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Abstract: A new concept of soft ferromagnetic bulk metallic glass (BMG) with self-healing ability
is proposed. The specific [Fe36Co36B19.2Si4.8Nb4]100−x(Ga)x (x = 0, 0.5, 1 and1.5) BMGs prepared by
copper mold casting were investigated as a function of Ga content. The Ga-containing BMGs still
hold soft magnetic properties and exhibit large plastic strain of 1.53% in compression. Local melting
during shearing produces molten droplets of several µm size throughout the fracture surface. This
concept of local melting during shearing can be utilized to produce BMGs with self-healing ability.
The molten regions play a vital role in deflecting shear transformation zones, thereby enhancing the
mechanical properties.

Keywords: bulk metallic glasses; mechanical properties; thermal stability; doping; self-healing

1. Introduction

Among several bulk metallic glass (BMGs) systems, Fe-based BMGs are considered as a class
of engineering materials with enormous potential for many fields of application due to their unique
combination of excellent magnetic properties, good corrosion resistance, high hardness, high fracture
strength, and low cost [1–3]. However, these Fe-based BMGs do not exhibit strain hardening and
cannot sustain plastic deformation at room temperature. This brittle behavior under mechanical
loading severely limits their application as engineering and structural materials. In recent years,
huge efforts have been undertaken to improve the plastic deformability of monolithic BMGs or BMG
composites [4]. Several researchers have proved that plastic deformability in metallic glasses can
be largely enhanced by introducing different microstructural heterogeneities such as nano-crystals,
phase separation, or short-/medium-ranged clusters into the glassy matrix by controlling the casting
process [5–8]. In the case of Fe-based BMGs, the room temperature plasticity was improved by the
addition of small amounts of soft elements like Ni, Er, and Cu [9–12]. In recent years, among the
several Fe-based glassy alloys Fe-Co-B-Si-Nb BMGs have been regarded as one of the most promising
alloys because of its combined advantages of functional and structural materials [1].

Motivated by these results, we considered to dope a Fe36Co36B19.2Si4.8Nb4 base alloy (hereafter
named FeCoBSiNb) with Ga. Since the compositional variation of the Ga content in steps of 0.1 at.% is
very difficult, we considered adding Ga in steps of 0.5 at.%. In previous works, Ga was employed
as a main alloying element to improve the glass-forming ability (GFA) in a few glass-forming alloy
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systems [13–15]. However, in the present study, Ga is considered as a doping element to improve the
plastic deformability of Fe-based BMGs without hindering their GFA.

2. Materials and Methods

In this work, Ga-containing glassy samples were produced in 3 steps. An eutectic Fe25Nb75
(wt.%) pre-alloy, together with the crystalline B (99 wt.%), crystalline Si (99.99 wt.%), Fe and Co lumps
(99.9 wt.%), were melted together by induction heating under a protective Argon atmosphere. To this
master alloy the desired amount of Ga (99.99 wt.%) was added through arc-melting. Cylindrical
samples were prepared by remelting the pieces of the master alloys in quartz tubes and subsequently
injecting into a water-cooled copper mold. Structural characterization of the as-cast and annealed
samples was done by X-ray diffraction (XRD) using a PHILIPS PW 1050 diffractometer with Co-Kα

radiation (λ = 0.17889 nm). Microstructural investigation of the as-cast glassy samples was performed
using a Carl Zeiss Libra 200MC High Resolution Transmission Microscope (HRTEM). The thermal
behavior of the glassy samples was evaluated with a differential scanning calorimeter (DSC) NETZSCH
DSC 404 C with an accuracy of ± 2 K. To study the structural evaluation, samples were annealed
for 5 min. at different temperatures using the same DSC, with a constant heating and cooling rate
of 20 K/min. For compression testing, an INSTRON 8562 device was used in constant strain rate
mode at room temperature. The fracture surfaces of the samples were investigated using a scanning
electron microscopy (SEM) Zeiss LEO 1525, equipped with energy-dispersive X-ray spectroscopy
(EDS). For magnetic measurements, DC M-H hysteresis loops were recorded with a vibrating sample
magnetometer (VSM) at ambient temperature.

