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Abstract: It is discussed that the classical effective medium theory for the elastic properties of
random heterogeneous materials is not congruous with the effective medium theory for the electrical
conductivity. In particular, when describing the elastic and electro-conductive properties of a strongly
inhomogeneous two-phase composite material, the steep rise of effective parameters occurs at
different concentrations. To achieve the logical concordance between the cross-property relations,
a modification of the effective medium theory of the elastic properties is introduced. It is shown that
the qualitative conclusions of the theory do not change, while a possibility of describing a broader
class of composite materials with various percolation thresholds arises. It is determined under what
conditions there is an elasticity theory analogue of the Dykhne formula for the effective conductivity.
The theoretical results are supported by known experiments and show improvement over the existing
approach. The introduction of the theory with the variable percolation threshold paves the way for
describing the magnetorheological properties of magnetoactive elastomers. A similar approach has
been recently used for the description of magneto-dielectric and magnetic properties.

Keywords: elastic properties; effective medium approximation; self-consistent; random heterogeneous
medium; two-phase composite material; percolation threshold

1. Introduction

The calculation of effective physical properties of composite materials is of significant interest
for many branches of science and engineering, because it allows one to predict the characteristics
of the resulting material from those of its constitutive components. The pioneering papers written
by J. C. Maxwell [1] and Lord Rayleigh [2] almost 150 years ago provided a correct statement of the
problem and a solution for small concentrations of inclusions. Significant progress in understanding the
behavior of composite materials has been achieved in the second half of the past century. This progress
is associated with the percolation theory, theoretical description of nanostructures and nonlinear
properties, as well as the development of smart composite materials, see, e.g., [3–6] for the reviews of
the subject. The present paper concerns the calculation of effective mechanical properties of random
heterogeneous two-phase composite materials. The effective medium theory (EMT) was formulated
about 55 years ago [7,8]. However, this approximate method is used until now, see, e.g., [9–12].
We demonstrate below that that in some cases this classical theory does not behave adequately.
For example, it leads to an antilogy in the description of a simultaneously elastic and electro-conductive
composite material. For a two-dimensional random heterogeneous medium, the classical EMT yields
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a non-symmetric expression with respect to the interchange of the mechanical properties of phases.
We propose a modification of the traditional EMT for the elastic properties, which allows one to
eliminate some inconsistency observable when comparing this EMT for elastic properties with the
EMT for other physical properties of the same material. The traditional EMT for the elastic properties
of random heterogeneous composites is a specific case of the modified theory.

As far as the types of inhomogeneity (classes of microstructures) are concerned, composite materials
can conditionally be divided into ordered and random heterogeneous. Random heterogeneous
composites include, for example, media with spherical, ellipsoidal or more complex-shaped inclusions,
randomly dispersed in a matrix. In ordered structures (where inclusions are arranged in a strictly
periodic manner), it is possible to obtain exact analytical expressions for the elastic moduli (Young’s and
shear moduli, Poisson’s ratio, etc.). With regard to the definition of the exact solution to the problem
of calculating the effective moduli the reader is referred to [13]. The exact solution is required for
obtaining in the closed form analytical expressions for the effective moduli, appropriate for an arbitrary
large inhomogeneity of mechanical properties, e.g., for an arbitrary large ratio of Young’s modulus
of the first and second phases. Although in real-world composites ideal periodic structures do not
occur, analytical results for the elastic moduli of ordered structures are useful because they allow one
to construct efficient computationally oriented models of multi-parameter complex systems by using
asymptotic methods, which can, owing to their simplicity, be directly employed for control engineering
of composite-material-based systems [14–16].

For random heterogeneous composite materials, it is impossible to obtain exact analytical
solutions for the elastic moduli. In this case, sufficiently precise approximate expressions can be
derived for small concentrations of one phase (isolated inclusions). Alternatively, good approximate
solutions are possible in the percolation region, particularly in the so-called critical region and large
inhomogeneity [3,4,17,18]. Both cases are interesting from the theoretical and experimental points of
view. However, real-world composites usually do not belong to these two classes. Therefore, it is
desirable to have an approximation, which describes the properties of a randomly inhomogeneous
composite material in a broad concentration range, including large inhomogeneity.

For a significantly simpler (in comparison to the elasticity theory) problem of calculation of
effective properties of electro-conductive (effective electrical conductivity coefficient) or dielectric
(effective permittivity) composite materials, such an approximation is well-known. It is the
effective medium theory (EMT), based on the problem of an isolated inclusion and self-consistency
considerations [3,4,17–19]. For the conductivity or permittivity problem, this estimation is often
called the Bruggeman–Landauer (BL) approximation [20,21]. The BL approximation for the simplest
two-phase isotropic case has the following form:

σe − σ1

2σe + σ1
p +

σe − σ2

2σe + σ2
(1− p) = 0, (1)

where p is the concentration of the first phase, σe is the effective electrical conductivity, σ1 and σ2

are the conductivities of the first and second phases, respectively. The percolation threshold in the
BL approximation (1) for the large inhomogeneity (σ1/σ2 →∞ ) is equal to 1/3. Simultaneously, one
may calculate the effective elastic properties of the same composite. Rigorous cross-property relations
linking the effective transverse electrical conductivity and the effective transverse elastic moduli of a
fiber-reinforced (two-dimensional) composite were investigated in [22]. Effective elastic properties of
random two-dimensional composites were written in analytic form with the accuracy of O(p4) in [23].
The classical EMT for the elasticity problem in the three-dimensional (3D) case has an inherent property
that the percolation threshold is equal to 1/2 [24]. From our point of view, there is a logical discrepancy,
when simultaneous investigations of mechanical and electric properties contradict each other. In this
context, it seems necessary to modify the EMT for elastic properties.

