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Abstract: Mg-based bulk metallic glass materials have been investigated for their large potential for
application in orthopedic implants due to their biocompatibility, low degradation rate, and osteogenetic
ability. As an orthopedic implant, initial cell adhesion has been a critical issue for subsequent
osteogenesis and bone formation because the first contact between cells and the implant occurs upon
the implants surface. Here, we aimed to create Mg-based bulk metallic glass samples with three
different surface roughness attributes in order to understand the degradation behavior of Mg-based
bulk metallic glass and the adhesion ability and osteogenetic ability of the contact cells. It was
found that the degradation behavior of Mg66Zn29Ca5 bulk metallic glass was not affected by surface
roughness. The surface of the Mg66Zn29Ca5 bulk metallic glass samples polished via #800 grade
sandpaper was found to offer a well-attached surface and to provide a good cell viability environment
for Human MG63 osteoblast-like cell line. In parallel, more calcium and mineral deposition was
investigated on extracellular matrix with higher surface roughness that verify the relationship between
surface roughness and cell performance.
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1. Introduction

Mg-based materials have been investigated in recent years for their application in the medical
field due to their attractive biocompatibility, biodegradability, and osteogenic abilities. For orthopedic
implant applications, Mg-based materials have great potential for interference screws, suture anchors,
or bioscrews for bone–bone fixation or bone-tendon/ligament fixation. The release of Mg2+ ions during
Mg-based material degradation is a mechanism known to enhance osteoconductive, osteoinductive,
and osteogenesis ability.
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As an orthopedic implant, the surface of the metallic implant is the initial interface that contacts
with the bone tissue; thus, the surface roughness of the metallic material is an important consideration,
especially when analyzing the interaction between the surface roughness of metallic materials and
osteoblasts [1–3]. For this reason, the surface roughness of implants has been varied and modified
by different surface treatments, such as function coating, in an effort to support the cells initial
attachment [4,5]. The materials that are commonly used in orthopedic implants, such as Ti alloys and
stainless steel, have been investigated for optimal surface roughness, which has been found to affect
the adhesion and subsequent osteogenic function of osteoblasts [6–9]. The degree of surface roughness
has been found to have a limitation window for optimal cell attachment; this window varies with the
kinds of cells and materials. For example, the titanium with the surface roughness of 3 um was more
suitable than 0.5 um for human osteoblasts differentiation [10]. The titanium with 1.03 µm of surface
roughness can offer a better cell response for MC3T3-E1 mouse pre-osteoblast cell line in comparison
with the smooth surface samples [11].

Mg-based implant materials are subject to degradation by bodily fluids, and the extent of
degradation increases over time. For crystalline Mg-based materials, the spalling phenomenon was first
demonstrated on the surface of materials. The following intergranular corrosion and intergranular stress
corrosion cracking (IGSCC) have been found to lead to failure of the material [12]. The degradation of
amorphous Mg-based materials occurs uniformly and homogeneously; however, the surface roughness
varies according to the formation of the products of corrosion and degradation vestiges that occur
during degradation process [13]. The surface of biodegradable Mg-based materials was not found
to be stable surface because of the surface roughness variation, which is subject to the degradation
process and changes all the time [14]. According to the theory, a rough surface would create a more
exposed surface for degradation to occur and this surface would therefore increase the degradation
rate [14]. The corrosion behavior of Mg alloy has previously been reported by Alvarez et al. [15]
and Walter et al. [16]; these reports have focused on the changes to the surface topography, chemical
composition distribution, and pitting corrosion after the immersion test. Unfortunately, there are
few studies investigating the relationship between degradation behavior and surface roughness of
Mg-based material, or the relationship between osteogenesis ability of cells and surface roughness of
Mg-based materials.

