · ϕv · νc

13
2

Ec
11 + 2 Ec

11 · 1/ f · ϕv − 2 Ec
33 · 1/ f · ϕv · νc

13
2 (47)

ν∗31 = ν∗32 = νc
31 (48)

ν∗13 =
Ec

11 · νc
13

Ec
11 + 2 Ec

11 · f · ϕv − 2 Ec
33 · f · ϕv · νc

13
2 (49)

ν∗23 =
Ec

11 · νc
13

Ec
11 + 2 Ec

11 · 1/ f · ϕv − 2 Ec
33 · 1/ f · ϕv · νc

13
2 (50)

The effective Poisson number ν∗31 and ν∗32 only depend on the result of the first homogenization
step and remain unaffected by the shape of the void. In the case of a changed fiber volume content of
the composite domain where Equation (1) is applied, the void content also changes the Poisson number.
This result is identical to the result published for a void in an isotropic continuum [32]. ν∗12 and ν∗21
as well as ν∗13 and ν∗23 can be calculated from each other by use of the inverse of the aspect ratio f as
shown for the Young’s moduli E∗22 and E∗11.

3.5. Limiting Cases

3.5.1. Circular Basis

With the analytical expressions of Equations (22)–(37), it is now possible to estimate the resulting
composite properties for the limiting cases of a cylindrical void shape with the same semi-axes (a2 = a1).
For the aspect ratio of f = 1 the Eshelby tensor components reported by Chiang et al. are obtained [29].
The engineering constants of the composite with voids now result in:

E∗33 = Ec
33 · (1− ϕv) (51)

E∗11 = Ec
11 ·

1− ϕv

1 + 2 · ϕv · (1− Ec
33/Ec

11 · νc
13

2)
(52)

E∗22 = E∗11 (53)

G∗13 = Gc
13 ·

1− ϕv

1 + ϕv
(54)

G∗23 = G∗13 (55)

G∗12 = Gc
12 ·

(1 + νc
12) · (1− ϕv)

4(1− νc
23 νc

32) · ϕv + (1 + νc
12) · (1− ϕv)

(56)

For the void content of ϕv = 0, the results for the engineering constants of the composite domain
without any void are recovered.
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3.5.2. Inter Fiber Failure

With a1 being much larger than a2, the void acts like a crack and the state of an inter fiber failure
perpendicular to the “2” direction is reached. It is expected that the moduli remain unaffected or are
zero. For f −→ 0 the Eshelby tensor components result in:

S1111 = S1122 = S1133 = S3131 = 0 S2211 =
Cc

12
Cc

11
S2222 = 1 (57)

S2233 =
Cc

13
Cc

11
S2323 = 1

2 S1212 =
1
2

(58)

Replacing the Eshelby tensor components into Equations (23), (25), (26), (30), (34) and (36) now
gives the engineering constants:

E∗11 = Ec
11 E∗22 = 0 E∗33 = Ec

33 · (1− ϕv) (59)

G∗23 = 0 G∗13 = Gc
13 G∗12 = 0 (60)

Since the void acts like a complete crack in the lamina plane “1− 3”, only the moduli G∗13 and E∗11
remain the same as received from the first homogenization step. However, the definition of a void
content for an inter fiber failure may seem questionable, although the analytic expressions above are
still valid for the use of a void volume content of zero.

4. Numerical Examples

The method is applied to a material of glass fibers and epoxy resin with the properties of Table 1
taken from Huang and Zhou [37]. The glass fiber is assumed as isotropic.

Table 1. Input material properties.

Young’s Modulus Poisson Ratio Global Volume Content

Epoxy resin 3350 MPa 0.35 50%
Glass fiber 74,000 MPa 0.2 50%

The method evaluates the resulting engineering constants for different volume contents and aspect
ratios of the cylindrical voids with elliptic base for a global fiber volume content of 50%. The process
is assumed to be an RTM process, in which the adjusted fiber volume content changes. The void
volume content was varied in ten steps in the interval of 0% to 7% in the first homogenization step to
calculate with Equations (1)–(9) the resulting properties of the composite domain. Then Equation (17)
was applied to calculate the engineering constants of the composite and the void domain. The aspect
ratio was varied in ten steps in the interval [0.4, 1.0]. Both homogenization steps were implemented to
the software Matlab, TheMathworks, USA. The flow chart of the implemented scheme is shown in
Figure 2.

