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Abstract: Ventilation-controlled fires tend to be the worst for toxicity, because they produce large
amounts of fire effluent containing high yields of toxic products. In order to examine the dependence
of the amount of chosen few main combustion gases under ventilation-controlled conditions, a
PVC-insulated copper electric wire with unknown composition (PVC filled with chalk) was studied
by mean of a steady state tube furnace. For the tested wire, lower values of CO2 yields at different
ventilation conditions were obtained than for the reference pure polymer unplasticized PVC and
additionally tested pure LDPE, the yields were higher three times in the case of PVC and two times in
the case of LDPE than those received for wire at the same ventilation conditions, which pointed out
decreasing contribution of hyperventilation effect to human during cable fire. In contrast, higher
values of toxic CO yields, four times higher, were obtained for the PVC-insulated electric wire rather
than for the pure polymers. The maximum value of CO yield (0.57 g/g) was determined in the case
of 5 L/min of primary airflow and decreased with increasing ventilation. The measured yields of
hydrocarbons were similar to the reference values except for the equivalence ratio φ = 0.27, where
hydrocarbon yield was equal to 0.45 g/g. The HCl yield of fire effluents from the PVC-insulated wire
was shown to be independent of ventilation conditions. The corrosive reaction between copper and
the HCl species and the flame-retardant mechanisms of the additives, caused the lower values of HCl
in the fire effluent of the PVC-insulated copper wire than for pure polymer.

Keywords: fire effluent toxicity; fire behavior of cables; ventilation-controlled fires; PVC insulated
electric wire

1. Background

Fire effluent toxicity is a function of four factors: the amount of materials burnt, the distribution
of combustion products within the smoke, the individual toxic potencies of each combustion product
found in the vapor phase, and the duration of exposure [1].

Smoke inhalation injury is a serious health hazard to victims of house fires, explosions and other
disasters involving fire and smoke [2]. Inhalable particles within fire effluents have acute toxic potency
and cause harm by transporting toxicants deep into the lungs. If the concentration of particles is
high, their inhalation can lead to lung inflammation hours later, assuming that the person escapes the
immediate fire threat [3].

Fire effluent toxicity can be categorized according to the time period post-injury, as discussed in
detail by Matthew et al. in [4]. The final stage of fire effluents inhalation is inflammation/infection,
coinciding with further impairment of lung function. It is well known that carbon monoxide (CO)
causes death by binding strongly to hemoglobin to form carboxyhemoglobin, preventing the transport
of oxygen from the lungs to the body. Various monomers stimulate pain receptors in the eyes and
upper respiratory tract, resulting in inflammation and fluid release (acute bronchitis) when nerves
respond to acidic and organic irritant gases, thereby inhibiting breathing and causing respiration rate

Materials 2020, 13, 1111; doi:10.3390/ma13051111 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-0406-6598
https://orcid.org/0000-0002-7871-0032
http://dx.doi.org/10.3390/ma13051111
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/5/1111?type=check_update&version=2


Materials 2020, 13, 1111 2 of 13

to fall to about 10% of its normal value [5,6]. For example, the vinyl chloride monomer, as a product of
thermal decomposition of PVC, which occurs among other fire gases, is responsible for the conditions
such as angiosarcoma [7]. This is particularly important for the safety of individuals during fires inside
built objects (for instance on escape roads).

In terms of fire chemistry, the basic fire scenarios are classified into various types:
non-flaming/smoldering combustion, well-ventilated flaming fires, and early/ventilation-controlled
(vitiated) flaming fires [5,8]. Ventilation conditions in terms of fire are expressed by the equivalence
ratio φ (Equation (1)) [9]. For well-ventilated flaming fires, when there is plenty of air available the φ is
less than 1.0 [10], while for under-ventilated fires the value of φ > 1.0 [11].