3. Results and Discussion

3.1. Structural and Thermal Characterization

Figure 1a shows the XRD pattern of as-cast (FeCoBSiNb)100−x(Ga)x (x = 0, 0.5, 1, 1.5) glassy
samples with maximum achievable diameter for each composition.
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(x = 0, 0.5, 1 and 1.5) glassy samples with maximum achievable diameter for each composition; (c)Figure 1. (a) XRD patterns and (b) DSC traces (heating rate 20 K/min) of as-cast [FeCoBSiNb]100−x(Ga)x

(x = 0, 0.5, 1 and 1.5) glassy samples with maximum achievable diameter for each composition; (c) XRD
patterns of [FeCoBSiNb]100−x (Ga)x (x = 0, 0.5, 1 and 1.5) samples heated up to the end of the first
crystallization event; (d) Hysteresis loops for 1 mm diameter as-cast [FeCoBSiNb]100−x(Ga)x (x = 0, 0.5,
1 and 1.5) glassy samples. The inset shows the behavior of the Ga-doped samples close to the saturation
region, i.e., between 80 and 100 Am2/kg.
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All samples exhibit similar diffuse patterns without any distinct crystal diffraction peaks indicating
the formation of a glassy structure. However, a second broad diffraction maximum is observed around
98.35◦ for the samples containing 1 and 1.5 at.% Ga. According to Bernal’s dense random packing hard
sphere model [16], the position of the first and second broad diffraction maxima contain information
about mean interatomic distances and medium-range order (MRO) in glassy systems. Therefore, it can
be assumed that the substitution of Ga atoms leads to some atomic level rearrangements. As reported
in the literature, the critical diameter (Dc) for this FeCoBSiNb alloy is 5 mm [1]. If the alloy is fluxed
with B2O3 prior to casting then Dc can be increased up to 7.7 mm [17]. In our work, following the
above described experimental route, Dc is 3 mm. The difference in Dc could be due to the purity of the
starting raw materials, the casting technique and the casting parameters used. The addition of Ga does
not affect the GFA of this FeCoBSiNb alloy and Dc (3 mm) also remains the same up to 1.5 at.% Ga
addition. This may be due to the relatively large atomic radius of Ga (1.53 nm) and negative heats of
mixing for Fe-Ga, Co-Ga pairs [18].

The DSC traces of as-cast glassy samples with Dc are shown in Figure 1b. For all compositions,
the DSC traces display a clear glass transition event, followed by a supercooled liquid region (SLR)
and crystallization, further confirming the glassy structure of these alloys. The thermal properties,
such as onset temperature of crystallization Tx, glass transition temperature Tg, crystallization peak
temperatures (Tp1, Tp2 and Tp3), liquidus temperature Tliq, extension of the SLR ∆Tx (∆Tx = Tx − Tg),
the GFA parameter γ (γ = Tx/(Tg + Tliq)), and the reduced glass transition temperature Trg (Trg = Tg/Tliq)
for the present BMGs are listed in Table 1. The addition of Ga does not affect Tg, but Tx marginally
increases from 858 K to 863 K for both 0.5 and 1 at.% Ga, and to 869 K for 1.5 at.% Ga-added glasses. On
the other hand, the two small exothermic events Tp2 and Tp3 observed for FeCoBSiNb glass disappears.
Instead, a single strong exothermic event Tp2 is observed for Ga-added glasses.

Table 1. Thermal stability parameters Tg, Tx, Tp1, Tp2, Tp3, Tliq, Trg, γ and ∆Tx as a function of Ga
content for [FeCoBSiNb]100-x(Ga)x (x =0, 0.5, 1 and 1.5) BMGs.

Compositions Tg (K) Tx (K) Tp1 (K) Tp2 (K) Tp3 (K) Tliq (K) Trg γ ∆Tx (K)

FeCoBSiNb 825 858 867 985 1050 1475 0.56 0.373 33

FeCoBSiNb + 0.5Ga 825 863 873 1037 - 1475 0.56 0.375 38

FeCoBSiNb + 1Ga 825 863 873 1038 - 1440 0.57 0.381 38

FeCoBSiNb + 1.5Ga 825 869 873 1038 - 1440 0.57 0.383 41

Figure 1c illustrates the XRD patterns of the (FeCoBSiNb)100−xGax (x = 0, 0.5, 1and 1.5) glassy
samples after constant-rate heating in the DSC up to the end of their first crystallization event, which is
at 902 K. The crystallization sequence of the BMGs containing 0 and 0.5 at.% Ga is almost identical.
The BMGs with 1 and 1.5 at.% Ga show distinct bcc-(Fe,Co) peaks along with (Fe,Co)23B6-type peaks at
the end of the first crystallization event. The formation of the bcc-(Fe,Co) phase for BMGs with higher
Ga contents may be associated to the presence of Ga atoms in the matrix, which may aid the nucleation
of the bcc-(Fe,Co) phase. The absence of bcc-(Fe,Co) phase for lower Ga contents indicates that 0.5 at.%
of Ga is not sufficient to trigger the nucleation of this phase.

