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Abstract: Accelerated corrosion tests of reinforced concrete (RC) specimens were conducted to
estimate the corrosion expansion rate of reinforcing bars. Subsequently, finite element analysis was
performed with the estimated expansion rate for RC beams to investigate concrete cracking induced
by corrosion. The influence of the different confinement levels on crack behavior was investigated
using mainly the amount of transverse reinforcement. An expansion rate of 2 was found to be
appropriate when using Lundgren’s expansion model. Confinement levels affected the cracking
behavior of steel bars. Cracks did not significantly affect structural capacity although they exceeded
the allowable crack width. Nevertheless, repair and reinforcement measures are necessary because
degrading durability factors such as carbonation or salt diffusion can reach the reinforcing bars
through connected cracks.

Keywords: accelerated corrosion test; reinforced concrete; corrosion; crack behavior; finite
element analysis

1. Introduction

The design of reinforced concrete (RC) structures requires the consideration of durability in terms
of sustainable use, as well as maximum strength for safe structural performance. During the service
life of structures, RC members are affected by several environmental factors, such as carbon dioxide or
chloride penetration [1–3]. Therefore, steel corrosion has a significant influence on the serviceability
and durability of RC structures [4–7]. Generally, steel corrosion leads to critical deterioration, such as
cracking or cover spalling of RC structures, because corrosion products occupy more than 2–6 times
the volume of the original steel [8]. In particular, steel corrosion can result in pressure expansion,
leading to tensile stress in the concrete surrounding the steel bars [7,9]. Cracking occurs when the
tensile stress exceeds the tensile strength of the concrete. concrete cracking induced by corrosion in
RC has a significant impact on the serviceability and durability of RC structures, which may cause
structural damage such as the reduction of bond strength and the spalling of concrete cover. It is
therefore very important to investigate concrete cracking induced by corrosion in order to achieve
suitable maintenance control for RC structures [8–10].

Wide attention has been paid to the modeling of cracking behavior under reinforcement corrosion
in RC structures [2–23]. Liu and Weyers [3] proposed a corrosion cracking model able to predict
the time-to-corrosion cracking of concrete cover. The time-to-corrosion cracking was experimentally
investigated using the results of cracked RC slabs under 5 years of outdoor exposure, during which the
effects of corrosion rate, concrete cover depth, reinforcing steel bar spacing, and size were considered.
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They found that concrete cracking was affected by the critical weight of the corrosion products
depending on the cover depth, the bond performance between the steel bars and concrete, and the size
of the steel bars. Moreover, Bhargava et al. [7,10,11] developed a mathematical model for predicting the
time-to-corrosion cracking of concrete cover as well as the weight loss of steel bars. According to the
results of their study, the tensile strength of concrete cover, the corrosion rate, and the elastic modulus
of steel bars with corrosion products have a significant effect on the models for time-to-corrosion
cracking of concrete cover and for the weight loss of steel bars. In addition, the concrete cracking
induced by corrosion has been widely investigated through experimental and numerical studies,
focusing on the influences of corrosion expansion pressure on RC [24–40]. Expansion pressure is
caused by expanding corrosion products which have grown around steel bars, which is also a primary
factor for the cracking behavior. These previous works provide critical and useful information for
predicting the concrete cracking induced by corrosion of RC structures. However, they did not consider
the lateral confinement effect in RC structures. It is necessary to consider lateral confinement for RC
structures as well as for longitudinal bars, which may affect the cracking of concrete cover under
natural environmental conditions.

Lin and Zhao [41] investigated the effects of confinement on the bond strength between concrete
and corroded steel bars. They found that the bond strength of corroded steel bars was significantly
increased by confinement effect of the ties, which also contributed to limiting the longitudinal cracking
of concrete cover. Since the expansion coefficients depend on the service environment, the precise
evaluation of their values in the considered environment is necessary for the application of a suitable
model of concrete cracking induced by corrosion in RC structures [5]. Fang et al. [42–44] also reported
the effects of confinement on the bond behavior of RC structures under the salty environment of
corrosion. The bond performance did not decrease in cases of confinement for stirrups compared to
those without the confinement of RC structures. This means that confinement greatly contributes to
resistance against deterioration caused by corrosion expansion of the steel bars. Corrosion expansion
is remarkably controlled by the characteristics of corrosion products and by the actual confinement
condition of the surrounding corroded steel bars. The actual confinement in RC structures is given by
transverse bars and the surrounding concrete [34,45,46].