In this study, we created Mg66Zn29Ca5 bulk metallic glass materials of three different surface
roughness by polishing with sandpaper in order to compare degradation behavior, cell adhesion ability,
cell viability, and osteogenesis ability (Figure 1). We hypothesized that the rougher surface roughness
of Mg66Zn29Ca5 bulk metallic glass may provide a suitable surface for cell adhesion and improved
osteogenetic ability. The results of these tests demonstrate the behavior of biodegradable Mg-based
material over a range of different surface roughness that can be further applied to the design and
manufacture process of biodegradable Mg-based orthopedic implants.
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2. Materials and Methods

2.1. Study Design

The objectives of this study were to analyze the optimal surface roughness for cell adhesion and
further osteogenetic capability of MG63 osteoblast-like cells (Bioresource Collection and Research
Center, Hsinchu, Taiwan) on Mg66Zn29Ca5 bulk metallic glass. Here, we focused on the adhesion
cell morphology and the osteogenic sign of MG63 cells on Mg66Zn29Ca5 bulk metallic glass surface
with the different surface roughness; fundamental material properties were also analyzed. In this
study, three Mg66Zn29Ca5 bulk metallic glass samples of differing surface roughness were processed
via surface treatment using sandpaper polishing (#240, #800, and #2000).

2.2. Sample Preparation and Composition Identification

Mg66Zn29Ca5 bulk metallic glass was prepared by the induction melting and injection casting
method under an argon atmosphere. Initially, Mg, Zn, and Ca were melted using the induction melting
method to form the Mg66Zn29Ca5 ingot. The ingot of Mg66Zn29Ca5 was then re-melted in a quartz
tube and injected into a water-cooled Cu mold under an argon atmosphere to form Mg66Zn29Ca5 BMG
plate, and then cut into dimensions of 10 mm × 10 mm × 1.5 mm.

2.3. Microstructure Analysis

The amorphous state and phase composition of the Mg66Zn29Ca5 BMG samples with different
surface roughness were analyzed by X-ray diffraction (XRD) using a D8AXRD X-ray diffractometer
(Bruker, Karlsruhe, Germany) with monochromatic Cu Ka radiation.

2.4. Surface Roughness Analysis

The Mg66Zn29Ca5 BMG samples with three different surface roughness attributes were analyzed
using an Alpha-step profilometer (KLA-Tencor, Milpitas, CA, USA) to determine the relationship
between the actual surface roughness and the different sandpaper grades used to polish to Mg66Zn29Ca5

BMG surface.

2.5. Degradation Behavior Investigation

The degradation behavior of the Mg66Zn29Ca5 BMG plate samples with different surface roughness
parameters was investigated using the immersion method with simulated body fluid (SBF; 8.0 g NaCl,
0.4 g KCl, 0.14 g CaCl2, 0.35 g NaHCO3, 0.1 g MgCl2·6H2O, 0.06 g MgSO4·7H2O, 0.06 g KH2PO4,
and 0.06 g Na2HPO4·12H2O dissolved in 1 L deionized water) (0.3 mL/mm2) at a temperature of 37 ◦C,
according to the standard ASTM G31-72 [17]. After different immersion periods (0, 1, 2, 3, and 4 weeks),
the SBF was removed and the samples were rinsed with deionized (DI) water. After the samples
were dried, the weight of the samples and the pH value of the SBF were recorded using an electronic
balance (Waga Aanalityczna AS 220.R2, Radwag Wagi Elektroniczne, Radom, Poland) and pH meter
(PH500, Clean, New Taipei, Taiwan), respectively. The surface roughness of each of the samples was
also measured and recorded.