The numerical values for the first and the second homogenization step are listed exemplary in
Tables 2–4 for one aspect ratio and one void volume content. The components of the stiffness matrix are
given in Mandel (Kelvin) notation, which is different in the shear properties by a factor of 2 compared
to the common Voigt notation.
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Figure 2. Flow chart of the implemented algorithm.

Table 2. First homogenization step for ϕv = 7% and ϕ f = 50%.

Variable Value Variable Value

ϕ f 50% ϕv 7%
ϕ∗f 53.76%

Ec
11 = Ec

22 11,295 MPa Ec
33 41,334 MPa

Gc
13 = Gc

23 4388 MPa Gc
12 4210 MPa

νc
12 0.342 νc

13 0.0736
νc

31=νc
32 0.269

Cc
11 13,336 MPa Cc

33 43,982 MPa
Cc

12 4916 MPa Cc
13 4916 MPa

Cc
44 8777 MPa Cc

66 8419 MPa

Table 3. Second homogenization step for an aspect ratio of f = 0.4.

Variable Value Variable Value

S1111 0.4254 S2222 0.8539
S1122 −0.0343 S2211 0.1237
S1133 0.1053 S2233 0.2633
S3131 0.1429 S2323 0.3571
S1212 0.3603

Cmt
11 11,526 MPa Cmt

12 3525 MPa
Cmt

22 9016 MPa Cmt
13 4054 MPa

Cmt
33 40,442 MPa Cmt

23 3378 MPa
Cmt

44 6947 MPa Cmt
55 7940 MPa

Cmt
66 6632 MPa
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Table 4. Final results for the engineering constants after the second homogenization step.

Engineering Constant Value

E∗11 9958 MPa
E∗22 7821 MPa
E∗33 38,441 MPa
G∗23 3473 MPa
G∗13 3970 MPa
G∗12 3316 MPa
ν∗12 0.365 MPa
ν∗21 0.287 MPa
ν∗23 0.0548 MPa
ν∗13 0.0698 MPa

ν∗31=ν∗32 0.269 MPa

The results of the method were compared to a representative volume element (RVE) in the
finite element method which was solved with the implicit solver in Abaqus 2018, Simulia, USA.
The algorithm for creation of the positions of the fibers was based on the Random sequential expansion
algorithm proposed by Yang et al. [38], with one centered void. The void volume content was
varied between 0% to 7% and the void aspect ratio was varied in the interval [0.4, 1.0]. For the void
volume content of 0% seven different fiber distributions were modelled to evaluate the quality of the
homogenization in the first step. The plan of the numerical experiments is shown in Figure 3 including
four RVE microstructures.

The fiber volume content was set a-priori to 50% with respect to the polygon shape of the meshed
fibers inside the RVE. A total number of 50 fibers was used based on the investigations of Trias et al. [39].
The dimension in 1 and 2 direction of the RVE are set equal and reach a length of 17.67 times the fiber
radius. The mesh for each of the 56 different microstructures was established by 32 nodes along the
fiber circumferences for fibers inside the RVE after a mesh-convergence study. For fibers crossing an
edge of the RVE, the fibers were cut and repeated at the opposite side of the RVE. Their circumferences
were discretized with the same distance between the nodes as for uncut fibers inside the RVE. Element
types for the matrix and the fibers inside the RVE were selected as linear hexagonal elements with
reduced integration (Abaqus code C3D8R). Fibers crossing an edge were meshed with wedge elements
(C3D6). This results in a total number of around 10,000 elements with 19,000 nodes with minor
differences between each microstructure. Reference points were coupled via constraint equations to
one side of the RVE in each direction to apply loads to the RVE. Opposing sides of the RVE were
coupled by the periodic boundary conditions. The details and determination of stress/strain response
of an RVE may be found elsewhere [40,41]. Material models for fiber and were assigned as linear
elastic with the values of Table 1. For each of the microstructures, six load cases to obtain moduli and
Poisson numbers were defined. With using 8 cores of an Intel Xeon CPU E5-2660 v3 at 2.6 GHz and 192
GB RAM, this leads to average calculation times of 19 seconds for each load step, resulting in a total
calculation time of 6,400 seconds. In contrast, the method implemented to Matlab and solved with
one core on an Intel Core i7-4710MQ CPU at 2.5 GHz and 16 GB RAM delivers all of the engineering
constants in 0.01 seconds on a finer grid compared to the plan in Figure 3. The engineering constants
of the seven microstructures without any void were compared with the ones from the mixing rules of
the first homogenization step (Figures 4 and 5). The highest relative difference is found for the shear
modulus Gc

