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Abstract: Concrete filled steel tubes (CFSTs) show advantageous applications in the field of
construction, especially for a high axial load capacity. The challenge in using such structure lies in the
selection of many parameters constituting CFST, which necessitates defining complex relationships
between the components and the corresponding properties. The axial capacity (Pu) of CFST is among
the most important mechanical properties. In this study, the possibility of using a feedforward
neural network (FNN) to predict Pu was investigated. Furthermore, an evolutionary optimization
algorithm, namely invasive weed optimization (IWO), was used for tuning and optimizing the FNN
weights and biases to construct a hybrid FNN–IWO model and improve its prediction performance.
The results showed that the FNN–IWO algorithm is an excellent predictor of Pu, with a value of R2 of
up to 0.979. The advantage of FNN–IWO was also pointed out with the gains in accuracy of 47.9%,
49.2%, and 6.5% for root mean square error (RMSE), mean absolute error (MAE), and R2, respectively,
compared with simulation using the single FNN. Finally, the performance in predicting the Pu in the
function of structural parameters such as depth/width ratio, thickness of steel tube, yield stress of
steel, concrete compressive strength, and slenderness ratio was investigated and discussed.

Keywords: axial capacity prediction; rectangular CFST columns; feedforward neural network;
invasive weed optimization; hybrid machine learning

1. Introduction

Concrete and steel are the two most commonly used construction materials today. However, each
material has different advantages and disadvantages [1–3]. Therefore, to be able to take advantages
and minimize disadvantages, an optimal solution is to use a combination of both materials, such as a
“combined steel concrete structure” or using a combination of concrete elements and steel elements in
“composite structures”. One of the combined steel concrete structures is a steel pipe composite structure
filled with medium or high strength concrete. This type of structure is called a steel-concrete pipe.

In recent decades, concrete filled steel tubes (CFSTs) have been widely used in the construction
of modern buildings and bridges [4], even in high seismic risk areas [5–10]. This increase in use is
because of the significant advantages that the CFST column system offers over conventional steel or
reinforced concrete systems, such as high axial load capacity [4], good plasticity and toughness [6],
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larger energy absorption capacity [7], convenient construction [11], economy of materials [12–14], and
excellent seismic and refractory performance [15]. In particular, this type of structure can reduce the
environmental burden by removing formwork [16], reusing steel pipes, and using high quality concrete
with recycled aggregate [17]. The characteristics of CFST are that the steel material is located far from
the central axis so the rigidity of the column is very large, and thus it also contributes to increasing the
moment of inertia of the structure [5,18]. The ideal form of concrete core works against the compressive
load and hinders the local buckling state of the steel pipe. Therefore, the CFST structures are often used
in locations subject to large compressive loads [9,15,19]. The CFST columns are mainly divided into
square columns, round columns, and rectangular columns, based on different cross-sectional forms [15].
In particular, the square and rectangular CFST columns have the advantage of easy connection and
reliable work with other structural members such as beams, walls, and panels [20]. Compared with
square CFST columns, rectangular columns have irregular bending stiffness along different axes, so
this type of column is suitable for the mechanical behavior of members including arch ribs, pillars,
abutments, and piers, and other structural members under load actions vary greatly from vertical to
horizontal [6]. Because the scope of application of rectangular CFST columns is quite wide and this
column is mainly subjected to compression, the main purpose of the paper is to analyze and evaluate
the ultimate bearing capacity of rectangular columns.

In recent decades, the regulations for calculating the CFST column type have been proposed
in design standards such as AISC-LRFD [21], ACI 318-05 [22], Japan Institute of Architecture [17],
European Code EC 4, British Standard BS 5400 [23], and Australian Standard AS-5100.6 [24]. In addition,
numerous experimental and numerical studies were conducted to analyze the mechanical properties of
rectangular CFST columns under axial compression. As an example, Hatzigeorgiou [25] has proposed
a theoretical analysis for modeling the behavior of CFST under extreme loading conditions. Later, the
verification of such an approach against experimental and analytical results has also been reported
in the work of Hatzigeorgiou [26]. In the work of Liu et al. [4], 26 rectangular CFST column samples
were experimented under concentric compression with the main parameters such as strength and
aspect ratio. In Chitawadagi et al. [8], the load capacity of CFST columns depended on the variation
of CFST properties such as the wall thickness of pipes, strength of in-filled concrete, area of cross
section of steel pipes, and pipe length. In this study, 243 rectangular CFST samples were investigated;
the experimental results were compared with the predicted column strength, which was performed
according to design codes such as EC4-1994 and AISC-LRFD-1994. In addition, there are many other
test methods dealing with factors that affect the bearing capacity of rectangular CFST columns such as
the effect of concrete compaction [27], load conditions, and boundary conditions [16]. The addition
of steel fibers in core concrete had a significant effect on the performance of concrete steel pipes [28]
and many other tests [9,13,29–32]. Finite element analysis is now also frequently used for design
and research issues thanks to the existence of many commercial software such as ABAQUS [33] and
ANSYS [34]. Tort et al. [35] carried out computational research to analyze the nonlinear response of
composite frames including rectangular concrete pipe beams and steel frames subjected to static and
dynamic loads. On the basis of the Drucker–Prager model, Wang et al. [36] developed a finite element
model that can predict the axial compression behavior of a composite column with a fibrous reinforced
concrete core. Collecting 340 test data of circular, square, and rectangular CFST columns, Tao et al. [37]
developed new finite element models for simulating CFST stub columns under compression mode
along the axis. The new model was more flexible and accurate for modeling the CFST stub columns.
However, the design standards were limited by the scope of use and were not suitable for high-strength
materials, and testing methods were often costly and time-consuming. The accuracy of finite element
models was greatly affected by the input parameters, especially the suitable selection of the concrete
model. Therefore, it is necessary to propose a uniform and effective approach to design rectangular
CFST columns.