2.6. Cell Adhesion Observation and Spreading Calculation

The cell adhesion and spreading behavior of the MG63 osteoblast-like cells were captured by
scanning electron microscopy (SEM) (SU3500; Hitachi, Tokyo, Japan). The MG63 osteoblast-like cells
were cultured in high-glucose Dulbecco’s modified Eagle medium (DMEM; Gibco®, Carlsbad, CA,
USA) supplemented with 10% fetal bovine serum (Gibco®, Carlsbad, CA, USA). The Mg66Zn29Ca5

BMG plates were placed in a 48-well culture plate, after which 3000 cells/well (2727 cells/cm2) MG63
osteoblast-like cells were seeded into the well and subjected to 24 h of incubation in an incubator
set at 37 ◦C in an atmosphere of 5% CO2. Prior to observations, fixation, and dehydration processes
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were used to prepare the samples for SEM. The cell spreading area present on the surface of the
Mg66Zn29Ca5 BMG plates was calculated and quantified using Image J software in order to determine
the relationship between the different surface roughness attributes of the Mg66Zn29Ca5 BMG samples
and cell adhesion ability.

2.7. Cell Viability Test (MTT Assay)

Cell viability tests were performed on the samples via the direct contact method. The placement of
the materials and the cell culture process was undertaken as per the cell adhesion test. After three days
incubation, the Mg66Zn29Ca5 BMG plates were located to a new 48-well culture plate to ensure that the
cells that were analyzed all adhered to the surface. Ten microliters of MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) solution (Invitrogen, Carlsbad, CA, USA) was then added carefully
to each well, and incubation was done for a further 3 h. One-hundred microliters of dimethylsulfoxide
was then placed into each well, and the optical density value was detected using an enzyme-linked
immune-sorbent assay reader at a wavelength of 560 nm (Multiskan FC; Thermo, Waltham, MA, USA).

2.8. Extracellular-matrix Calcium Deposition Detection

MG63 osteoblast-like cells were used to facilitate extracellular-matrix calcium deposition by the
ions released from the Mg66Zn29Ca5 BMG plates with different surface roughness. The Mg66Zn29Ca5

BMG plates with different surface roughness were treated with the cell culture process through the
same method as for the cell adhesion test. After incubation for 7 days, the Mg66Zn29Ca5 BMG plates
were transferred to another 48-well culture plate. Cells were fixed using 4% paraformaldehyde,
and Alizarin Red S (ARS), a staining dye, was used to stain the calcium deposits generated by the
MG63 cells. After 40 min, the ARS dye was removed and solubilized with 100 µL of DMSO for 30 min,
and the optical density was measured at 590 nm with an enzyme-linked immune-sorbent assay reader
(Spectra Max 190, Molecular Device, San Jose, CA, USA).

2.9. Migration Test

For the migration test, in vitro scratch assay was used to investigate the migration ability of the
MG63 osteoblast-like cells. The Mg66Zn29Ca5 BMG plates with different surface roughness were first
placed in 48-well culture plate, after which 5000 cells from the cell suspension were suspended in
a 48-well culture plate and incubated for 6 h at 37 ◦C in an atmosphere of 5% CO2. After 2 h, cell
monolayers formed on the surface of the material. A 1000 µL pipet tip was used to scratch a straight
line along the monolayer. The debris was then removed, and the cells were washed gently using
DMEM, after which additional DMEM was added to cover the cells for incubation. After 4 h of
incubation, the DMEM was removed, and 4% paraformaldehyde was added to facilitate the fixation
process and to execute the dehydration procedure for the SEM observation. Images were captured
using SEM (SU3500; Hitachi, Tokyo, Japan), and the distance traveled during the desired time frame
was measured by Image J to determine the migration ability (Figure 2).

2.10. Statistical Analysis

All results in this study were presented as mean ± standard deviation. All statistical analyses were
performed by SPSS (version 20.0, IBM, Armonk, NY, USA). One-way ANOVA analyses of variance
followed by post-hoc Tukey tests and independent sample t-test were used to analyze the data collected
during this study. The statistical significance was set at a p value of <0.05.
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3. Results