The M-H hysteresis loops of the different BMGs are shown in Figure 1d. From the hysteresis
loops it is clear that saturation occurs at relatively similar magnetic fields for all glassy samples. The
saturation magnetization (Ms) decreases marginally from 108 to 105 Am2/kg when the Ga content
increases from 0 to 1.5 at.%. This decrease in Ms is attributed to the addition of the non-magnetic
element Ga.

High resolution transmission electron microscopy (HRTEM) investigations were carried out to
understand the effect of Ga addition in FeCoBSiNb glass. As-cast FeCoBSiNb and FeCoBSiNb + 0.5Ga
samples were subjected to wide-angle X-ray diffraction before preparing for HRTEM investigations
and the samples were amorphous. HRTEM micrographs for FeCoBSiNb and FeCoBSiNb+0.5Ga
samples are shown in Figure 2a,b, together with their corresponding fast Fourier transformed (FFT)
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images (shown as insets). The as-cast FeCoBSiNb + 0.5Ga glass exhibits some locally ordered regions,
which are marked by white circles in the image, but it is not evident whether the Ga atoms cause this
ordering/cluster structure. The exact identification of the chemical composition of these locally ordered
regions is not easy due to their very small size and the fact that they are dispersed in a chemically
complex multicomponent glassy matrix. EDX analysis indicates a faint clustering of Ga atoms.
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Figure 2. Bright-field HRTEM images of the as-cast (a) FeCoBSiNb and (b) [FeCoBSiNb]99.5Ga0.5

glasses. The insets show the corresponding fast Fourier transformed (FFT) images. Some features of
local ordering/clusters are observed, which are marked by the white circles.

However, it should be noted that the presence of ordered zones/clusters in a glassy matrix does
not necessarily imply that they act as nucleation sites for crystal growth. The ordered embryos must be
larger than the critical nucleus size in order for their growth to be thermodynamically favorable [19–21].
Since no ordered regions were observed in the Ga- free glass, it can be assumed that these ordered
zones are due to the Ga atoms. From the above structural evaluation and thermal stability data it
is evident that these ordered zones do not act as heterogeneous nucleation sites, thereby the GFA
remains unaffected.

3.2. Mechanical Properties

The room temperature compressive true stress-true strain curves for the as-cast
[FeCoBSiNb]100−x(Gax)(x = 0, 0.5, 1 and 1.5) BMGs are shown in Figure 3. All the curves are
offset from the origin for better visibility. All samples exhibit an elastic deformation regime followed
by a small compressive plastic regime. From the stress-strain curves it is evident that the plastic strain
increases gradually with increasing Ga content.
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(x = 0, 0.5, 1, and 1.5) glasses measured at a strain rate of 1 × 10−4/s.

For the 0.5 at.% Ga-added sample, the yield strength σy, elastic strain σy, fracture strength σf and
plastic strain σpl are almost the same as for the FeCoBSiNb parent glass, i.e., 3.95 ± 0.02 GPa, 2.80%,
4.06 ± 0.02 GPa and 0.43%, respectively. For higher amounts of Ga addition, the plastic deformation
is improved. The yield stress is 3.71and 3.62 ± 0.2 GPa for the 1 and 1.5 at.% Ga-added samples
and their corresponding elastic strain values are 2.73% and 3.30%, respectively. The fracture of all
Ga-added samples occurs at nearly the same value of true stress, around 4 GPa, but the corresponding
fracture strain is different: 3.87% for 1 at.% Ga- and 4.83% for 1.5 at.% Ga-added samples. The plastic
deformation of the samples extends up to 1.07% and 1.53% for 1 at.% and 1.5 at.% Ga-added samples.
The improvement in the plastic deformability of the glassy rods containing Ga can be explained based
on the ordered zones observed in the TEM investigations. The dispersed ordered zones seem to be
responsible for promoting plastic deformability in the Ga-containing samples, which is not observed for
the Ga-free samples loaded under the same conditions. The ordered zones present in the Ga-containing
samples affect the localized deformation in the glassy matrix. They may hinder shear band propagation
by acting as pinning centers or by deflecting the shear bands into multiple small branches. The volume
and density of these ordered zones also play a crucial role in deflecting the shear bands. If they are
distributed densely in a narrow zone, then the deflection will be very less leading to brittle failure.
The plasticity increase in the stress-strain curves reveals that the volume fraction and density of these
ordered zones are large enough for affecting the shear band propagation through the material but not
too high to cause distinct ductile failure. Sarac et al. [22] in their recent work showed that the presence
of soft zones/nanocrystals in an amorphous matrix plays a key role in improving the plasticity by
controlling the shear propagation rate.