In recent years, artificial intelligence (AI) based on computer science has gradually become
popular and applied in many different fields [38–41]. Artificial neural network (ANN) is a branch of AI
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techniques; different ANN-based modeling methods have been used by scientists in many construction
engineering applications [42]. Sanad et al. [43] used ANN to estimate the reinforced concrete deep
beams ultimate shear strength. Lima et al. [44] predicted the bending resistance and initial stiffness
of steel beam connection using a back-propagation algorithm. Seleemah et al. [45] applied ANN to
predict the maximum shear strength of concrete beams without horizontal reinforcement. Blachowski
and Pnevmatikos [46] have developed a vibration control system based on the ANN method, for
application in earthquake engineering. As an example for structural engineering, Kiani et al. [47]
have applied AI techniques including support vector machines (SVM) and ANN for deriving seismic
fragility curves. It is worth noticing that significant studies have been carried out to explore the
prediction of damage using AI techniques. In a series of papers, Mangalathu et al. [48] have proposed
various AI methods such as ANN and random forest for tracking damage of bridge portfolios [48] as
well as assessing the seismic risk of skewed bridges [49]. In terms of structural failure, typical failure
modes of reinforced concrete columns such as flexure, flexure–shear, and shear were investigated
by Mangalathu et al. [50,51] using decision trees (DT), SVM, and ANN. Guo et al. [52,53] employed
the ANN model for the identification of damage in different structures such as suspended-dome and
offshore jacket platforms. Regarding structural uncertainty analysis, various published works by E. Zio
should be consulted [54–56]. With rectangular CFST columns, the use of ANN has also been proposed.
For example, Sadoon et al. [57] proposed an ANN model for predicting the final strength of rectangular
concrete steel beam girder (RCFST) under eccentric shaft load. The results showed that the ANN
model was more accurate than the AISC and Eurocode 4 standard. Du et al. [10] formulated an ANN
model with different input parameters to determine the axial bearing capacity of rectangular CFST
column. The results of the model were compared with the results calculated according to European
Code EC 4 [23], ACI [22], and AISC360-10 [21], and found that the ANN model was accurate. However,
in the above studies, the mentioned correlation coefficient (R) was less than 0.98. Therefore, in this
paper, we tried to create a bulk sample set and proposed an algorithm to increase the accuracy of the
prediction of the axial load bearing capacity of the CFST column.

In short, the aim of this paper is dedicated to the development and optimization of an AI-based
model, namely the feedforward neural network (FNN), to predict the Pu of CFST. An optimization
algorithm, invasive weed optimization (IWO), was used to finely tune the FNN parameters (i.e.,
weights and biases) to develop a hybrid model, namely FNN–IWO, and to improve the prediction
performance. With respect to the CFST database, 99 samples were collected from the available literature
and used for the training and testing phases of the FNN–IWO algorithm. Criteria such as coefficient of
determination (R2), standard deviation error (ErrorStD), root mean square error (RMSE), mean absolute
error (MAE), and slope were used to evaluate the performance of FNN–IWO. Finally, an investigation
of the prediction capability in the function of different structural parameters was conducted.

2. Materials and Methods

2.1. Feedforward Neural Network (FNN)

An artificial or neural network (also known as an artificial neural network (ANN)) is a biological
neural network based a computational or mathematical model. It includes a number of artificial
neurons (nodes) that are linked to each other and processes information by transmitting along the
connections and calculating new values at the nodes (connection method for calculation) [58,59].
The ANN models are made up of three or more layers, including an input layer that is the leftmost
layer of the network representing the inputs, an output layer that is the rightmost layer of the network
representing the results achieved, and one or more hidden layers representing the logical reasoning
of the network [60–62]. The neurons in each layer are linked to the front and rear neurons with each
associated weight. A training algorithm is often used to repeat minimizing the cost function relative
to the link weight and neuron threshold. Networks are usually divided into two categories based
on how the units are connected, including the feedforward neural network (FNN) and the recurrent
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neural network. To date, FNN is the most popular architecture owing to its structural flexibility,
good performance, and the availability of many training algorithms [63]. Currently, the most widely
used training algorithm for multi-layer feedforward networks is the backpropagation algorithm (BP).
In BP, network training is achieved by adjusting weights and is done through numerous training sets
and training cycles [64]. With the ability to approximate the functions, FNNs have been successfully
applied in a number of civil engineering and structural fields [65] such as predicting the compression
strength of concrete [66], investigating the fire resistance of calves [67], determining the axial strength of
cylindrical concrete pillars [58], and predicting the fire resistance of concrete tubular steel columns [65].
Therefore, in this study, FNN was selected and used to predict the axial capacity of CFST.