3.1. Degradation Behavior

The degradation behavior of the Mg66Zn29Ca5 bulk metallic glass samples with three different
surface roughness parameters is shown in Figure 3; it includes the change in the pH value of the
simulated body fluid, the weight change, and the change in the surface roughness. The samples with
three different surface roughness demonstrated similar behavior with respect to pH change of the
SBF and weight change after 4 weeks of immersion (Figure 3a,b). According to the results, there
was no relationship between the change in surface roughness of the samples and the corresponding
degradation behavior. The surface roughness of all samples was observed to change in the SBF during
immersion. The original surface roughness values of samples, which were subjected to grinding
by #240, #800, and #2000 sandpapers, were 0.24, 0.22, and 0.07 µm, respectively. After 4 weeks of
immersion, the surface roughness was found to increase to 1.01, 0.74, and 0.74 µm, respectively
(Figure 3c).
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3.2. Microstructure Characterization

The XRD patterns of the Mg66Zn29Ca5 bulk metallic glass samples with three different surface
roughness parameters prior to and after four weeks of immersion are shown in Figure 4. Prior to
immersion, all sample groups showed a typical broad diffraction peak around 30◦–50◦ of glassy matrix
with a Mg0.97Zn0.03 phase crystalline peak (Figure 4a). However, after degradation by the immersion
test, the amorphous matrix decreased, and the crystalline peak then appeared because of the generation
of corrosion residues in the samples (Figure 4b).
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3.3. Observation of Surface Morphologies

The surface morphologies of the Mg66Zn29Ca5 bulk metallic glass with three different surface
roughness parameters prior to and after 4 weeks of immersion are shown in Figure 5. Prior to
degradation from immersion, the surfaces were flat, and the grinding trace of the sandpaper were
clearly visible. After 4 weeks of immersion, the surfaces of the samples changed, and the roughness
increased for all groups.

Materials 2020, 13, x FOR PEER REVIEW 6 of 12 

 

3.2. Microstructure Characterization 

The XRD patterns of the Mg66Zn29Ca5 bulk metallic glass samples with three different surface 

roughness parameters prior to and after four weeks of immersion are shown in Figure 4. Prior to 

immersion, all sample groups showed a typical broad diffraction peak around 30°–50° of glassy 

matrix with a Mg0.97Zn0.03 phase crystalline peak (Figure 4a). However, after degradation by the 

immersion test, the amorphous matrix decreased, and the crystalline peak then appeared because of 

the generation of corrosion residues in the samples (Figure 4b). 

 

Figure 4. Pattern of Mg66Zn29Ca5 bulk metallic glass samples with three different surface roughness 

parameters (a) prior to the immersion test and (b) after 4 weeks of immersion. 

3.3. Observation of Surface Morphologies  

The surface morphologies of the Mg66Zn29Ca5 bulk metallic glass with three different surface 

roughness parameters prior to and after 4 weeks of immersion are shown in Figure 5. Prior to 

degradation from immersion, the surfaces were flat, and the grinding trace of the sandpaper were 

clearly visible. After 4 weeks of immersion, the surfaces of the samples changed, and the roughness 

increased for all groups.  

 

Figure 5. Morphology observations of Mg66Zn29Ca5 bulk metallic glass samples with three different 

surface roughness parameters before and after the four-week immersion test. 

Figure 5. Morphology observations of Mg66Zn29Ca5 bulk metallic glass samples with three different
surface roughness parameters before and after the four-week immersion test.