As described above, the effect of lateral confinement of transverse reinforcement on the concrete
cracking induced by corrosion of RC structures still needs to be explored further. Therefore, this study
aimed to investigate the effect of lateral confinement on the cracking behavior of RC structures caused
by the corrosion expansion of steel bars. The results may provide useful information for determining
the relationship between a given corrosion level of steel bars and the structural performance of RC
structures. In order to propose an appropriate corrosion expansion ratio, an experimental work
was performed using accelerated electrolytic corrosion tests, in which a volume expansion model of
corrosion products required for analyzing the cracking behavior was used. The concrete cracking
induced by corrosion of RC beams was studied numerically using the corrosion expansion ratio obtained
from an experimental program. In particular, the main parameters of this numerical simulation are the
lateral confinement by transverse reinforcement, position of steel bars, radial direction of expansion,
and loading method controlled by pressure expansion. Moreover, the relationship between crack
propagation and the amount of reinforcing steel corrosion (corrosion penetration and partial loss) is
discussed using the expansion coefficient and mechanical properties of corrosion products. Finally,
the suitability of the current numerical study is examined by comparing the results with reference
experimental data on corrosion cracking.

2. Expansion Model of Steel Corrosion Products

Concrete cracking induced by corrosion occurs when the volume of corrosion is larger than the
original volume of corroded steel bars. Lundgren [18] and Berra et al. [47] proposed a corrosion
expansion model for the corrosion layer of steel bars by comparing the volume increase of corrosion
products (rust) and virgin steel. Figure 1 shows the corrosion expansion model proposed by Lundgren.
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In the figure, all corrosion products accumulate around the steel bar, and the corrosion products do
not penetrate voids and cracks in concrete materials. This model may correspond to a relatively short
period of time-to-corrosion, such as an electrolytic corrosion test. Berra et al. also proposed a model in
which corrosion products penetrate voids and cracks in concrete, which corresponds to the progression
of corrosion over a long period of time, as shown in Figure 2. In natural environments, the behavior of
corrosion products can be postulated to lie in between the Lundgren and Berra et al. models.
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Figure 2. Schematic of the corrosion model for corrosion penetration and the corrosion products around
the steel bar [47].

According to Lundgren’s model [18], by assuming that the volume of the corrosion products is v0

times the volume of the virgin steel bar, under a given corrosion penetration x (mm), the free increase
of the radius e (mm) is determined using Equation (1) from the geometric relationship

e = −rb +
√

rb
2 + (v0 − 1)(2rbx− x2) (1)
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By assuming that the corrosion penetration x is sufficiently small relative to the radius of a steel
bar rb (mm), the free increase of the radius e can be expressed as

e ≈ (v0 − 1)x (2)

Meanwhile, according to Berra’s model [47], after ignoring the elastic modulus of concrete, and
by assuming that the increased circumference due to expansion is converted into a crack width, the
sum of all the cracks opening around a bar is

wcr =
∑

ui =2π(rb + t) − 2πrb = 2πt (3)

where wcr is the total crack width (mm), ui is the opening of each radial crack width around a steel bar
(mm), rb is the radius of a steel bar, and t is the thickness of corrosion products that have accumulated
around a steel bar.

Additionally, by assuming that the corrosion products completely penetrate into cracks, t can be
expressed as

2πrbvx = 2πrb(x + t) + 2πtc⇒ t =
rb(v− 1)

rb + c
x (4)

where v is the volume of corrosion products/volume steel, x is the corrosion penetration (mm), and c is
the extension of the crack across the cover (mm). In Lundgren’s model, assuming that the extension of
the crack across the cover c is 0, the thickness of the corrosion products that have accumulated around
the steel bar t matches the free increase of the radius a. The ratio v between the volume of the corroded
and virgin steel varies depending on the composition of corrosion products. Various rust products
have different densities and volume expansions; the values of v for corrosion products vary from 2.2 to
6.4 [18,20,24], as shown in Figure 3. It is expected that crack initiation and propagation are directly
proportional to the amount of corrosion products. In this study, because the diffusion of corrosion
products into pores and cracks is not taken into account in Lundgren’s model, the value of 2.0 was
considered for the numerical analyses of the concrete cracking induced by corrosion of RC Beams with
reference to Lundgren’s model.
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Figure 3. Relative volumes of iron corrosion products [18,20,24].