2.2. Invasive Weed Optimization (IWO)

IWO is a new random number optimization method inspired by a popular phenomenon in
agriculture. The term of weed invasion was first introduced by Mehrabian and Lucas in 2006 [68].
This technique is based on a number of interesting features of invasive weed plants that reproduce
and distribute fast and vigorously, and adapt themselves to changes in climatic conditions [69].
Therefore, capturing their characteristics will lead to a powerful optimization algorithm [70].
The advantages of IWO algorithm compared with other evolutionary algorithms are few parameters,
simple structure, easy to understand, and easy to program features [71]. Up to now, the IWO algorithm
has become more and more popular and has been successfully applied in areas such as antenna system
design [72] and design of coding chains for DNA [73], as well as inter-related problems regarding
economic [74], tourism [75], and construction techniques [76]. The IWO algorithm is implemented by
the following steps:

Step 1. Initialization: Weeds are randomly scattered over a D-dimensional target area as the
primary solution.

Step 2. Reproduction: During reproduction, each weed produces seed depending on the physical
strength and colony. Weeds that acquire more resources have a better chance of producing
seeds and plants that are less adapted to fields are not able to reproduce, and thus produce
fewer seeds. The number of seeds increases linearly from the minimum value for the worst
weed to the maximum value for the best weed.

Step 3. Spatial dispersal: The seeds generated from step 2 are randomly dispersed in the search space
by means of normally distributed random numbers with an average of zero, but with different
variances to ensure that the seeds are located around the main factory.

Step 4. Competitive exclusion: The spawning and dispersal process randomly create a new population
for the next generation of weeds and their seeds. When the size of this new population is
greater than a certain maximum value, the lower-strength weeds will be eliminated through
competition and only some of the weeds will be equal to the dark weed population.

Step 5. Termination conditions: The process continues again from step 2 to step 4 until the maximum
number of iterations is reached and the best physical tree is nearest to the optimized solution.

2.3. Quality Assessment Criteria

Evaluation of the AI model was performed using statistical measurements such as mean absolute
error (MAE), coefficient of determination (R2), and root mean square error (RMSE). In general, these
criteria are popular methods to quantify the performance of AI algorithms [76,77]. More specifically,
the mean squared difference between actual values and estimated values defines RMSE, whereas the
mean magnitude of the errors defines MAE. The R2 evaluates the correlation between actual and
estimated values [78–80]. Quantitatively, lower RMSE and MAE show better performance of the



Materials 2020, 13, 1205 5 of 25

models. In contrast, a higher R2 shows better performance of the model [81,82]. MAE, RMSE, and R2

are expressed as follows [83,84]:

MAE =
1
N

N∑
i=1

(ai − ai) (1)

RMSE =

√√√
1
N

N∑
i=1

(ai − ai)
2 (2)

R2 = 1−

N∑
i=1

(ai − ai)
2

N∑
i=1

(ai − a)2
(3)

where ai is the actual output, ai infers the predicted output, a infers the mean of the ai, and N infers the
number of used samples.

2.4. Data Used and Selection of Variables

In this study, a total of 99 compression tests of rectangular CFST columns (Figure 1) were extracted
from the available literature: Bridge [85], Du et al. [86], Du et al. [87], Ghannam et al. [88], Han [89],
Han & Yang [90], Han & Yao [91], Lin [92], Schneider [93], Shakir-Khalil & Mouli [94], and Shakir-Khalil
& Zeghiche [95]. Information of the database is summarized in Table 1, including the number of
data and the percentage of proportion, whereas Table 2 presents the initial statistical analysis of the
corresponding database.
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proposed by Sarir et al. [96] and Ren et al. [15] in investigating CFST columns, initial geometric 
imperfections as well as residual stress exhibited a negligible effect on the behavior of columns under 
axial loading. Consequently, input variables affecting the axial capacity of rectangular CFST are from 

Figure 1. Schematic diagram of the compression test for concrete filled steel tubes (CFSTs): (a) front
view; (b) cross-section view of the sample.