3.4. Cell Adhesion and Spreading

The cell adhesion morphology on the Mg66Zn29Ca5 bulk metallic glass samples with different
surface roughness were captured by SEM after fixation and a dehydration process (Figure 6). The three
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different surface roughness factors were all found to provide a suitable surface for MG63 cell adhesion
with a distinct spindle shape. The well-expanded cytoskeleton of the MG63 cells on the three different
surfaces, the formation of the pseudopodia, and the pronounced spreading on the different surface
samples demonstrated that the cells were tightly attached (indicated by arrow) (Figure 6a–c). The MG63
cells not only formed two-dimensional structures but also three-dimensional structures, with the many
cell–cell interactions able to be clearly visualized (Figure 6d–f). However, different percentages of cell
coverage were observed on the different surfaces. The greatest percentage of cell coverage area was
observed for the samples from the group ground with the #800-grade sandpaper (Figure 6g), at 80.96%.
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Figure 6. Cell adhesion observed on the Mg66Zn29Ca5 bulk metallic glass samples with different
surface roughness. SEM images of the cells, which attached on the surfaces polished using (a,d) #240,
(b,e) #800, and (c,f) #2000 grades of sandpaper; (g) quantified adhesion of MG63 cells. The cytoskeleton
of the MG63 cells was well-expanded, and spreading and formation of pseudopodia on the surface of
the Mg66Zn29Ca5 bulk metallic glass was apparent (indicated by the arrow). (* p < 0.05, ** p < 0.01,
*** p < 0.005, and **** p < 0.001).

3.5. Cell Viability

The cell viability of the MG63 cells (normalized against the control group) cultured on the Mg66Zn29Ca5

bulk metallic glass samples with different surface roughnesses is shown in Figure 7. The surface of
the samples polished with the #800-grade sandpaper was observed to have the greatest cell viability
when compared with the samples polished with the sandpaper grades. The cell viabilities of the
Mg66Zn29Ca5 bulk metallic glass samples polished with the #240, #800, and #2000 grade sandpapers
were 76.9 ± 0.2, 91.4 ± 0.3, and 68.8 ± 0.2, respectively. According to ISO 10993-5 [18], the cell viability
of the #800 group is classified as first-level cytotoxicity (slight-cell survival rate higher than 80%),
and that for the #240 and #2000 groups is classified as second-level (mild-cell survival rate higher
than 50%).
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Figure 7. Viability of the MG63 cells, which were cultured on the different Mg66Zn29Ca5 bulk metallic
glass surface samples for three days. (* p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001).

3.6. Extracellular-matrix Calcium Deposition

The extracellular-matrix calcification of the MG63 cells was detected using Alizarin Red S staining.
The quantitative analysis of the ARS dye that solubilized with DMSO after normalization is shown in
Figure 8. The calcium deposition rates observed on the samples with different surface roughness was
97.26 ± 2.12% for the #240 group, 84.81 ± 0.99% for the #800 group, and 78.33 ± 3.04% for the #2000
group (Figure 8a). On the other hand, the Mg66Zn29Ca5 bulk metallic glass samples without MG63
cells have no extracellular-matrix calcification on the surface (Figure 8b).
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Figure 8. Quantitative results for (a) extracellular-matrix calcium and mineral deposition by MG63
cells cultured on the surface of the Mg66Zn29Ca5 bulk metallic glass samples. (b) without MG63 cells
cultured on the surface of the Mg66Zn29Ca5 bulk metallic glass sample. Alizarin red S staining method
was used in this test. (N = 5 per group; * p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001).

3.7. Migration Capacity

To shorten the period required for a bone to heal and to enhance the cell migration velocity for
cells to attach to the area surrounding the implanted material, materials with three different surface
roughness factors were tested. After gap generation, MG63 cells had 4 h to migrate during incubation.
The gap can be seen clearly in Figure 9a as commencing after 4 h of incubation. The different surface
roughness attributes of the samples exhibited different gap distances even though each was created
using the same pipet tip size. The distance of the gap, which was created by the pipet tip, was reduced
through the migration of MG63 cells. The reduced distance was measured using Image J software
(results are shown in Figure 9b). It was found that the reduction in the gap distance of the #800 group
(255 ± 50 µm) and the #2000 group (201 ± 19 µm) were significantly higher than that observed for the
#240 group (66 ± 13 µm). The high magnification of cell migration after 4 h of incubation is shown in
Figure 9c.
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Figure 9. Capacity of MG63 cells cultured on Mg66Zn29Ca5 bulk metallic glass samples with three
different surface roughness characteristics. (a) SEM image of migrated cells. (b) Distance reduction of
the gap due to migration of MG63 cells. (c) High magnification image of cell migration morphology
after 4 h of incubation. (* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.001).