The paper is organized as follows: In Section 2, we briefly overview the conventional EMT
approximation for the elasticity problem. In the following Section we begin with calculations of the
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percolation threshold, the Poisson’s ratio at the threshold, as well as the critical exponents. Next,
we discuss the inconsistency of the conventional EMT for the elasticity problem in comparison
with its application to the conductivity problem. To overcome this shortcoming of the theory, we
propose a modification of the EMT, in which the percolation threshold can be prescribed. In Section 4,
the percolation properties of the modified EMT are calculated and discussed. Finally, we consider
the two-dimensional case, for which we succeed in constructing the analog of the famous formula by
A.M. Dykhne for the electrical conductivity of a symmetric two-phase composite [25] in the case of a
symmetric elastic composite, using the modified theory. Conclusions are drawn in Section 5, where
also an outlook into the future research is given.

2. Materials and Methods

In what follows, we consider random heterogeneous two-phase composites. The self-consistent
EMT approximation considers inclusions of the spherical shape embedded into a fictitious homogeneous
medium with the effective elastic properties searched. The concentration of the first phase is p,
the concentration of the second phase is (1 − p). The mechanical properties of both phases and the
effective medium are isotropic.

For the elasticity problem, the self-consistent EMT approximation was obtained in the past [3,7].
It can be written in the following form:

p

1+αe

(
K1
Ke −1

) + 1−p

1+αe

(
K2
Ke −1

) = 1

p

1+βe

(
G1
Ge
−1

) + 1−p

1+βe

(
G2
Ge
−1

) = 1

, (2)

where
αe =

1
3
·
1 + νe

1− νe
, βe =

2
15
·
4− 5νe

1− νe
, (3)

and Ge, Ke, νe are the effective shear modulus, the bulk modulus and the Poisson’s ratio, respectively,
while G1, G2, K1, K2, ν1, ν2 are the values of these moduli in the first and second phases.

For a small concentration of one phase (p � 1), σe(p) from (1) and Ge(p) from (2,3) transform
into the known expressions, obtained for small concentrations. The approximation (for the effective
conductivity this is the Maxwell’s approximation, see, e.g., [3,4,17,18]) describes the behavior of the
effective coefficients with the accuracy of the first power of concentration p. The Maxwell’s approach
can also be generalized to other physical properties, e.g., the piezoelectricity [26].

For theoretical considerations the most challenging region of filler concentration is around a
particular concentration value, where with a small variation of the concentration, a significant change
in the values of effective coefficients and moduli takes place at large inhomogeneity, see Figures 1
and 2. Such a concentration is denoted the percolation threshold. According to the percolation theory,
in a vicinity of the percolation threshold (in the so-called critical region,

∣∣∣p− pc
∣∣∣ << 1) the effective

conductivity (σe), shear (Ge) and Young’s (Ee) moduli have the following power-law behavior:

σe ∼ (p− pc)
t, σ2 = 0, p > pc; σe ∼ (pc − p)−q, σ1 = ∞, p < pc; (4)

Ee ∼ (p− pc)
f , Ge ∼ (p− pc)

f , E2 = G2 = 0, p > pc; (5)

Ee ∼ (pc − p)−S, Ge ∼ (pc − p)−S, E1 = G1 = ∞, p < pc, (6)

where f and S are universal critical exponents [3,4,17,18].
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Figure 1. Concentration dependences of the effective shear modulus Ge at G2
G1

= 0. (a) Different shear
moduli of the second phase G2 (ν2 = 0.49) and G1 = ∞. (b) Different shear moduli of the first phase G1

(ν1 = 0.3) and G2 = 0 Pa.

Figure 2. Concentration dependences of the effective Poisson’s ratio νe at G2
G1

= 0. (a) Different Poisson’s
ratios of the second phase ν2 (G2 = 105Pa) and G1 = ∞. (b) Different Poisson’s ratios of the first phase
ν1 (G1 = 1011Pa) and G2 = 0 Pa.

Approximate values of critical exponents can be obtained from qualitative considerations, while
their precise values can be derived from numerical modeling [17,24,27].

The EMT for the elasticity problem approximately describes the behavior of elastic moduli
in the critical region. Note that the behavior of effective conductivity and elastic moduli at large
inhomogeneity is analogous to the behavior of the order parameter in the theory of second-order
phase transitions [28]. Calculation of the critical exponents of the order parameter in the EMT gives
their approximation value. The clarification of these values is more complicated and related to the
consideration of fluctuations of the order parameter [29–31]. Similarly, EMT in the elasticity problem
yields approximate values of critical exponents f and S. According to the EMT, the critical exponents
of the effective conductivity are easily found from (1) and they are equal to unity: t = q = 1 [3,4].
According to experiments and numerical calculations t = 2, q = 0.73 in the three-dimensional case [17].