The experimental tests were carried out considering the following steps: design, processing of
steel tube, production of concrete, curing of specimens, and loading measurement [15,86]. As proposed
by Sarir et al. [96] and Ren et al. [15] in investigating CFST columns, initial geometric imperfections as
well as residual stress exhibited a negligible effect on the behavior of columns under axial loading.
Consequently, input variables affecting the axial capacity of rectangular CFST are from two main groups:
geometry of columns and mechanical properties of constituent materials. Therefore, six independent
variables were selected as inputs of the problem, such as depth of cross section (H), width of cross
section (W), thickness of steel tube (t), length of column (L), yield stress of steel (fy), and compressive
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strength of concrete (fc’). It is seen in Table 2 of the initial statistical analysis that all input variables
cover a wide range of values. More precisely, H varies from 90 to 360 mm with an average value of
163 mm and a coefficient of variation of 32%. W ranges from 60 to 240 mm with an average value of
111 mm and a coefficient of variation of 32%. t ranges from 0.7 to 10 mm with an average value of
4 mm and a coefficient of variation of 48%. L varies from 100 to 3050 mm with an average value of
869 mm and a coefficient of variation of 89%. fy ranges from 194 to 515 MPa with an average value of
329 MPa and a coefficient of variation of 24%. fc’ varies from 8 to 47 MPa with an average value of
31 MPa and a coefficient of variation of 39%.

It should be pointed out that the steel tube of 43 specimens was cold-formed, whereas welded
built-up was done in the other 56 configurations. In terms of failure modality, local outward buckling
failure of the external steel was observed in all specimens, as shown in Figure 2a. This is the same as
that observed by other investigations such as Han and Yao [91], Lyu et al. [97], Ding et al. [98], and Yan
et al. [99]. Depending on the dimension of the cross section, the locations of the external folding of
the steel tube are not the same. Such local buckling of the steel tube occurred mostly at the ends or
in the center along the axis of the specimens, as seen in Figure 2a. In addition to outward buckling
failure, fracture at the welding seam also occurred in welded specimens, as shown in Figure 2b.
Such tensile fracture is the result of too much growth of the concrete in the core [99]. However, the
tensile fracture of the steel tube generally occurred after the peak load [98]. Last, but not least, for all
specimens, concrete in the core was damaged in most of specimens following a shear failure mode,
as shown in Figure 2c [97,98]. Besides, the influence of temperature on the failure modality of stub
CFST structural members could be referred to in Yan et al. [99] (low temperature) and Lyu et al. [97]
(high temperature). Finally, Angelo et al. [100] and Kulkarni et al. [101] have tested and discussed
about the failure of rectangular CFST structural members in junction with wide beam for earthquake
engineering application.
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weak and strong axes, while the thickness of the steel tube was constant. Consequently, the 

Figure 2. Failure of rectangular CFST specimens: (a) local outward buckling of steel tube (reproduced
with permission from Han [89]), (b) tensile fracture at the welding seam of steel tube (reproduced with
permission from Ding et al. [98]), (c) damage of concrete core (reproduced with permission from Lyu et
al. [97]).

It is worth mentioning that only rectangular CFST columns (i.e., depth/width ratio greater than
1) were collected for investigation. As indicated in Table 2, the depth/width ratio ranges from 1 to 2,
allowing for exploring the axial failure of CFST around the weak axis. In addition, as the depth/width
ratio differs than 1, the stress of confined concrete applied to the steel wall is not the same along the weak
and strong axes, while the thickness of the steel tube was constant. Consequently, the consideration of
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only rectangular CFST columns could strongly reveal the influence of both the structural geometry
and mechanical properties of constituent materials.

Table 1. Information of the database used in this study.

No. Reference Number of Data % of Proportion

1 Bridge [85] 1 1.0
2 Du et al. [86] 5 5.1
3 Du et al. [87] 8 8.1
4 Ghannam et al. [88] 12 12.1
5 Han [89] 20 20.2
6 Han & Yang [90] 4 4.0
7 Han & Yao [91] 19 19.2
8 Lin [92] 6 6.1
9 Schneider [93] 9 9.1
10 Shakir-Khalil & Mouli [94] 14 14.1
11 Shakir-Khalil & Zeghiche [95] 1 1.0

Total 99 100

Table 2. Initial statistical analysis of database.

Parameters Symbol Unit Role Min Q25 Median Q75 Max Mean StD Coefficient of
Variation (%)

Depth of cross section H mm Input 90 127.9 150 195 360 163.38 53.01 32.45
Width of cross section W mm Input 60 90 100 124.48 240 110.94 35.63 32.12
Thickness of steel tube t mm Input 0.7 2.7 3 5 10.01 4.12 1.97 47.84

Length of column L mm Input 100 369.75 545 800 3050 869.23 772.12 88.83
Yield stress of steel fy MPa Input 194 245.18 340.1 357.88 514.53 329.09 78.73 23.92

Compressive strength
of concrete fc’ MPa Input 7.9 18.67 33.74 43.69 46.85 31.12 12.21 39.23

Axial capacity Pu kN Output 490 760 1006 1340 3575 1267.61 768.72 60.64

The dataset was randomly divided into two sub-datasets including the training part (60%) and
testing part (40%) part. All data were scaled into the range of [0,1] in order to reduce numerical biases
while treating with the AI algorithms, as recommended by various studies in the literature [102–104].
Such a scaling process is expressed using Equation (4) between raw and scaled data [105–107]:

xscaled =
(xraw

− β)

α− β
(4)

where α and β are the maximum and minimum values of the considered variable x, respectively.
It should be noticed that a reverse transformation could be used for converting data from the scaling
space to the raw one using Equation (4). Besides, a correlation analysis between the input and output
variables is performed and plotted in Figure 3.