4. Discussion

Mg66Zn29Ca5 bulk metallic glass is an amorphous structure material that can be considered as a
single-crystal material due to its homogeneous and uniform arrangement. Thus, the Mg66Zn29Ca5 bulk
metallic glass material remains as a single crystal structure after being polished by different grades
of sandpaper. The retention of the crystal structures is responsible for the lack of difference in the
degradation behavior observed for the Mg66Zn29Ca5 bulk metallic glass samples of varying surface
roughness, as seen in Figure 3a,b. However, the surface roughness varied greatly after 4 weeks of
degradation (Figure 3c). The variation in the roughness of the samples surface was not observed to
influence the recorded change in weight and pH value, which remained stable. As such, the surface
roughness change caused by degradation of the samples occurred uniformly and homogeneously.
Compared with Mg crystalline alloy, AZ91 magnesium alloy, the pitting corrosion increased the progress
of degradation in which the stress corrosion crack contributed to material failure [16]. Moreover,
the microstructure of the metallic glass gradually crystallized as degradation time increased [13]. From
our results, Mg66Zn29Ca5 bulk metallic glass was observed to exhibit decreased amorphous phase
after 4 weeks of immersion. It should be noted that the surface of the samples polished with #240
grade sandpaper was observed to have the greatest crystalline signal in the XRD pattern (Figure 4b);
presumably, the corrosion products more easily formed and cohered on the rough surface. Nguyen et al.
previously reported that the corrosion rate observed for rough surface samples of as-cast Mg was
significantly higher than that for smooth samples [19]. This higher corrosion rate may lead to more
corrosion products being generated on the rough surface.

The surface of implant materials is the first site in contact with the surrounding cells and tissue. In this
study, for Mg-based BMG of the same composition, the surface roughness was found to be the only factor
determining the biocompatibility and cell adhesion of MG63 cells to Mg66Zn29Ca5 bulk metallic glass.
Recently, orthopedic implants have been used as functional coating or to increase surface roughness
to enhance the resulting biocompatibility, biological fixation, and osteoconductive properties [20,21].
However, the surface of Mg materials changes over time because of their biodegradable properties.
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Thus, using physical methods (e.g., grinding) to treat the original metallic surface may be a direct
way of improving the biological effectiveness for cells without requiring any coating. According to
the results in this study, a surface roughness of around 0.22 µm (#800 group) was shown to result in
the greatest cell coverage area after 24 h of incubation (Figure 6). After 3 days of incubation, the #800
group also showed the highest cell viability (Figure 7). A surface roughness of 0.22 µm therefore seems
to provide a good platform for initial cell adhesion and survival. The entrapment of fibrin protein
has been encouraged by the rough surface, increased the adhesion of osteogenic cells and enhanced
the mechanical stability of implants in human bone, our work [22–28]. To facilitate osteointegration,
the dense bone tissue has to entirely cover the surface of the material. The materials should not only
have good cell proliferation but also be effective in recruiting cells from the surrounding tissue to
achieve this ideal situation. In the results obtained from our study, the samples polished using the
#800-grade sandpaper demonstrated the best migration ability for the MG63 cells. However, the most
effective calcium deposition was observed for the samples polished with the #240 grade sandpaper;
unfortunately, #240 group showed the worst cell migration ability.

When considering the surface roughness of material designed for orthopedic implants, the surface
should be varied according to the different stages of osteointegration. For example, materials with
a surface roughness of #800 are best for initial cell adhesion, cell migration, and cell proliferation;
an increased surface roughness will support improvements in the subsequent calcium deposition that is
required for bone cells. The surface roughness variation of biodegradable magnesium material during
degradation may have a strong advantage over other metal materials, which cannot be degraded when
implanted in the human body.