In spite of its seeming simplicity, the BL approximation, based on the idea of a self-consistent
solution, describes the variation of effective coefficients in the entire concentration range, quantitatively
and qualitatively. For example, it could be the effective electrical conductivity σe (1). At small
inhomogeneity (σ1/σ2 is slightly larger than unity), for a well homogenized mixture of two phases
with conductivities σ1 and σ2, the dependence σe(p), obtained from (1), describes the experimental
data well. As is well-known [3,4,17,18], at large inhomogeneity (σ1/σ2 � 1) there exists such a value of
concentration, called the percolation threshold pc, in the vicinity of which the effective conductivity
(other effective coefficients and moduli, as well) steeply changes its value. The description of such
phenomena is the subject of the percolation theory, which is the analogue of the theory of the
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second-order phase transitions. The main geometrical element there is the connectivity through one of
the phases—the appearance of a continuous path via one of the phases through the entire specimen (the
so-called infinite percolation cluster). At a first glance, an EMT approximation (calculation of the field
inside the isolated spherical inclusion of one of the phases, immersed into the effective medium) cannot
provide a description for the steep rise of the effective conductivity σe. However, the BL approximation
not only gives a growth in the vicinity of a concentration value at σ1/σ2 � 1, but also gives a power-law
dependence of σe on

∣∣∣p− pc
∣∣∣ in a vicinity of pc at σ1 = ∞, σ2 , ∞ or at σ1 , 0, σ2 = 0. Such power-law

dependences close to the percolation threshold take place for the order parameters (in the theory of
the second-order phase transitions) and for the effective coefficients and moduli in the percolation
theory, see (4–6).

Thus, the EMT approximation qualitatively and partly also quantitatively describes the percolation
behavior. Therefore, it is reasonable to use the notations of the percolation theory–percolation threshold,
critical concentration region (

∣∣∣p− pc
∣∣∣ � 1), as well as critical exponents describing the power-law

behavior in the critical region. For the conductivity problem, the EMT approximation leads to the
existence of the percolation threshold pσc (the upper index denotes the conductivity problem) and
the power-law behavior of the conductivity σe in the vicinity of pσc , characterized by its own critical
exponents. In the EMT framework, pσc = 1

3 .
It is worth noting that the EMT results, when describing the efficient coefficients and moduli, are

approximate, similar to Landau’s theory of the second-order phase transition used for the description
of the order parameters.

3. Results

3.1. Percolation Threshold in Traditional EMT

Let us first determine the percolation threshold pc. We reformulated the EMT Equation (2), using
as the independent variables G and ν. Taking into account the known relation K = 2G(1 + ν)/3(1− 2ν),
the system of Equations (2) can be written in the form:

p

1+αe

(
G1
Ge

1+ν1
1+νe

1−2νe
1−2ν1

−1
) + 1−p

1+αe

(
G2
Ge

1+ν2
1+νe

1−2νe
1−2ν2

−1
) = 1

p

1+βe

(
G1
Ge
−1

) + 1−p

1+βe

(
G2
Ge
−1

) = 1

. (7)

If a composite with E2 = G2 = 0 is considered, taking in (7) G2 = 0 it is possible to investigate the
case when p→ pc , Ge → 0 . Equation (7) is simplified and can be written in the following form: 1

1+αe

(
G1
Ge
·

1+ν1
1+νe ·

1−2νe
1−2ν1

−1
) − 1

p + (
1

1−αe
− 1

)
(1− p) = 0 1

1+βe

(
G1
Ge
−1

) − 1

p + (
1

1−βe
− 1

)
(1− p) = 0


. (8)

Putting now Ge → 0 and p→ pc , from (8) we find

−pc +
(

1
1−αe
− 1

)
(1− pc) = 0

−pc +
(

1
1−βe
− 1

)
(1− pc) = 0

. (9)

From (9) we obtain
αe = βe. (10)

It immediately follows that

νe
(
p = pE

c

)
=

1
5

, pE
c =

1
2

, (11)
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where the upper index of pE
c means that this percolation threshold refers to the elasticity problem.

Note that the value of the Poisson’s ratio νe at the percolation threshold (10) in the EMT framework
does not depend on the mechanical parameters of phases, i.e., on ν1, ν2 and G1: νe

(
p→ pE

c = 1/2
)
= 1/5.

The case G2/G1 → 0 is considered above at G2 → 0 for a finite value of G1. The same result also takes
place at G2/G1 → 0 , but for a non-zero value of G2, while G1 →∞ (see Appendix A). The particular
value ν∗ = 1/5 was discussed in [32]. Later we will return to the discussion of the particular values of
the Poisson’s ratio. Figure 2 shows the concentration behavior of the effective Poisson’s ratio for the
both cases.

Figure 3 demonstrates the concentration dependences of the effective shear modulus and the
effective Poisson’s ratio for the finite values of the shear modulus of both constitutive materials.
The inset shows the enlarged region in a vicinity of the percolation threshold. It is seen that the effective
Poisson’s ratio is not exactly equal to 1/5 at p = 1/2, as it has been shown previously in [32].

Figure 3. (a) Concentration dependence of the normalized effective shear modulus Ge/G1 for different
shear moduli of the second phase. G1 = 1011Pa, ν1 = 0.3, ν2 = 0.49; (b) Concentration dependence
of the effective Poisson’s ratio for different combinations of the Poisson’s moduli of the phases.
G1 = 1011Pa. The inset shows the enlarged region around the percolation threshold.

3.2. Critical Exponents in Traditional EMT

By using the known value of the percolation threshold pE
c = 1/2, it is possible to decompose the

expression for Ge into the series with respect to the vicinity of the percolation threshold
∣∣∣p− pc

∣∣∣ and
calculate the corresponding critical exponents.