In Equation (1), e is the increase of the radius due to free expansion when the normal stress is zero.
However, when the corrosion products are restrained by the concrete surrounding the steel bar, they
cannot expand freely. The actual increase of the radius, ucor, is obtained from the strain, εcor, of rust by
the equation

εcor =
ucor − e
x + e

(5)
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Lundgren [18] proposed a non-linear equation as a relationship between the normal stress,
σ, developing around rebar, and the corresponding radial strain, εcor, in the rust on the basis of
experimental data, as shown in Figure 4 and Equation (6).

σ = Kcor × εcor
m

Kcor = 0.7GPa, m = 0.7
(6)
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3. Accelerated Corrosion

3.1. Specimens

The composition and characteristics of concrete used in the current study are listed in Table 1.
For the concrete mixture, type II Ordinary Portland cement, fine aggregate (river sand) with a grain size
of less than 5 mm, and coarse aggregate with a maximum size of 20 mm were used. A water-to-cement
ratio (W/C) of 0.5 was applied, and a water reducer of 0.8% (wt % by cement) was added to achieve
proper workability. In accordance with ASTM C39 [48], the compressive strength was evaluated using
a universal testing machine (UTM). All compression tests were performed using cylindrical concrete
specimens with diameters of 100 mm and heights of 200 mm. The specimens for the compression tests
were cured in water at a temperature of 20 ± 2 ◦C for 28 days. The compressive strength of the concrete
cylinder at 28 days was 42.5 MPa, which is the average value of three tests.

Table 1. Composition and characteristics of concrete.

Component Materials (kg/m3)

Water 175
Ordinary Portland cement (Type II) 350

Fine aggregate 780
Coarse aggregate (Maximum size: 20 mm) 968

Water/cement ratio (W/C) 0.5
Water reducer/cement (wt % by cement) 0.8

Average slump a (mm) 20.0
Average air content a (%) 4.6

Average compressive strength a (MPa) 42.5
Average splitting tensile strength a (MPa) 2.8

(performed 28 days after casting)
a: Average over three tests.
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3.2. Test Method

Cylindrical specimens that were 125 mm in diameter and 800 mm in length were fabricated for
accelerated corrosion tests. A deformed reinforcing steel bar with a diameter of 19 mm and a length
of 1200 mm was embedded in the center of the specimen. Anticorrosion treatment was applied over
a length of 250 mm from each end of the steel bar, leaving a 700-mm corrosion section of the steel
bar set between the two ends. Figure 5 shows the accelerated corrosion system of RC specimens.
Accelerated corrosion tests of the reinforcing steel were conducted with energized electric current of
200 mA (current density 0.48 mA/cm2) until cracks appeared on the concrete surface. Figure 6 shows
the typical condition for cracking and rust formation in RC specimens after accelerated corrosion
tests. Figure 7 additionally shows the cracking propagation behavior of the steel bars due to corrosion
expansion. Specimen A represents cracking properties after 337 h from the start of the application of
electric current. Specimen B represents cracking properties after continuing the current supply to a
total of 450 h. From the figures, concrete cracking induced by corrosion was generated from only one
main-line in RC specimens, even with sustained energized outflow of corrosion products through the
cracks. The numbers in boxes in Figure 7 show the crack width (mm), and the corrosion amount was
defined in terms of mass loss by measuring the mass of specimens before and after corrosion.
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Figure 7. Cracking propagation due to corrosion expansion of steel bars: (a) specimen A with corroded
steel ratio of 2.72%; (b) specimen B with corroded steel ratio of 3.95%.