5. Conclusions

In this study, Mg66Zn29Ca5 bulk metallic glass samples treated to produce samples with three
surface roughness parameters were investigated using material properties test and in vitro study.
We found that different surface roughness factors can enhance different functions for MG63 cells.
However, there was no significant difference between the surface roughness of the three samples in
terms of degradation behavior. For orthopedic implant applications, harnessing different surface
roughness produced by degrading materials in order to regulate different functions of cells should be
considered. The variation of the surface roughness of implant material can be achieved via natural or
engineering processes. For the design of surface treatment, the surface roughness which polishes with
#800-grade sandpaper would be recommended to provide the surface for cell attachment. The much
rougher surface would be generated naturally during degradation to provide the surface for cells to
enhances the effects of calcium deposition.

Author Contributions: P.-C.W. collected the research literature; P.-C.W., S.-M.S., P.-H.T., Y.-Y.N. and J.S.-C.J.
designed and performed the experiments; P.-C.W. organized the layout of manuscript; J.S.-C.J., C.-K.C., and C.-H.C.
discussed and provided suggestions for the content; P.-C.W. wrote the paper. All authors reviewed the paper and
made additional comments on this manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan, grant number MOST
108-2218-E-038-001 and Taipei Medical University within the framework of the Higher Education Sprout Project
by the Ministry of Education in Taiwan, grant number DP2-108-21121-01-O-02.

Acknowledgments: The authors would also like to acknowledge the technical support provided by the TMU
Core Facility. We would like to thank Uni-edit (www.uni-edit.net) for editing and proofreading this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

www.uni-edit.net


Materials 2020, 13, 1188 11 of 12

References

1. Anselme, K.B.M. On the relation between surface roughness of metallic substrates and adhesion of human
primary bone cells. Scanning 2014, 36, 11–20. [CrossRef] [PubMed]

2. Zhang, Y.; Chen, S.E.; Shao, J.; Van den Beucken, J. Combinatorial Surface Roughness Effects on Osteoclastogenesis
and Osteogenesis. ACS Appl. Mater. Interfaces 2018, 10, 36652–36663. [CrossRef] [PubMed]

3. Wu, Y.; Zitelli, J.P.; TenHuisen, K.S.; Yu, X.; Libera, M.R. Differential response of Staphylococci and osteoblasts
to varying titanium surface roughness. Biomaterials 2011, 32, 951–960. [CrossRef] [PubMed]

4. Damiati, L.; Eales, M.G.; Nobbs, A.H.; Su, B.; Tsimbouri, P.M.; Salmeron-Sanchez, M.; Dalby, M.J. Impact of
surface topography and coating on osteogenesis and bacterial attachment on titanium implants. J. Tissue Eng.
2018, 9. [CrossRef] [PubMed]

5. Ma, T.G.X.; Zhang, Y.; Lin, Y. Interface Oral Health Science; Suzuki, O., Sasaki, K., Takahashi, N., Eds.; Springer:
New York, NY, USA, 2017.

6. Lu, S.L.; Su, P.Y.; Li, C.L.; Wang, L.F.; Lu, H.K. Regulation of Pre-Osteoblast Osteogenic Transcription Factors
by Different Titanium Surface Topography. J. Dent. Health Oral Disord. Ther. 2017, 8. [CrossRef]

7. Schneider, G.B.; Perinpanayagam, H.; Clegg, M.; Zaharias, R.; Seabold, D.; Keller, J.; Stanford, C. Implant
Surface Roughness Affects Osteoblast Gene Expression. J. Dent. Res. 2003, 82, 372–376. [CrossRef]

8. Puckett, S.P.R.; Webster, T.J. Nano rough micron patterned titanium for directing osteoblast morphology and
adhesion. Int. J. Nanomed. 2008, 3, 229–241.

9. Kubies, D.; Himmlová, L.; Riedel, T.; Chánová, E.; Balík, K.; Douděrová, M.; Bártová, J.; Pešáková, V.
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