At G2 → 0 we obtain from the first Equation of system (7):

νe =
G1[(1− ν1) − 3p(1 + ν1)] + 2Ge(1− 2ν1)

G1[(1 + ν1) + 3p(1 + ν1)] + 2Ge(1− 2ν1)
, (12)

and from the second Equation of system (7) we get two solutions:

νe =
4
5

, νe =
1
5
·
(8− 15p)G1 + 7Ge

(2− 3p)G1 + Ge
. (13)

The first solution in (13) has no physical meaning, because the Poisson’s ratio is never larger than 1/2.
Introducing a variable G̃e = Ge/G1, and equating the right-hand sides of obtained solutions (12,13):

1
5
·
8− 15p + 7G̃

2− 3p + G̃
=

(1− ν1) − 3p(1 + ν1) + 2G̃e(1− 2ν1)

(3p + 1)(1 + ν1) + 2G̃e(1− 2ν1)
. (14)
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After cross-multiplication we obtain a quadratic equation for G̃e with two solutions:

G̃e =
−10ν1 − 3p(3− 7pν1) + 8±

√
ω

8(2− ν1)
, (15)

where
ω = 9(7ν1 − 3)2p2

− 12
(
51ν1

2
− 35ν1 + 4

)
p + 4(7ν1 − 2)2. (16)

The solution with the plus sign in front of the root term in the numerator of (15) does not possess
the necessary physical properties (Ge → 0 at p→ pc ).

Near the percolation threshold, G̃e behaves in a power-law manner (5), as should be expected in
the critical region of the percolation theory. Substituting (16) into (15), we find the critical exponent f
by the method of Padé approximants [33,34]:

fEMT = lim
p→ 1

2
+

{(
p−

1
2

)[
∂
∂p

ln
(
G̃e

)]}
= 1, (17)

where the notation f EMT signifies that this value is obtained using the EMT and the result coincides
with the value obtained in [24]. The value obtained by numerical calculations outside of the EMT
framework is f = 3.76 [3,4,17,18,27]. A proof for G1 →∞ is given in Appendix B.

The availability of percolation thresholds at large inhomogeneity, both for the conductivity
problem as well as the elasticity problem, is, of course, related to the formation in a two-phase randomly
inhomogeneous system of the so-called infinite cluster [3,4,17,18], which is a connected path through
the entire specimen via one of the phases. In the case of the conductivity problem, the appearance
of an infinite cluster of the first phase (σ1 � σ2) means the appearance of a well conducting path,
and therefore, a steep decline in the electrical resistance of the specimen. For the elasticity problem, at
E1 � E2 that means the appearance of a rigid frame. Close to the concentration, where the formation
of “percolation” takes place (i.e., an infinite cluster of one of the phases comes into existence) the
power-law dependence of the effective coefficients is observable.

3.3. Criticism of the Traditional EMT for the Elasticity Problem

In spite of the fact that effective coefficients and moduli give correct qualitative, and in some
cases even quantitative, behavior in the entire concentration range, both for conductivity and elasticity
calculations, there exist principle difficulties and logical discrepancies in the conventional approach.

The main disadvantage is the strict equality of pE
c to 1/2. EMT describes random heterogeneous

media, in other words, well-blended mixtures of two phases. At a small concentration of the first
phase, p � 1, such a medium represents the inclusions of the first phase in the second phase. At
the concentration p close to 1, these are the inclusions of the second phase in the first phase. There
is a symmetry: mutual interchange of phases 1� 2 and concentrations p� 1− p does not change
the effective properties of such symmetric composites. This symmetry is directly seen in (1) for
the conductivity problem and in (2,3) for the elasticity problem. For example, after replacing in
(2,3) G1 � G2 , K1 � K2 , p� 1− p the system of equation remains unaltered [35,36]. If the critical
concentration of the first phase is equal to pc1, by virtue of said symmetry, the percolation threshold pc2

of the second phase is equal to (1− pc1), because of the parity of the phases.
If the concentration, e.g., of the first phase, is increased, upon reaching p = pc in a three-dimensional

medium, an infinite cluster of the first phase arises. At the same time, an infinite cluster of the second
phase does not disappear. According to the symmetry the cluster of the second phase emerges at
1 − pc (while decreasing from 1). Thus, at pc < p < 1 − pc, there exist two clusters in the medium
simultaneously. In the two-dimensional case, the percolation threshold of the first phase pc has the
value of 1/2 in the EMT approximation and upon occurrence of the cluster of one phase the second
cluster disappears. For the two-dimensional (2D) case, the percolation threshold for the first phase
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in the EMT is 1/2 and, due to the symmetry, the percolation threshold of the second phase is also
1/2, thus they coincide. Indeed, in the 2D symmetrical case the presence of an infinite cluster of one
phase excludes the existence of an infinite cluster of another phase. In the three-dimensional case,
with the existence of symmetry, this is not true. Therefore, pE

c = 1/2 seems to be at least peculiar in the
three-dimensional case, because the EMT describes a random heterogeneous medium.

One more disadvantage of the EMT approximation is a mismatch between thresholds pσc and pE
c .

Of course, the problems of conductivity and elasticity represent different equations, from the point of
view of mathematical physics (even of different order, see the elasticity theory [37,38]). However, at
the same time EMT for conductivity should not contradict the EMT for elasticity. For example, if the
effective conductivity (dielectric permittivity) and effective elastic moduli are measured simultaneously,
their steep change should occur at the same concentration. That concentration, at which an infinite
cluster arises, see, e.g., experimental data [39,40], where for the two- and three-dimensional cases it
was experimentally shown that pσc = pE

c .
For the elimination of the inconsistency between the conductivity and elasticity problems, an

EMT modification is required, which allows one to prescribe a preselected percolation threshold and,
therefore, to match them in both problems.