12, which is caused by the application of the mixing rule according to Christensen in the first
homogenization step for the Poisson number νc

12 [18]. All other moduli show a reasonable agreement.
However, different standard deviations between the moduli Gc

23 and Gc
13 as well as for Ec

11, Ec
22 and

the Poisson numbers νc
12 and νc

21 show that a higher number of different RVE model calculations is
advisable for the determination of engineering constants via a finite element model.
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Figure 3. Finite Element experimental plan with four RVE microstructures.

Figure 4. Resulting moduli of the first homogenization step calculated via the RVE microstructures
(white bars) and via the used mixing rules (gray bars).

Figure 5. Resulting Poisson numbers of the first homogenization step calculated via the RVE
microstructures (white bars) and via the used mixing rules (gray bars).
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For all engineering constants, the slope of the change in the properties shows a reasonable
agreement between the method presented and the finite element solution (Figures 6 and 7). Numerical
improvements for the method presented can be achieved using different mixing rules in the first
homogenization step.

Figure 6. Resulting moduli calculated with the FEM RVE (gray surface) compared to the moduli
calculated with the method presented (green surface): (a) transverse Young’s modulus “1” direction;
(b) transverse Young’s modulus “2” direction; (c) fiber parallel Young’s modulus “3” direction;
(d) transverse shear modulus; (e) in plane shear modulus; (f) out of plane shear modulus.
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Figure 7. Resulting Poisson numbers calculated with the FEM RVE (gray surface) compared to the
Poisson numbers calculated with the method presented (green surface): (a) transverse Poisson number
for tension in “1” and reaction in “2” direction; (b) transverse Poisson number for tension in “2” and
reaction in “1” direction; (c) minor out of plane Poisson number; (d) major out of plane Poisson number;
(e) minor in plane Poisson number; (f) major in plane Poisson number.

Approximate Calculation of Moduli

The approximate Equations (31), (44), and (45) for an aspect ratio of f = 0.4 and a fiber volume
content of 50% in the range of 0% and 10% of void volume content are compared to the exact solutions
of Equations (30), (34), and (36). The materials are the same as in the previous section. Figure 8 shows
an excellent agreement of both calculation approaches under the assumptions made. The approximate
solutions allow for a simple and straightforward way to estimate the engineering constants for a
composite material containing voids of different aspect ratios and volume contents.
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Figure 8. Comparison of approximate solutions and the exact solutions depending on void volume
content and aspect ratio of 0.4: (a) Young’s moduli E∗11 and E∗22; (b) shear modulus G∗12.

5. Comparison with Experimental Data from Literature

The method presented is compared to experimental data from literature. The investigation of
Olivier et al. [42] is based on pre-preg material from two different types, namely T2H 132 300 EH
25 (A) and R922 1C 12K (B). Both materials are unidirectional carbon fiber epoxy materials with initial
fiber volume contents of ϕ f = 60% before manufacturing of specimens. The void contents’ range
is ϕv = 0.3% to 10.3%. For material “A” they report the void positions of larger voids between the
plies. Together with the measured dimensions of the voids, they can be modelled as meso-voids.
The aspect ratios of the ellipsoid/cylindrical voids range from for f = 1 for lower void contents up to
f = 0.3 for higher void contents. Since the global fiber volume content for all specimens is reported
to be approximately 63% and no significant influence of the void content on the Young’s modulus in
fiber direction was observed, the fiber volume content of the composite domain is adjusted with the
formula (1).