Figure 3 was generated in order to explore the linear statistical correlation between variables in
the database. Therefore, a 7 × 7 matrix was generated, in which the upper triangular part indicates the
value of the correlation coefficient, whereas the lower triangular part shows the scatter plot between
two associated variables. The diagonal of the matrix indicates the name of the variable (i.e., as the
correlation coefficient of a variable itself is equal to 1). For interpretation purpose, the correlation
coefficient between H and W is indicated as 0.86, whereas the corresponding scatter plot between H
and W is shown on the left side of W (row 2, column 1). It is seen that a high and positive value of
statistical correlation was obtained in this case, confirmed by most of the data points being located
around the diagonal in the scatter plot.

It can be seen that no direct correlation was observed between each input and output (Pu).
The maximum value of the Pearson correlation coefficient (r) compared with Pu was calculated as 0.78
(for variable t), followed by 0.60 (for variable fy), 0.39 (for variable W), 0.30 (for variable H), 0.27 (for
variable fc’), and 0.18 (for variable L). Besides, the correlation between H and W was highest (r = 0.86).
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3. Results and Discussion

3.1. Optimization of Weight Parameters of FNN using the IWO Technique

In this section, the optimization of weight parameters of FNN is presented using the IWO algorithm.
It is not worth noticing that the architecture of the FNN model is very important. Depending on the
problem of interest, the prediction results could exhibit significant variation from using one architecture
to another [96,107,108]. As the numbers of inputs and outputs are fixed, the undetermined parameters
of the architecture are the number of hidden layer(s) and the number of neurons in each hidden
layer(s) [109]. As proved by many investigations in the literature, the FNN model involving only one
hidden layer could be sufficient for exploring successfully complex nonlinear relationship between
inputs and outputs. For instance, Mohamad et al. [110] have used one hidden layer architecture model
for predicting ripping production, as have Singh et al. [111] for predicting cadmium removal. In civil
engineering application, a prediction model involving one hidden layer has also been widely applied
in many works, for instance, Gordan et al. [112] for earthquake slope stability or Sarir et al. [96] for
bearing capacity of circular concrete-filled steel tube columns. Therefore, the one hidden layer FNN
model was finally adopted in this work, also saving cost, processing time, and limitation of instruments.
On the other hand, the number of neurons in the hidden layer was recommended to be equal to the
sum of the number of inputs and outputs [109,113,114]. Consequently, the FNN model exhibits one
hidden layer and seven neurons in the hidden layer. The activation function for the hidden layer
was chosen as a sigmoid function, whereas the activation function for the output layer was a linear
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function [115]. The cost function was chosen such as the mean square error function [116]. Finally,
Table 3 indicates the information of the FNN model.

As revealed in the literature, a key aspect of using evolutionary algorithms for optimizing AI
models is to study the relationship between population size and problem dimensionality [117–120].
In many other evolutionary algorithms such as differential evolution, the number in the population is
recommended to be 7–10 times the number of inputs [121,122]. In this study, the population size of the
IWO technique was chosen as 50. Other parameters include the variance reduction exponent, chosen
as 2; initial value of standard deviation, chosen as 0.01; final value of standard deviation, chosen as
0.001; and maximum iteration, chosen as 800. It is worth noticing that such ranges of parameters
are commonly employed for training AI models using IWO algorithm, for instance, Huang et al. [76]
and Mishagi et al. [123]. It should also be noticed that a large population size cannot be useful in
evolutionary algorithms and affects the optimization results [124]. Information of the IWO algorithm
is presented in Table 3.

Table 3. Values and description of feedforward neural network (FNN) and invasive weed optimization
(IWO) parameters in this study.

Methods Parameter Values and Description

FNN

Number of neurons in input layer 6
Number of neurons in output layer 1

Number of hidden layers 1
Number of neurons in hidden layer 7

Size of weight matrix of hidden layer 42
Size of weight matrix of output layer 7

Size of bias vector of hidden layer 7
Size of bias vector of output layer 1

Dimension of optimization problem 57
Activation function for hidden layer Sigmoid
Activation function for output layer Linear

Training algorithm IWO
Cost function Mean square error

IWO

Population size 50
Variance reduction exponent 2

Initial value of standard deviation 0.01
Final value of standard deviation 0.001

Maximum iteration 800

Figure 4a presents the evolution of 42 weight parameters of the hidden layer, whereas Figure 4b
shows such evolution of 7 weight parameters of the output layer. It is seen that, at the 300 first iterations,
fluctuations were observed for all weight parameters, as the IWO algorithm imitated the colonizing
behavior of weed plants. After about 500–600 iterations, stabilization was achieved for weight
parameters for the 57-dimensional optimization problem. Consequently, at least 700–800 iterations are
needed in order to ensure the stabilization of the process.
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(42 parameters); (b) weight parameters of hidden layer (7 parameters).