Depending on the fabrication technology (and thereby the presence of different correlations in the
location of inclusions), the numerical value of the percolation threshold varies [33]. For example, for
the case of porous materials it is well known that the percolation threshold depends on the particular
material composition [41,42]. At the same time, the EMT for conductivity (the BL approximation) gives
a threshold value pσs = 1/3, which does not allow one to describe the experimental data in all cases.
In the work [43], the EMT for galvanomagnetic phenomena (electrical conductivity in a magnetic
field) was modified in such a way that it became possible to set the percolation threshold. This means
it is possible to obtain the field and concentration dependences of the effective components of the
conductivity tensor in the framework of EMT with different percolation thresholds. Such a modified
theory made it possible to explain the results of many previous experiments, which seemed to be
paradoxical in that time, see, for example, [44–50]. For a specific case, when the effective conductivity
tensor is a scalar function of conductivity, the modified EMT approximation can be written as:

σe−σ1
2σe+σ1

1 + c(p, p̃c)
σe−σ1

2σe+σ1

p +
σe−σ2

2σe+σ2

1 + c(p, p̃c)
σe−σ2

2σe+σ2

(1− p) = 0, (18)

where c(p, p̃c) in the following will be called the SV term (owing to Sarychev and Vinogradov [43]).
It has the following form:

c(p, p̃c) = (1− 3p̃c)

(
p
p̃c

)p̃c( 1− p
1− p̃c

)1−p̃c

(19)

and p̃c is the preselected percolation threshold.
From the modified EMT (18,19), the same critical behavior is obtained in the vicinity of the

percolation threshold as in the conventional EMT, but at the prescribed value of the percolation
threshold. In [51] we introduced the method of the moveable (field-dependent) percolation threshold
and employed the modified EMT (18,19) for describing the significant changes of dielectric and
magnetic properties of the magnetoactive elastomers in an external magnetic field.

3.4. Modification of the Effective Medium Theory for the Elasticity Problem

According to the aforementioned consideration (a discrepancy between the percolation thresholds
in the conductivity and elasticity calculations) it becomes clear that the standard EMT for the elastic
properties (2,3) has to be modified. From our point of view, the remedy could be to act in the same
manner as for the conductivity calculation in the EMT, namely, it should be possible to preselect the
percolation threshold. Although the physical processes of electrical conductivity or elasticity and the
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equations describing them are different, the EMT approximation for calculating the effective coefficients
(moduli) (2,3) can be modified in a similar way. For convenience, we write the EMT approximation for
elastic effective moduli (2,3) in the following form (cf. the EMT approximation for conductivity (1)):

Ω1p + Ω2(1− p) = 0
Θ1p + Θ2(1− p) = 0

}
, (20)

where

Ωi =

Gi
Ge
·

1+νi
1+νe
·
1−2νe
1−2νi

− 1

1 + αe
( Gi

Ge
·

1+νi
1+νe
·
1−2νe
1−2νi

− 1
) , Θi =

Gi
Ge
− 1

1 + βe
( Gi

Ge
− 1

) , i = 1, 2. (21)

Recall that αe and βe for the three-dimensional case are given in (3).
In this paper, we propose a modified EMT for the elasticity problem, replacing (20) with the

following system of equations:

Ω1
1+s(p,̃pc)Ω1

p + Ω2
1+s(p,̃pc)Ω2

(1− p) = 0
Θ1

1+s(p,̃pc)Θ1
p + Θ2

1+s(p,̃pc)Θ2
(1− p) = 0

, (22)

where the term s introduced by us is similar, but not equal to, the SV term (19):

s(p, p̃c) = (1− 2p̃c)

(
p
p̃c

)p̃c( 1− p
1− p̃c

)1−p̃c

. (23)

In the case when p̃c = pE
c = 1/2, the term s

(
p, p̃c = pE

c

)
vanishes and (22) goes into the conventional

EMT for the elasticity problem (20).
Now, by preselecting p̃c in the term s(p, p̃c) (23) one can find the concentration behavior Ge(p),

which, as it should, has the given percolation threshold, see Figures 4 and 5. Taking into account
that Ee = 2Ge(1 + νe), the effective Young’s modulus has the same percolation threshold as the shear
modulus Ge.

Figure 4. Concentration dependences of the effective shear modulus Ge at G2/G1 = 0 for various values
of the percolation threshold. (a) G2 = 105Pa, ν2 = 0.49 and G1 = ∞. (b) G1 = 1011Pa, ν1 = 0.3 and
G2 = 0 Pa.
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Figure 5. Concentration dependence of the normalized effective shear modulus Ge/G2 for various values
of the percolation threshold. G1 = 1011Pa, ν1 = 0.3, G2 = 105Pa, ν2 = 0.49.

In contrast to the previous, multi-parametric theoretical approaches or cascade continuum
micromechanics models (cf., e.g., [42]), our model uses only the most important characteristic—the
percolation threshold, which is determined by the fabrication method of a composite material.

4. Discussion

4.1. Percolation Properties of the Modified EMT

Let us consider the behavior of the elastic moduli in the modified EMT.