φ =
actual f uel− to− air ratio

stoichiometric f uel− to− air ratio
(1)

When non-metallic (combustible) materials undergo thermal decomposition, toxic products
are generated. The most commonly occurring of these are carbon monoxide (CO) [12,13], carbon
dioxide (CO2), various saturated and unsaturated hydrocarbons (HC), and hydrogen chloride (HCl, for
PVC-insulated or sheathed cables), which are accompanied by oxygen depletion. Carbon dioxide and
oxygen depletion cause hyperventilation, HCl and hydrocarbons are irritants of the lungs, and carbon
monoxide is fatally toxic in high concentrations. The amount of these species varies with changes in
ventilation conditions during the combustion process. Ventilation conditions are characterized by the
equivalence ratio φ (Equation (1)), which is based on the oxygen requirement for the “stoichiometric”
combustion to CO2 and water [10].

Quantitative analysis of the toxic products from burning cables has been found to be challenging.
It was shown in an earlier study by the author that even under well-ventilated conditions, when most
materials indicate stable burning, cables do not burn continuously [14] for very high temperatures
(approaching 900 ◦C).

A number of studies have been done conducted on the toxicity of fire effluents so far. Many have
focused on the development of test methods, as well as the qualitative assessment of fire gases available
in fire effluents from pure polymers (low-density polyethylene, polystyrene, polyamides, and poly(vinyl
chloride) under various fire conditions. The different behavior of the combustion process of PVC
compared with other polymers related to the dehydrochlorination process and subsequent crosslinking
has been documented. the soot formation for pure polymers in the form of pellets has also been
studied [5,8,14–18]. Yasuhara et al. [19] investigated the amount of polychlorinated dibenzo-p-dioxines
and dibenzofurans under different fire conditions. They stated that chlorine-containing compounds in
fire effluent are relatively low.

The mechanism of the decomposition of pure PVC and PVC with additives during the pyrolysis
process were studied by means of TGA-FTIR by Zhu et al. [20] and McNeill et al. [21]. They proved the
release of HCl and high amounts of hydrocarbons in fire effluents. Almost all chlorine transform into
HCl, and only a small amount of others chlorine contained species was detected.

The pyrolysis and combustion properties of new and aged polyvinyl chloride sheathed cables
were investigated by Wang et al. [22]. The following test method was used for investigation:
thermogravimetric analysis (TG), Fourier transforms infrared (FTIR), microscale combustion calorimetry
(MCC), and cone calorimetry. It was found that an aged sheath performed pyrolysis and combustion
processes in a weaker manner and incompletely.

The most recent study by Chong et al. [23] shows a detailed analysis of hydrocarbons, which was
carried out on poly(vinyl chloride) pipes. Infrared spectroscopy and gas chromatography–mass
spectrometry (GC–MS) analysis showed the presence of chlorinated components including
chlorine dioxide, methylene chloride allyl chloride, vinyl chloride, ethyl chloride, 1-chlorobutane,
tetrachloroethylene, chlorobenzene, hydrogen chloride, benzene, 1,3-butadiene, methyl methacrylate,
carbon monoxide, acrolein, formaldehyde, and many more long-chain hydrocarbons. The quantitative
analysis of those species was also performed.



Materials 2020, 13, 1111 3 of 13

The authors of this study have previously published work [24] on the influence of
constructional-material parameters on the fire properties of electric cables. Cables were tested
on a large geometric scale on a 4 m long ladder in the test apparatus, exposed to a 20.5W burner.
Carbon dioxide concentration was measured using non-dispersive infrared (NDIR) spectrometers and
oxygen depletion by a paramagnetic analyzer. This allows the obtaining of accurate heat release rate
results for materials of unknown composition, i.e., electric cables via the previously studied amount of
heat release per unit mass of O2 consumed or per unit mass of CO2 produced. Experiments shows that
construction materials based on plasticized poly(vinyl chloride) (PVC) significantly reduce the fire
properties of cables, related to heat release and smoke production, compared to halogen-free materials
(LS0H; the peakHRRav parameter more than 17 times higher for the fully halogenated cables), which is
due to the decomposition process of the material.