Weight parameters at iteration 800 were extracted for constructing the final FNN–IWO model
(a combination of FNN and IWO). This model was then used as a numerical prediction function for
parametrically investigating the deviation of quality assessment criteria in function weight parameters.
The parametric study could be helpful to verify if the results provided by the IWO were unique, that is,
the IWO allowed reaching the global optimum of the problem. For illustration purposes, only three
first weight parameters were plotted. Figure 5a presents the evolution of RMSE while varying weight
parameters N◦1 and N◦2 from their lowest to highest values. In the same context, Figure 5b presents
the evolution of RMSE while varying weight parameters N◦1 and N◦3 from their lowest to highest
values. It is seen from Figure 5a,b that the global optimum of the two RMSE surfaces matched the
final set of weight parameters provided by the IWO algorithm. This remark confirmed that the IWO
technique allowed calibrating the global optimum of the optimization problem, thus providing the
final FNN–IWO model.
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Figure 5. Verification of global optimum provided by the invasive weed optimization (IWO). The
surfaces of root mean square error (RMSE) show unique optimal solution, which minimizes the value
of RMSE: (a) between weight parameters N◦1 and N◦2, (b) between weight parameters N◦1 and N◦3.

Figure 6a–c present the evolution of RMSE, MAE, and R2 during the optimization process of FNN
weight parameters, for both training and testing data. It is seen that during the optimization using the
training data, good results of RMSE, MAE, and R2 for the testing data were obtained. It is not worth
noting that the testing data were totally new when applying. This remark allows exploring that no
overfitting occurred during the training phase (i.e., performance indicators of testing data go in a bad
direction). The efficiency and robustness of the IWO technique are then confirmed.
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3.2. Influence of the Training Set Size

In this section, the influence of training set size (in %) on the prediction results is presented.
The training dataset was varied from 10% to 90% of the total data (with a resolution of 10%).
Figure 7 illustrates the influence of training set size, with respect to R2 (Figure 7a), RMSE (Figure 7b),
MAE (Figure 7c), ErrorStD (Figure 7d), and slope (Figure 7e). All relevant values are also highlighted
in Table 4.

As seen in Figure 7a,e for R2 and slope, the performance of the prediction model progressively
increased during the increasing of the training set size from 10% to 90%. For instance, for the testing
part, R2 = 0.387 when the training set size was 10%, which was increased to 0.987 when the training
set size was 90%. The same remark was also obtained when regarding Figure 7b,c,d for RMSE, MAE,
and ErrorStD, respectively. Moreover, the performance of the prediction model for both training and
testing parts became stable from 60% of the training set size (Figure 7a). This observation indicates
that no over-fitting occurred when the training set size surpassed a high percentage, for instance,
80%. This point proves that the prediction model is robust, exhibiting a strong capability in tracking
relevant information in the testing part even it is small. Finally, yet importantly, the prediction model
is promising in the case in which more data are available.
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Table 4. Summary of influence of training set size on the prediction results. RMSE, root mean square
error; MAE, mean absolute error.

Dataset Size of Training
Dataset (%)

Size of Testing
Dataset (%) R2 RMSE MAE ErrorStD Slope

Training

10 90 0.987 0.029 0.025 0.030 0.974
20 80 0.559 0.243 0.211 0.136 0.633
30 70 0.897 0.081 0.066 0.067 0.984
40 60 0.687 0.141 0.109 0.133 0.646
50 50 0.821 0.115 0.100 0.114 0.883
60 40 0.978 0.039 0.024 0.039 0.976
70 30 0.952 0.061 0.047 0.061 1.011
80 20 0.971 0.045 0.033 0.045 0.931
90 10 0.977 0.043 0.031 0.042 0.952

Testing

10 90 0.387 0.226 0.144 0.205 0.535
20 80 0.511 0.268 0.238 0.192 0.610
30 70 0.737 0.151 0.108 0.138 0.890
40 60 0.688 0.190 0.148 0.164 0.643
50 50 0.826 0.125 0.106 0.124 0.860
60 40 0.979 0.045 0.036 0.042 0.966
70 30 0.982 0.041 0.029 0.041 0.961
80 20 0.982 0.044 0.037 0.040 0.914
90 10 0.987 0.038 0.029 0.040 0.914
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3.3. Prediction Capability of the FNN–IWO Model

In this section, the performance of FNN–IWO in predicting the Pu of CFST is investigated.
The predicted outputs versus the corresponding experimental results associated with the training,
testing, and all datasets are presented in Figure 8. The fitted linear lines are also plotted (red lines) in
each graph to show the performance of the algorithm. R2 values with respect to the training, testing,
and all datasets were estimated at 0.978, 0.979, and 0.978, respectively, showing an excellent prediction
capability of FNN–IWO. Furthermore, three linear equations representing the relationships between
actual and predicted data were also given in each graph, including the intercepts and slopes. It is
observed that the FNN–IWO algorithm possessed a strong linear correlation between actual and
predicted Pu values.

The detailed performance of the proposed FNN–IWO algorithm is summarized in Table 5,
including R2, RMSE, MAE, standard deviation error (ErrorStD), slope, and slope angle. Regarding the
results of quality assessment and error analysis, FNN–IWO exhibited a strong capability in predicting
the critical compression capacity of the rectangular section.Materials 2020, 13, x FOR PEER REVIEW 15 of 25 
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Table 5. Performance indicators of the optimal FNN–IWO model.