4.1.1. Calculation of the Percolation Threshold

Let us first prove that pc is indeed the percolation threshold of Equations (22) and (23). Let us set
in (23) the second variable equal to p̃c. Taking G2 = 0 and considering Ge → 0 at p→ pc we obtain:

(1− p− s(p, p̃c))
(

1
1−αe
− 1

)
= p

(1− p− s(p, p̃c))
(

1
1−βe
− 1

)
= p

. (24)

Taking into account p = pc we get

αe = βe =
1
2

. (25)

Then, the multipliers in the large round brackets in (24) are equal to 1 and we obtain from (24),
taking into account the expression for s(p, p̃c) (23),

2pc = 1− (1− 2p̃c)

(
p
p̃c

)p̃c( 1− p
1− p̃c

)1−p̃c
∣∣∣∣∣∣∣
p=pc

, (26)

where p̃c is the preselected percolation threshold, while pc is the percolation threshold resulting from
the EMT (24). It is easily seen that the solution of Equation (26) with respect to pc is

pc = p̃c, (27)

i.e., the percolation threshold pc is indeed equal to the given value p̃c, see Figure 5. Similar proof can be
provided for G1 →∞ , see Appendix C.

4.1.2. Effective Poisson’s Ratio

Figure 6 presents the concentration behavior of the effective Poisson’s ratio for various percolation
thresholds and finite values of G1 and G2.



Materials 2020, 13, 1243 11 of 19

Figure 6. Concentration dependences of the effective Poisson’s ratio νe. (a) Variation of the percolation
threshold. G1 = 1011Pa, ν1 = 0.3, G2 = 105Pa, ν2 = 0.49; (b) Variation of the ratio G1/G2 at pc = 1/2.
ν1 = 0.3, ν2 = 0.49.

Taking into account (25), we find that at the percolation threshold (which we now defined ourselves)

νe(p = p̃c, G2 = 0) = ν∗ =
1
5

. (28)

Note that in the case when G1 →∞ , while G2 remains finite (G1/G2 →∞ ), the equality (28) also
holds νe(p = p̃c, G1 = ∞) = ν∗ = 1/5. It is well-known that behavior of the effective Poisson’s ratio is
somewhat anomalous, for example, it does not necessarily lie between the Poisson’s ratio of the matrix
and inclusion phases [52]. In [32], it was pointed out that there is a specific value of the Poisson’s
ratio ν∗, which is equal to 1/5 in the three-dimensional case. It was shown that, if ν1 = ν2 ≤ ν∗ then
for any ratio of G2/G1 the inequality νe ≤ ν∗ holds. Vice versa, if ν1 = ν2 ≥ ν∗ then νe ≥ ν∗ is fulfilled.
Note that the value ν∗ is achieved at p = pc and only with the infinite heterogeneity, while with a
finite ratio of G1/G2, the value νe tends to, but does not reach, this value. The larger the ratio G1/G2,
the closer νe comes to ν∗, see Figure 6b. An exception is the case when the value of the Poisson’s ratio
in both phases is equal to ν∗. Then νe = ν∗ does not depend on the concentration at any ratio of G1/G2.
Experimentally, the decrease of the Poisson’s ratio with the decreasing foam density was observed in
the metallic foams, where the Poisson’s ratio approached the value of 0.21 [53].

4.1.3. Critical Exponents

For the case of modified Equations (22) and (23), we did not succeed in calculating the critical
exponents analytically, as it was done in (15–17). However, the critical exponents f and S can be easily
obtained numerically, as it is explained in Appendix B. It turns out that the SV modification of the EMT
does not change the values of both exponents: f = S = 1.

4.2. The Two-Dimensional Case

Let us consider briefly the two-dimensional (2D) problem. In the 2D case, Equation (1) remains
the same but the parameters in it take the form of

αe =
1 + νe

2
, βe =

3− νe

4
. (29)

As in the previous case, it can be shown that the percolation threshold in the 2D case is

pE
c (d = 2) =

2
3

, (30)
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where d is the dimensionality of the problem [32]. This result contradicts the general considerations of
a two-dimensional random heterogeneous medium.

The geometric structure of the mutual arrangement of phases does not depend on the type of
physical processes investigated on this structure. In particular, for the two-dimensional conductivity
problem in a random heterogeneous medium with the conductivity of phases σ1 and σ2, the exact result
by A.M. Dykhne is known at the percolation threshold (for an arbitrary ratio of phase conductivities) [25]:

σe =
√
σ1σ2, p = pc =

1
2

, (31)

where, of course, the effective conductivity is symmetric with respect to the interchange of phase
values, σ1 � σ2 .

For the elasticity problem at the percolation threshold (30), the expression for the effective elasticity
modulus, contrary to the general considerations, is not symmetrical when the phase values of the
elasticity modulus are interchanged.

As in the three-dimensional case, we propose a modified mean-field theory for the elasticity
problem. The form of the modified equations is the same as in the three-dimensional case (22), but
in (21) it is necessary to substitute the corresponding values of αe and βe (29) and to write down the
correction s(p, p̃c) for the two-dimensional case:

s(p, p̃c) =
(
1−

3
2

p̃c

)( p
p̃c

)p̃c( 1− p
1− p̃c

)1−p̃c

. (32)

It is worth noting that, in the case of d dimensions, the percolation threshold in the traditional
EMT for the elastic properties pE

c has the following value: pE
c = 2/(d + 1) [24]. In the d-dimensional case,

the correction term s(p, p̃c) can be written as

s(p, p̃c) =

(
1−

p̃c

pE
c

)(
p
p̃c

)p̃c( 1− p
1− p̃c

)1−p̃c

. (33)

For a random heterogeneous inhomogeneous medium pc = p̃c = 1/2 and (32) takes the following
form:

s(p, p̃c = 1/2) =
1
2

√
p(1− p). (34)

Note that the statements about the behavior of the effective Poisson module in the case of
inequalities ν1 = ν2 ≤ ν∗ or ν1 = ν2 ≥ ν∗ remain valid for the two-dimensional case [32] as well as in
the modified theory, taking into account that in the two-dimensional case ν∗ = 1/3.