3.3. Fracture Surface Analysis

The fracture surface morphology of the samples after the compression tests was investigated using
SEM. The fracture surface of the FeCoBSiNb and FeCoBSiNb + 0.5Ga samples consists of a number of
small fracture zones and their zone planes appear to be inclined by about 70◦–90◦ to the direction of
the applied load. This kind of failure is mainly due to the simultaneous generation of a large number
of small facture events at many sites, at a very high stress level close to 4.0 GPa. The high fracture
strength of these glasses is mainly due to the covalent bonding nature of their constituents [1,23].
Although a slight increase in plastic strain is observed for FeCoBSiNb + 0.5Ga samples, the overall
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appearance of the fracture surface points towards a brittle fracture mode, with many shells indicating
the generation and propagation of cracks. Neither shear bands on the lateral surfaces nor typical vein
patterns are observed on the fracture surface of these samples.

More interesting features are observed for the samples containing 1 and 1.5 at.% Ga. Figure 4a,b
show the fracture surface of the FeCoBSiNb + 1Ga samples after compression testing taken from
different regions with different magnifications. The fracture surfaces contain a large number of
vein patterns together with several micro-cracks (indicated by green arrows in the image). At first
the material starts to deform plastically; after a while brittle fracture starts, because the cracks are
superimposed on the vein patterns, indicating a combination of ductile and brittle failure modes.
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compression test and (d) center region at higher magnification (square region in (c)). Droplets are
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Figure 4c represents the fracture surface of the FeCoBSiNb + 1.5Ga samples taken from the center
of the samples after compression testing and Figure 4d shows a magnified image of the area marked
with dotted lines in Figure 4c. The red arrows indicate metal droplets, which are observed throughout
the fracture surface. Compared to the 1 at.% Ga samples, the fracture surface of the 1.5 at.% Ga samples
displays more vein patterns and less micro-cracks. Again, the micro-cracks are superimposed on
the vein patterns. The presence of metal droplets on the fracture surfaces suggests that at the very
high stress level of 4.0 GPa, the flowed layers must have melted, as is commonly observed in case of
deformable BMGs [24]. In a very recent work Stoica et al. [11] showed that during compression of
FeCoBSiNb + 0.5Cu glass the temperature in the shear plane can raise up to 1352 K, by assuming a
maximum shear propagation rate, i.e., 0.9Vs (Vs = speed of sound). The raise in temperature (1352
K) is just 30 K above the solidus temperature of the FeCoBSiNb + 0.5Cu alloy and barely enough to
melt very thin layers. The solidus temperatures of FeCoBSiNb + 0.5Cu and (FeCoBSiNb]100−x(Ga)x
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(x = 0, 0.5, 1 and 1.5) alloys are ≈1310 K [25] (supplementary Figure S1). In case of FeCoBSiNb + 0.5Cu
glass [11] no such molten droplets were found on the fracture surface but for FeCoBSiNb + 1.5Ga glass
µm-sized molten droplets are observed throughout the fracture surface (see Figure 4c,d. EDS analysis
performed on the molten droplets indicates a minor increase in Ga content compared to the other
fractured regions without any melting (supplementary Figure S2 and Table S1). Researchers have
already proved that Ga has a tendency to form nano-precipitates with Fe [26–28]. From these results it
can be assumed that the ordered zones formed due to the addition of Ga atoms play an important role
in deflecting shear bands and its contributing to some local melting due to the rise in temperature
during shear band propagation. EBSD measurements were carried out to identify the nature of the
molten droplets. The absence of Kikuchi bands indicates that they are amorphous (supplementary
Figure S3). This proves that the cooling rate is high enough to freeze the molten region instantly.

4. Conclusions

In summary, we have revealed that Ga can be considered as a potential doping element for
Fe36Co36B19.2Si4.8Nb4 glass; it improves glass-forming ability as well as plastic deformability to about
1.07% and 1.53% plastic strain for 1 and 1.5 at.% Ga addition without deteriorating the magnetic
properties. Furthermore, for the first time we reported the presence of molten regions of several µm
size throughout the facture surface in Fe-based BMG. Local melting at crack tips accompanied by fast
cooling can be considered as a promising healing mechanism for improving industrial applications of
Fe-based BMGs in many ways.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/6/1319/s1,
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