Indicator R2 RMSE MAE ErrorStD Slope Slope Angle

Training part 0.978 0.039 0.024 0.039 0.976 44.296◦

Testing part 0.979 0.045 0.036 0.042 0.966 44.015◦

All data 0.978 0.042 0.029 0.041 0.969 44.101◦

For further assessment of the performance of the FNN–IWO algorithm, comparison between
the experimental and predicted results was performed at different quantile levels. For this purpose,
quantiles from 10% to 90% were computed to track the behavior of the distribution of the data, with a
focus on the most important statistical distribution. The results are presented (Figure 9a–c) for the
training, testing, and all data, respectively, whereas the percentage of error (%) between the predicted
and actual values at each quantile level is displayed in Figure 10.

It is seen that, for the training dataset, the actual and predicted data were highly correlated,
whereas a small difference was observed at each level of quantile for the testing part. With respect
to the whole dataset, the highest error ratio was observed at Q80, followed by Q90 and Q10. For the
values of error, it was seen that the FNN–IWO model exhibited a strong efficiency in predicting Pu

within the Q10–Q70 range (error < 5%) and from Q80 to Q90 (with error in the 5%–10% range).
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3.4. Prediction Accuracy in Function of Structural Parameters of FNN–IWO

In this section, the prediction accuracy of FNN–IWO with respect to different ranges of structural
parameters is presented. The actual and predicted Pu in function of the depth /width ratio, t, fy, fc’,
and slenderness ratio are displayed in Figure 11a–e, respectively. Besides, error analysis in terms of
R2, RMSE, and MAE for several intervals of the depth/width ratio, t, fy, fc’, and slenderness ratio,
respectively, is also indicated in Table 6 and Figure 11, together with the associated number of data.

In the case of the depth/width ratio, 11 configurations were found between 1 and 1.2, exhibiting
R2 = 0.98, RMSE = 137.57 kN, and MAE = 95.25 kN; 22 configurations were found between 1.2
and 1.4, showing R2 = 0.98, RMSE = 71.07 kN, and MAE = 56.01 kN; 43 configurations were found
between 1.4 and 1.6, exhibiting R2 = 0.97, RMSE = 144.71 kN, and MAE = 109.65 kN; 11 configurations
were found between 1.6 and 1.8, exhibiting R2 = 0.89, RMSE = 56.16 kN, and MAE = 38.91 kN;
and only 3 configurations were found between 1.8 and 2, exhibiting R2 = 1.00, RMSE = 24.75 kN,
and MAE = 21.81 kN. Such an analysis allowed confirming that the FNN–IWO model is efficient in
predicting Pu from nearly square to highly rectangular columns.
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In the case of slenderness, 78 configurations were found between 0 and 20 of slenderness, exhibiting
R2 = 0.98, RMSE = 123.29 kN, and MAE = 86.64 kN; 6 configurations were found between 20 and 40
of slenderness, showing R2 = 0.98, RMSE = 42.80 kN, and MAE = 32.09 kN; 13 configurations were
found between 40 and 60 of slenderness, exhibiting R2 = 0.99, RMSE = 72.25 kN, and MAE = 55.32 kN.
Although the number of data is small for large slenderness, such an analysis allowed remarking that
the FNN–IWO model is efficient in predicting Pu for short, medium, and long columns.
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Table 6. Error analysis of prediction performance with respect to different ranges of values of
structural variables.

Structural
Parameter

Lower
Bound

Upper
Bound

Number of
Data R2 RMSE

(kN)
MAE
(kN)

Depth/width ratio (-)

1 1.2 11 0.98 137.57 95.25
1.2 1.4 22 0.98 71.07 56.01
1.4 1.6 43 0.97 144.71 109.65
1.6 1.8 11 0.89 56.16 38.91
1.8 2 3 1.00 24.75 21.81

Thickness of steel
tube (mm)

0 2 4 0.91 87.07 70.74
2 4 52 0.91 118.58 80.36
4 6 29 0.97 85.70 61.60
6 8 8 0.91 178.54 143.84
8 10 6 0.89 92.27 72.82

Yield stress of steel
(MPa)

190 260 26 0.97 64.45 50.11
260 320 6 0.97 146.68 99.40
320 380 50 0.91 129.64 92.09
380 440 8 0.99 137.34 104.47
440 515 9 0.99 76.28 55.16

Compressive
strength of concrete

(MPa)

5 20 25 0.90 157.25 113.71
20 30 22 0.93 120.57 84.45
30 40 24 0.99 87.44 67.86
40 50 28 0.99 75.40 53.80

Slenderness ratio (-)

0 20 78 0.98 123.29 86.64
20 40 6 0.98 42.80 32.09
40 60 13 0.99 72.25 55.32
60 80 1 - 116.74 116.74
80 100 1 - 49.65 49.65

3.5. Comparison of the Hybrid Model of FNN–IWO and the Single FNN Model

In order to highlight the efficiency of the evolutionary IWO algorithm, comparisons between
FNN–IWO and the individual FNN were performed, using a similar training algorithm (scaled
conjugate gradient (SCG)), FNN architecture, and dataset.