It is easy to show that for the particular case ν1 = ν2 = ν∗, the effective value of the Poisson’s
ratio does not depend on the concentration and the values G1 and G2 of the shear modulus, namely
νe = ν∗ = 1/3. Using this value, we can obtain an expression for the shear and Young’s moduli at the
percolation threshold, an analog of the Dykhne’s expression (31).

Ge =
√

G1G2, Ee =
√

E1E2, ν1 = ν2 = ν∗, d = 2. (35)

4.3. Comparison with Experiments

The 2D experiments were reported in [39,54]. In [39], the same percolation threshold pc = 0.6 was
found for the conductivity and elasticity phenomena. Similar measurements of the mechanical stiffness
and electrical conductance were performed in [54], where the same percolation threshold pc = 0.331
was determined for both physical properties. In both experiments, the ratio G1/G2 was equal to zero,
and, therefore, the percolation threshold was well-pronounced. Notice that the measured values of
the percolation threshold significantly differ from the percolation threshold in the traditional EMT
pE

c (d = 2) = 2/3 and emphasize the significance of our considerations. Further, a three-dimensional
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percolation system was investigated in [40], where it was also found that the electrical conductivity
and the Young’s modulus had one and the same percolation threshold, which was not equal to 1/2.

In [55], the percolation transition and the elastic properties of block copolymers of styrene and
butadiene were investigated (3D case). The ratio of elastic moduli was finite: G1/G2 = 581.82. As can be
seen from Figure 3a, for a finite ratio of G1/G2 , ∞, the percolation transition is not clearly pronounced
in the concentration dependence of the effective elastic modulus. The particular concentration
value, where the maximum change in behavior of the effective modulus occurs, is shifted towards
concentrations smaller than 1/2. Note that an analogous situation occurs for the effective electrical
conductivity, which was studied in detail in [51]. Figure 7 compares the results of the EMT with
experimental results of [55]. A good agreement between the experimental results and the EMT was
achieved for the value close to that of the traditional EMT: p̃c ≈ 0.50. This result contradicts the
percolation threshold value of 0.4 determined in [55] and the value of pc ≈ 0.2085 obtained for these
data in [56] within the framework of a fractal model, using the iterative averaging approach. We believe
that these deviations are caused by the finite ratio of the shear moduli of the constitutive components,
which should be taken into account in the analysis of these data.

Figure 7. Normalized shear moduli of block copolymers of styrene and butadiene (filled circles).
Experimental values are taken from [55]: G1/G2 = 581.82, ν1 = 0.335, ν2 = 0.499. The inset shows the
same data on the logarithmic scale.

In [57], porous materials were investigated (G1 = 0 Pa). The percolation transition in the
concentration dependence was conspicuous. It was found that the critical porosity (percolation
threshold) depends on the powder size. The measured value of pc varied between 0.375 and 0.53 for
Th2O powders. Figure 8 compares the results of both the conventional EMT and modified EMT with
experimental results for a porous Th2O material (powder size 0–2 µm). A good agreement between the
experimental results and the modified EMT, where p̃c = 0.375, is observed. Moreover, it is clearly seen
that the traditional EMT fails to describe this experiment. Similarly, our modified EMT is capable of
describing the experimental elastic moduli for other powder sizes in [57].
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Figure 8. Porosity dependence of the effective shear modulus for porous Th2O (powder size 0–2 µm).
Experimental values are taken from [57]. The inset shows the same data on the logarithmic scale.

To summarize, the theoretical results are supported by previous experiments, show improvement
over the existing approach and may be used for validation of alternative approaches for determining
the percolation threshold.

5. Conclusions

• A modification of the self-consistent EMT for the elastic properties of a random heterogeneous
two-phase material is proposed. This modification allows one to prescribe any numerical value
to a percolation threshold, which depends on the particular realization of a composite material.
The modification does not change the values of the classical critical exponents (f EMT = SEMT = 1).

• A contradiction between the conductivity problem and the elasticity problem is eliminated. In a
particular randomly inhomogeneous composite material, it is possible to simultaneously measure
different physical properties, which should be determined by the same percolation threshold in
an EMT.

• In the two-dimensional case, the proposed modification allows one to obtain an expression for the
shear and Young’s moduli at the percolation threshold, which are symmetric with respect to the
interchange of phases.

In the future work, the modification of the EMT for the elastic properties should allow us to employ the
recently introduced concept of the moveable (field dependent) percolation threshold [51] to explain the
giant change in the elastic moduli of the magnetorheological elastomers in moderate external magnetic
fields, known as magnetorheolgical or field stiffening effects [58,59]. These materials are also called
magnetoactive elastomers when other physical properties are considered. The required dependence of
the percolation threshold on the magnetic field was proposed empirically in [60].
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Appendix A

Let us calculate the percolation threshold and the Poisson’s coefficient in the traditional EMT for
G1 →∞ .

First, the system of Equation (7) is re-written as

p

 1

1+αe

(
G1
Ge
·

1+ν1
1+νe ·

1−2νe
1−2ν1

−1
) − 1

+ (1− p)

 1

1+αe

(
G1
Ge

1+ν2
1+νe

1−2νe
1−2ν2

−1
) − 1

 = 0

p

 1

1+βe

(
G1
Ge
−1

) − 1

+ (1− p)

 1

1+βe

(
G2
Ge
−1

) − 1

 = 0.