4. Axial Symmetric Simulation of the Corrosion Expansion

Considering the amount of corrosion and corrosion inflation pressure at the time when corrosion
expansion cracking reached the surface, the same mechanics state was assumed for the cross-section
through the central axis until the occurrence of cracks. An axial symmetric model was used in the
corrosion expansion simulation, as shown in Figure 8. Finite element analysis was conducted by using
the program DIANA [49]. Loading control was performed such that the 700-mm corrosion zone of the
concrete imposed a pressure increment of 0.5 MPa, with further increments of 0.1 MPa of pressure
being applied after the pressure of 11 MPa as cracks approached the surface of the RC specimens.
Bilinear-type tension softening properties of concrete were used to reflect the actual characteristics
because there was no restraint bar for cracks. In the present analysis, the compression area was
assumed to exhibit elastic behavior because tensile cracking was dominant under low compression
stress. The start of the cracks was defined according to the maximum principal stress criterion of
Rankine [50]. Namely, when the maximum principal stress reaches the tensile strength of concrete,
regardless of the stresses acting on the other side, cracks are formed perpendicular to the direction of
the maximum principal stress. Thus, the multi-directional dispersion cracking model (threshold value
of 60◦) was used.

In this study, a simplified version of Lundgren’s model is used because evaluating corrosion
products entering the cracks of the concrete is difficult. Therefore, the value of 2 was used for the
corrosion expansion ratio v. Figure 9 shows the typical crack strain contour and deformation properties
according to the incremented load. In addition, the results of corrosion expansion properties for
each step are listed in Table 2. Concrete cracking was generated at the inner integration point of
the innermost layer under an expansion pressure of 4.0 MPa and reached the second layer under an
expansion pressure of 9.5 MPa. Moreover, concrete cracking proceeded to the inner integration point
of the outermost layer under an expansion pressure of 11.7 MPa, but in this state, cracks did not appear
on the concrete surface, and deformation could not be confirmed even at 200 times magnification.
Concrete cracking developed up to the outer integration point of the outermost layer at an expansion
pressure of 11.8 MPa, which was equivalent to the amount of corrosion. For step 30, the expansion
radius was observed to increase rapidly, and deformation could be observed at 200 times magnification.
As corrosion products were discharged through the cracks in the experiment, the pressure increment
was not necessarily sustained. Nevertheless, in the numerical simulation (corrosion amount of 2.94%),
an expansion pressure of 11.8 MPa corresponded well to the experimental results (corrosion amount
of 2.72%). Surface cracking was confirmed. As the numerical model used in this study is an axial
symmetry model, strain by cracking in the outer integration point of the outermost layer occurred
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uniformly in the circumferential direction. From the numerical results, crack width could be evaluated
by multiplying the circumferential length by the strain in the outer integration point of the outermost
layer. Cracking appeared on the surface (expansion pressure of 11.8 MPa) with a maximum crack
strain, εcr max, of 2.95 × 10−4, and a circumferential length of 393 mm. Thus, crack width was calculated
to be 0.12 mm. The crack width determined from the numerical results may be considered a reasonable
value because it lies within the range of 0.05–0.2 mm in width experimentally measured from the
cracking of specimen A. Therefore, when performing corrosion expansion using Lundgren’s model,
the corrosion expansion ratio of 2 is reasonable.
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Table 2. Corrosion expansion properties for each step.

Step Expansion
Pressure p (MPa)

Corrosion
Expansion e
(×10−3 mm)

Max. Crack
Strain εcr max

(×10−4)

Corrosion
Penetration x
(×10−3 mm)

Cross-Section
Loss aloss (%)

8 4.0 1.66 0.03 5.3 0.11
19 9.5 6.00 0.27 27.3 0.53
27 11.5 8.95 4.74 45.5 0.95
29 11.7 10.00 5.52 51.4 1.07
30 11.8 26.60 18.30 141.0 2.94

5. Corrosion Expansion in the Numerical Model and Material Properties of RC Beams

Figure 10 shows the numerical model of corrosion expansion for RC beams. In this numerical
model, the main rebar was the target of corrosion, and transverse reinforcement (shear reinforcement)
was applied to restrain the expansion cracks. For concrete, two-dimensional plane stress elements with
a transverse reinforcement spacing of 60 mm were applied. A 20-mm diameter hole was assumed
for the main rebar, and embedded steel elements with three levels of cross-sectional area (0, 28,
112 mm2, corresponding to shear reinforcement ratios pw = 0, 0.47, 1.87%) were assumed for transverse
reinforcement. Based on the previous experiment, the corrosion expansion ratio ν of 2 was used.
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The stress–strain curve and mechanical properties of concrete and transverse reinforcement used
in the numerical simulation are shown in Figure 11. As mentioned earlier, because tension cracking
of concrete was dominant under low compressive stress, the maximum principal stress criterion of
Rankine was applied to the tension zone, and elastic behavior was assumed in the compression zone.
As shown in Figure 11, a linear model with a fracture energy of 0.1 N/mm (characteristic length of
the element is 27 mm) was used for tension-softening behavior after cracking. In addition, shear
stiffness after cracking decreased in accordance with the crack strain. A bi-linear model of transverse
reinforcement (no strain hardening behavior) with standard yield strength was applied. The pressure
buildup around the corroded bar was applied in 0.1 MPa increments using a loading method with an
internal pressure control. Additionally, the right end of the numerical models was controlled with a
pinned support, because the support condition does not affect the cracking behavior. Table 3 shows
details of specimens used in the numerical simulation.
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(a) concrete; (b) transverse reinforcement.