Considering RMSE, MAE, and standard deviation error (ErrorStD), Figure 12 identifies the values
of the two algorithms for the training part (Figure 12a) and testing part (Figure 12b). It can be clearly
seen that FNN–IWO is more accurate than the single FNN, represented by a reduction of error for RMSE
(2 times), MAE (3 times), or ErrorStD (2 times). Improvement of the accuracy is more pronounced
in the training part than the testing part. Considering R2 and slope as error criteria, FNN–IWO also
exhibited an advantage compared with FNN without optimization, for both the training and testing
datasets (Figure 11c,d).

For the sake of comparison, Table 7 indicates the exact values and gains (in %) while using
FNN–IWO with FNN for five error criteria. With a focus on the testing part, the gains reached 47.9%,
49.2%, 41.3%, 6.5%, and 1.5% for RMSE, MAE, ErrorStD, R2, and slope, respectively. As a conclusion,
using IWO to tune the weights and bias of FNN strongly enhanced the accuracy in predicting Pu.
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20 40 6 0.98 42.80 32.09 

40 60 13 0.99 72.25 55.32 

60 80 1 - 116.74 116.74 

80 100 1 - 49.65 49.65 

 

 

Figure 12. Comparison of performance indicators between the individual FNN and FNN–IWO model:
(a) RMSE, MAE, and ErrorStD for training data; (b) RMSE, MAE, and ErrorStD for testing data; (c) R2

and slope for training data; and (d) R2 and slope for testing data.

Table 7. Comparison of performance indicators between FNN–IWO and individual FNN.

Data Model Used RMSE MAE ErrorStD R2 Slope

Training
FNN–IWO 0.039 0.024 0.039 0.978 0.976

FNN 0.087 0.070 0.075 0.923 0.893
% Gain +55.8 +65.9 +48.1 +6.0 +9.2

Testing
FNN–IWO 0.045 0.036 0.042 0.979 0.966

FNN 0.087 0.071 0.071 0.919 0.952
% Gain +47.9 +49.2 +41.3 +6.5 +1.5

4. Conclusions and Outlook

Even though many studies attempted to predict the Pu of CFST with different AI algorithms,
the accuracy and robustness of these algorithms still need further comprehensive investigation. In this
study, a novel hybrid approach of FNN–IWO was proposed and improved for the prediction of Pu of
CFST, of which IWO was used for tuning and optimizing the FNN weights and biases to improve the
prediction performance.

The results showed that the FNN–IWO algorithm is an excellent predictor of Pu, with a value of
R2 of up to 0.979. The performance of FNN–IWO in predicting Pu function of structural parameters
such as depth/width ratio, thickness of steel tube, yield stress of steel, concrete compressive strength,
and slenderness ratio was investigated and the results showed that FNN–IWO is efficient in predicting
Pu from nearly square to highly rectangular columns, as well as for short, medium, and long columns.
Better performance of FNN–IWO was also pointed out with the gains in accuracy of 47.9%, 49.2%,
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and 6.5% for RMSE, MAE, and R2, respectively, compared with the simulation using the single FNN.
This study may help in quick and accurate prediction of Pu of CFST for better practice purposes.

In general, the main advantage of AI-based methods is its efficient capability to model the
macroscopic mechanical behavior of the structural members without any prior assumptions or
constraints. Therefore, the developed AI model in this study could be applied to the pre-design
phase of the design process. Indeed, such quick numerical estimation is helpful to explore some
initial evaluations of the outcome before conducting any extensive laboratory experiments. To this
aim, a graphical user interface application should be compiled for facilitating the application by
engineers/researchers.

On the other hand, empirical formulae should be derived based on the “black-box” AI-based model
developed in this study for estimating the axial behavior of rectangular CFST columns. In addition,
the performance of such empirical formulae should be compared with other existing equations in
the literature such as Ding et al. [98], Wang et al. [125], and Han et al. [126]. Besides, numerical
finite element scheme should also be studied, especially for investigating the mechanical behaviors of
composite columns at both the micro and macro levels. Finally, improvement for current designs (such
as Eurocode-4 [127], AISC [128], and ACI [129]), if it exists, should be proposed.

The axial behavior of CFST composite columns is a complex problem, involving various variables
such as geometry and mechanical properties of constituent materials. Consequently, experimental
databases are crucial for studying this problem. In further studies, a larger database should be
considered, in order to cover more material strengths and geometric dimension ranges.

The methodology modeling of this work could be extended for predicting other macroscopic
properties such as bending, compression, or tension strength of not only composite members, but also
members made of a single material (i.e., concrete or steel members). Besides, an investigation based
on homogenization and de-homogenization approaches [130–134] could also be useful for studying
structural members under different boundary conditions and loadings. Such a framework, including
the finite element scheme, could also be coupled with AI-based prediction in order to better understand
the micro and macro behaviors of structural members.
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