(A1)

Then, we introduce variables

me = 1/Ge, m1 = 1/G1, m2 = 1/G2 (A2)

and reformulate (A1) as

p

 1

1+αe

(
me
m1

1+ν1
1+νe

1−2νe
1−2ν1

−1
) − 1

+ (1− p)

 1

1+αe

(
me
m2

1+ν2
1+νe

1−2νe
1−2ν2

−1
) − 1

 = 0

p

 1

1+βe

(
me
m1
−1

) − 1

+ (1− p)

 1

1+βe

(
me
m2
−1

) − 1

 = 0.


(A3)

At m1 → 0 the equations are written as

1

1+αe

(
me
m2

1+ν1
1+νe

1−2νe
1−2ν1

−1
) − 1 =

p
1−p

1

1+βe

(
me
m2
−1

) − 1 =
p

1−p

. (A4)

Putting now Ge →∞ (me → 0) and p→ pc , we find (compare with (9))

αe = pc, βe = pc. (A5)

From where it immediately follows that

pE
c =

1
2

, νe
(
p = pE

c

)
=

1
5

, G1 = ∞. (A6)

Appendix B

Let us calculate the critical exponents in traditional and modified EMT.
Using variables me = 1/Ge, m1 = 1/G1, m2 = 1/G2 (A2), for m1 → 0 Equation (7) can be written in

the following form:
−

3m2−6m2ν2−3m2νe+6m2ν2νe
(2νe−1)(2m2+me−4m2ν2+meνe)

− 1 =
p

1−p
15m2−15m2νe

7m2+8me−5m2νe−10νeme
− 1 =

p
1−p

. (B1)

From the first equation in the system of Equation (B1) we obtain:

νe =
m2(−1 + 2ν2) + me(1 + ν2) + 3pm2(1− 2ν2)

m2(1− 2ν2) + 2me(1 + ν2) + 3pm2(1− 2ν2)
. (B2)

Introducing a variable m̃e = me/m2 we get

νe =
m̃e(1 + ν2) + (3p− 1)(1− 2ν2)

2m̃e(1 + ν2) + (3p + 1)(1− 2ν2)
. (B3)
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From the second equation of the system of Equation (B1) we obtain:

νe =
1
5
·
8 + 7m̃e − 15p
2 + m̃e − 3p

. (B4)

Equating the right-hand sides of solutions obtained

1
5
·
8 + 7m̃e − 15p

2 + m̃e − 3p
=

m̃e(1 + ν2) + (3p− 1)(1− 2ν2)

2m̃e(1 + ν2) + (3p + 1)(1− 2ν2)
; (B5)

we get from a quadratic equation for m̃e

m̃e =
14ν2 − 3p(1 + 3pν2) − 4±

√
ξ

4(1 + ν2)
, (B6)

where
ξ = 9p2(3ν2 + 1)2

− 12p
(
5ν2

2
− 7ν2 + 6

)
+ 4(5ν2 − 4)2. (B7)

Selecting the solution with the plus sign in the numerator of (B6) and using the method of Pade
approximants for calculating the critical exponents, we find for S in the EMT approximation:

SEMT = lim
p→1/2−

{(
p−

1
2

)[
∂
∂p

ln
( 1

me

)]}
= 1. (B8)

Therefore, the critical exponent of the effective Young’s and shear moduli below the percolation
threshold in the framework of the EMT approximation is equal to unity: SEMT = 1. The numerically
obtained value, which is outside of the framework of the EMT, is S = 0.82 [3,4,17,18].

The expression (B8) can be generalized for an arbitrary percolation threshold p̃c, where, obviously,
the modification term (23) has to be taken into account in calculation of me:

S = lim
p→p̃c−

Σ(p) = lim
p→p̃c−

{
(p− p̃c)

[
∂
∂p

ln
( 1

me

)]}
. (B9)

The auxiliary function Σ(p) can be easily calculated numerically for any concentration p, which is
arbitrarily smaller than p̃c. The Figure A1a shows the exemplary results of calculations. It is seen that
S = 1. Similar calculations can be performed for the critical exponent f :

f = lim
p→p̃c+

Φ(p) = lim
p→p̃c+

{
(p− p̃c)

[
∂
∂p

ln(Ge)

]}
. (B10)

The Figure A1b shows the exemplary results of calculations. It is observed that f = 1.
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Figure A1. (a) Concentration dependence of the function Σ(p) for pc = 0.3 (G1 =∞); (b) Concentration
dependence of the function Φ(p) for pc = 0.7 (G2 = 0).

Appendix C

In the following we calculate the percolation threshold and the Poisson’s ratio in the modified
EMT with the SV term for G1 →∞ .

Using variables me = 1/Ge, m1 = 1/G1, m2 = 1/G2 (A2), for m1 → 0 Equation (22) can be written as:

1

1+αe

(
me
m2

1+ν2
1+νe

1−2νe
1−2ν2

−1
) − 1 =

p
1−p−s(p,̃pc)

1

1+βe

(
me
m2
−1

) − 1 =
p

1−p−s(p,̃pc)

. (C1)

Putting now Ge →∞ (me → 0) and p→ pc , we find, similar to Section 4.1.1, that

pc = p̃c, νe(p = p̃c) = 1/5. (C2)
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