Table 3. Details of specimens for numerical simulation.

ID Loading Method Cross-Sectional Area of Transverse Reinforcement

L-A0 Internal pressure control 0 mm2 (pw = 0)
L-A1 Internal pressure control 28 mm2 (pw = 0.47%)
L-A4 Internal pressure control 112 mm2 (pw = 1.87%)

6. Results and Discussion

6.1. Cracking Behavior Due to Corrosion Expansion

Figure 12 shows the typical concrete cracking induced by corrosion and transverse reinforcement
stress for each step of corrosion. The pressure exerted by corrosion products on the surrounding
concrete, p, corrosion expansion (increase in radius), e, maximum crack strain, εcr max, and transverse
reinforcement stress, σs max are also shown in these figures. Furthermore, the corrosion penetration,
x, and the reduction of the cross-sectional area of main bars, aloss, which were estimated using the
method described in the previous section, were added to the corresponding loading steps. In the
cases of each crack progressing independently, similar concrete cracking induced by corrosion was
observed in RC specimens regardless of the mass of transverse reinforcement. However, as shown
in Figure 12b, if developing cracks connect with each other and reach the surface of concrete, then
the pressure–expansion relationship and crack behavior will depend on the amount of transverse
reinforcement. After the crack reached the surface of concrete, corrosion penetrations were 20–30 µm,
and differed slightly among specimens and according to the rebar location. Considering that the
cross-section loss was less than 1.0% after the crack reached the surface of concrete, it can be considered to
have almost no effect on the ultimate strength of the concrete as a structural member. In general, reaching
the service limit is defined by a crack opening at the surface of concrete in RC structures. Nevertheless,
when the cracking reaches the surface of concrete, the reduction in structural capacity is small, and
thus, the service limit is a passive standard from the perspective of structural performance [29,34].
However, if the cracks spread across the surface of concrete, the risk of carbonation and salt damage
can be increased.
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In cases of final cracking progress (Figure 12c), for the L-A0 specimen without transverse
reinforcement, the concrete cover spalled when a crack reached the surface of the concrete cover
and it could not resist the increasing pressure. The spalling was controlled for the L-A1 specimen
immediately after the crack reached the surface, but deformation increased rapidly after the transverse
reinforcement failed. In addition, the maximum crack strain of the L-A1 specimen exceeded 0.04,
with a crack width greater than 2 mm and a crack spacing of 50 mm. Thus, spalling and adhesion
degradation of the concrete cover are expected. For the L-A4 specimen with four times the mass of
transverse reinforcement compared to that of the L-A1 specimen, deformation was considerably less
even under high pressures because of the strong confinement. Corrosion penetration and cross-section
loss during the final cracking progress were 300–1000 µm and 5–20%, respectively. Additionally, the
resistance to expansion due to corrosion reached its limit after transverse reinforcement members
yielded. The analytical results obtained from displacement-controlled experiments show generally
similar cracking behavior and pressure–expansion relationships regardless of the amount of transverse
reinforcement because it only adds a little stiffness to the concrete. The expansion behavior of corrosion
products in an actual RC structure is close to the results of the pressure-controlled experiments, as
some amount of corrosion products is lost through cracking and spalling.