In the calculation, the input parameters from Soden et al. [43] in Table 5 for the fiber were used.
For the EH 25 epoxy resin system the datasheet value for the Young’s modulus of E = 3700 MPa [44]
was used. Poisson number was assumed as ν = 0.35.

Table 5. Input material properties of fiber for the comparison between Young’s modulus E∗11 calculated
by the method presented to the data presented by Olivier et al. [42].

Parameter Value

Transverse Young’s modulus E f ,11 15,000 MPa
In-plane shear modulus G f ,23 15,000 MPa

Transverse shear modulus G f ,12 7000 MPa
Major Poisson ratio ν f ,31 0.20
Minor Poisson ratio ν f ,12 0.071

All values are normalized to the first numerical value for ϕv = 0. The plot of the normalized
values compared to the experimental values is displayed in Figure 9 for three different aspect ratios
ranging from f = 0.3 up to f = 2 including f = 1 for the cylindrical void with circular basis.



Materials 2020, 13, 1354 18 of 23

Figure 9. Normalized Young’s modulus E∗11 as reported by Olivier et al. [42] and calculated with the
method presented.

The method presented for the aspect ratio of f = 0.3 follows the slope of decreasing modulus
with increasing void content for specimens with voids. However, the loss in stiffness for moderate
void volume contents compared to a void free specimen cannot be calculated with the aspect ratio of
f = 0.3. Since for lower void contents the authors describe spherical voids, which are modelled within
the scope of this method as cylindrical with circular basis, the Young’s modulus is also calculated for
the aspect ratio of f = 1. This aspect ratio coincides with the experimental results of the intermediate
void contents. For reaching the steep loss in stiffness, an aspect ratio of greater than f = 2 is required.
According to the described results, this aspect ratio does not seem realistic. However, also for the
longitudinal modulus (which is not shown in this paper), the experimental results showed some
scatter. Normalization of the scattered values to the first value of a void free specimen may lead to a
misinterpretation of the slope of the experimental results. Furthermore, the fiber volume content is
only reported once, which leads to an uncertainty if the void free specimens have the same global fiber
volume content as the specimens with voids.

Harper et al. investigated the influence of voids on the mechanical properties of AS4/3502
carbon fiber-reinforced epoxy pre-preg [45]. They used unidirectional specimens with void contents
ranging from 0.2% and 6.0% to measure Young’s moduli in fiber parallel and fiber perpendicular
direction as well as the in-plane shear modulus and major in-plane Poisson number. However, results
are only plotted for void contents higher than 1%. Since different void contents were achieved by
different pressure profiles in an autoclave process and no values are reported, the formula for an
unchanged adjusted fiber volume content is applied. The shape of the void was also not investigated.
Therefore, the voids are assumed as cylindrical with circular basis ( f = 1). Since the modulus E∗11 is
reported as absolute value, the first micromechanical homogenization step is omitted and a void free
modulus of Ec

11 = 11,400 MPa is assumed. Material parameters for the AS4 fibers differ significantly
through literature [43,46,47]. The results of the shear modulus clearly disagree with other results
reported [43,48]. Therefore, only the modulus E∗11 is compared to the results of the method presented.
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Figure 10. Young’s modulus E∗11 as reported by Harper et al. [45] and calculated with the
method presented.

The calculated fiber transverse modulus as shown in Figure 10 is in good agreement with the
scatter band of the results of Harper [45], although the information on the manufacturing process
and of the voids’ morphology is not available. This also may contribute to the high scatter in the
void containing specimens, if different conditions on the processing of the panels were present. Since
the assumption for the adjusted fiber volume content give bounds for different processing routes,
real manufacturing processes may show a behavior in between. The analytically shown stiffening
effect for high void contents and low aspect ratios also increases the difficulty of the interpretation of
experimental results. Therefore, void morphology and manufacturing boundary conditions should be
taken into consideration for a stiffness estimation of composites with voids.

6. Conclusions

The method presented allows for the calculation of the moduli of a composite material containing
elliptic cylindrical voids. Due to the explicit formulation of all moduli and Poisson numbers,
the calculation is straightforward, and orders of magnitude faster compared to a finite element solution.
The method is not limited to low fiber volume contents, since a semi-empirical rule of mixture is used
in the first step and the Mori–Tanaka estimate in the second step for an inclusion in a transversely
isotropic material. The derived solutions allow for a direct calculation of the engineering constants
without the calculation of the Eshelby tensor. From the analytical investigation, it is concluded that the
moduli depend on the aspect ratio of the void in fiber transverse direction and of the void content.
With the introduction of the adjusted fiber volume content in the first step, a stiffening effect is
predicted for the transverse moduli depending on the manufacturing process. A lower reduction with
increasing void volume content of the fiber parallel modulus is expected e.g., for the RTM process
compared to processes that have no control of thickness or global fiber volume content. No influence
of a void shape can be seen for the major Poisson number in the lamina and the thickness plane.

In experimental data from literature, void morphology and the manufacturing process are
frequently not considered to be parameters. Since it could be shown that the voids’ morphology
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has an influence on the resulting engineering constants it should be considered to be additional
quality parameter for fiber-reinforced composites. The manufacturing process also influences the
resulting engineering constants and should be considered. The comparison of the method presented
to experimental data from literature shows a reasonable agreement with the slope of the modulus
decrease. However, differences may occur from the unknown distribution of the void morphology in
the experiments and the details of the manufacturing process. In laboratory testing this could also
contribute to the high scatter of experimental data. In future works the method can be expanded
to incorporate different distributions of aspect ratios of the voids to obtain a prediction closer to
experimental values. Also, different mixing rules or experimental data from void free specimens can
be used in the first homogenization step to improve the prediction of engineering constants.
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Appendix A

The closed form solution of the Eshelby tensor is given following the solution according to
Chiang [29]. Since the fiber orientation is in “3” direction, the solution for a3 −→ ∞ and a2 6= a1 is
obtained for the nonzero components depending on the axis a2 and a1. The used input stiffness is
from the first quadrant of the Mandel (Kelvin) notation of the stiffness tensor. The values in the first
quadrant are identical to the ones of the more common Voigt notation:

S1111 =
a2

a1 + a2
+

a1 · a2

(a1 + a2)2 ·
Cc

11 + Cc
12

2 Cc
11

(A1)

S1122 =
a2

a1 + a2
·

Cc
12

Cc
11
− a1 · a2

(a1 + a2)2 ·
Cc

11 + Cc
12

2 Cc
11

(A2)

S1133 =
a2

a1 + a2
·

Cc
13

Cc
11

(A3)

S2211 =
a1

a2
· a2

a1 + a2
·

Cc
12

Cc
11
− a1 · a2

(a1 + a2)2 ·
Cc

11 + Cc
12

2 Cc
11

(A4)

S2222 =
a1

a2
· a2

a1 + a2
+

a1 · a2

(a1 + a2)2 ·
Cc

11 + Cc
12

2 Cc
11

(A5)

S2233 =
a1

a2
· a2

a1 + a2
·

Cc
13

Cc
11

(A6)

S2323 =
1
2
· a1

a1 + a2
(A7)

S3131 =
1
2
· a2

a1 + a2
(A8)

S1212 =
1
2
− a1 · a2

(a1 + a2)2 ·
Cc

11 + Cc
12

2 Cc
11

(A9)

Or equivalently with the use of the aspect ratio f = a2
a1

:
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S1111 =
f

1 + f
+

f
(1 + f )2 ·

Cc
11 + Cc

12
2 Cc

11
(A10)

S1122 =
f

1 + f
·

Cc
12

Cc
11
− f

(1 + f )2 ·
Cc

11 + Cc
12

2 Cc
11

(A11)

S1133 =
f

1 + f
·

Cc
13

Cc
11

(A12)

S2211 =
1

1 + f
·

Cc
12

Cc
11
− f

(1 + f )2 ·
Cc

11 + Cc
12

2 Cc
11

(A13)

S2222 =
1

1 + f
+

f
(1 + f )2 ·

Cc
11 + Cc

12
2 Cc

11
(A14)

S2233 =
1

1 + f
·

Cc
13

Cc
11

(A15)

S2323 =
1
2
· 1

1 + f
(A16)

S3131 =
1
2
· f

1 + f
(A17)

S1212 =
1
2
− f

(1 + f )2 ·
Cc

11 + Cc
12

2 Cc
11

(A18)
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