6.2. Internal Pressure and Expansion by Corrosion of Steel Bar

Figure 13 shows the relationship between average internal pressure and expansion according to
the location of the steel bar for each specimen. In the figure, RB 1, RB 2, and RB 3 are the low bar, middle
bar, and upper bar among the main reinforcement members, respectively. For corrosion expansion up to



Materials 2020, 13, 1156 12 of 16

about 0.002–0.003 mm, the average internal pressure of each specimen almost completely corresponded
to cracks that appeared independently around each longitudinal bar. In addition, the average internal
pressures of RB 1 and RB 3 exhibited similar behaviors, which is expected because their symmetrical
positions. When cracks reached the surface of the concrete at internal pressures p of 6–7 MPa (corrosion
penetrations of 20–30 µm), corrosion expansion progressed rapidly because the resistance against
expansion depends only on the resistance performance of transverse bars, rather than concrete. In cases
of the L-A4, resistance against expansion became effective after the corrosion expansion exceeded a
value of 0.02 mm.
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Figure 14 shows the relationship between internal pressure and expansion (increase in radius)
according to eight directions of longitudinal bars with and without lateral confinement. When cracks
reached the surface of the concrete at internal pressures p of 6–7 MPa, the stiffness of the concrete was
almost eliminated. However, stiffness was found to vary depending on the direction of expansion.
Generally, stiffness against corrosion expansion decreases as progress is made in the direction of lower
cover thickness. Nevertheless, the figure shows that the stiffness increased with the addition of lateral
confinement members (directions of 1, 2, 3, 4, and 6 in RB 1; and 2, 4, 6, 7, and 8 in RB 3). Meanwhile,
the stiffness of RB 2 was not improved in the direction of point 4 because the transverse bars did not
function effectively for the expansion on the left side. Thus, in order to ensure stiffness in the direction
of point 4, additional internal rebars are required. Along directions corresponding to high stiffness,
such as 3, 7, and 8 of RB 1, and 1 of RB 3, deformation occurred with rapid expansion due to internal
pressure from the opposite direction.
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6.3. Maximum Stress in Transverse Bar and Corrosion Penetration

Figure 15 shows the relationship between maximum stress in transverse bars and corrosion
penetration. The right figure is an enlarged drawing for a small corrosion level. At point 1O, where the
cracks spread across the entire surface of concrete, the maximum stress of the L-A1 specimen with
a small transverse reinforcement ratio exceeded the long-term allowable unit stress through stress
increments due to corrosion expansion alone. The maximum stress of the L-A4 specimen with 4 times
the transverse reinforcement ratio of L-A1 also increased rapidly to near the long-term allowable
unit stress. Therefore, if the amount of corrosion corresponding to this step (corrosion penetration of
100 µm, cross-section loss of 2% or more) is reached, the structural performance of the RC member may
be seriously affected. In the actual environment, as with Berra’s model [47], the amount of corrosion
products entering the crack increases and the corrosion expansion pressure decreases according to
the increase of crack width. Thus, additional examination considering the actual condition of RC is
necessary for high-precision prediction.
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7. Conclusions

The aim of this study is to numerically investigate the effects of lateral confinement on the concrete
cracking induced by corrosion of reinforced concrete. Based on the numerical results, the following
conclusions can be drawn:

(1) In order to estimate the corrosion expansion rate of reinforcing bars, accelerated corrosion tests
and finite element analysis using the corrosion expansion model by Lundgren for reinforced
concrete specimens were conducted and compared. When the corrosion expansion rate of the
reinforcing bar was set to 2, the analysis results (0.05–0.2 mm) approximately met the relationship
between the crack width of concrete and corrosion rate of reinforcing bars (0.12 mm).

(2) In the range of 3–8 µm of corrosion depth, cracks developed independently in the concrete around
the rebar, and the mechanical behavior of the bars, such as the corrosion–expansion relationship,
were similar regardless of the position of the main reinforcement or the amount of transverse
bars. However, above 10 µm of corrosion depth, the cracks became connected, and the crack
behavior differed for each bar according to the position of the main reinforcement or the amount
of transverse bars.

(3) For 2% corrosion rate of rebars, cracks exceeded the permissible width on the concrete surface,
but they did not significantly affect the limit strength. Nevertheless, repair and reinforcement
measures against cracks would be necessary because the promoting factors of neutralization or
salting can reach the reinforcing bars through the connected cracks.

(4) Overall, the shear capacity of the reinforced concrete members will be affected by steel corrosion
because the stress of the transverse bars reaches the yield strength at corrosion depths of
100–200 µm. However, a wider set of experimental data is required for accurate prediction
because, as with the Berra model, the amount of corrosion particles flowing into the cracks
increases and corrosion expansion pressure decreases with increasing crack width.
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