Unplasticized PVC is a rigid polymer, which is due to dipole interactions between chlorine
atoms. In order to increase flexibility, the weakening of intermolecular interactions and the mobility of
macromolecules (lowering the glass transition temperature) is needed, instead of the introduction of
copolymerization with comonomers, e.g., vinyl acetate, vinylidene chloride and acrylonitrile, through
a physical plasticizer (for instance dioctyl phthalate, tricresyl phosphate) [25].

Previous investigations carried out by Hirschler [17] have pointed out that materials made of
unplasticized (rigid) PVC (e.g., wall claddings) showed ‘much better fire properties’ than plasticized
(flexible) PVC (e.g., electric cables), which is due to the addition of, e.g., phthalates, which ‘have even
worse fire properties than PVC itself’. The described study was based on the investigation of poly(vinyl
chloride) in several aspects such as ignitability, ease of extinction (oxygen index), flame spread (small
scale and intermediate scale), heat release, smoke obscuration, smoke toxicity, hydrogen chloride
emission and decay, and performance in real-scale fires. The use of a combination of plasticizers and
fillers, such as antimony trioxide or alumina trihydrate, in the case of plasticized PVC significantly
improves the fire properties of PVC common, for example in cable production [26,27]. Inorganic
fillers, such as antimony trioxide, alumina trihydratezinc hydroxystannate, and zinc borate, act as
flame-retardants of PVC. At present, however, a significant amount of flame retardant additives
improves fire properties, including those associated with the emission of smoke and toxic combustion
products, from plastics based on plasticized (flexible) PVC [27–29].

It is well known that PVC insulated wires and cables are widely used in residential buildings,
typically flush-mounted, but also as flexible connections for electrical equipment to the mains. Those
cables may be easily ignited by a short circuit in the installation or burnt from another burning item.
The flame spread along the cable causes the release of fire effluents, and results mostly in toxic fire
cases. Atmospheric oxygen is needed to sustain the flame, but even under the pyrolysis process toxic
fumes are produced. This phenomenon inspired the need to investigate the fire effluent toxicity of the
most typical ventilation scenarios.

2. Methodology

The steady state tube furnace is the only apparatus designed for the assessment of fire toxicity
under different fire conditions [30].

2.1. Experiments

In order to examine the dependence of the amount of combustion gases under ventilation-controlled
conditions, an H07V-U PVC-based electric copper wire (Figure 1) was chosen for the experiments
because of the simplicity of its construction. It is also widely used in electrical installations in buildings
throughout Europe. There is a lack of information, however, on the content of the plasticizer and
fire retardants present in the cable. It is known that the PVC was filled with calcium carbonate and
aluminum trihydrate, which may influence the fire properties of the tested wire.
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Figure 1. H07V-U insulated electric copper wire.

The experiments were conducted by means of the test apparatus (Figure 2) invented by
Purser et al. [30] known as the steady state tube furnace [10].

Figure 2. General view of the ISO 19700 [31] test equipment at the accredited ITB Fire Laboratory in
Pionki, Poland.

During the experiment, the flowrate of primary air (oxidant) was changed to simulate different
fire ventilation conditions, ranging from a low-ventilated room fire to well-ventilated flaming.

The specimens were placed in quartz 800 mm long boats and moved mechanically into the furnace.
The feed rate (mass load rate) of the specimen was about 1 g/min, as calculated by the appropriate
mass load rate and speed of movement mechanism. For cables, which were tested as a whole, it is
almost impossible to reach the standard feed rate given above. For the purposes of this investigation,
the feed rate was calculated as equal to 0.92 g of non-metallic fraction of cable per min.

PVC-based electric copper wires (external diameter of approximately 3.0 mm, diameter of
conductor 1.36 mm, weight of cable 21 kg/km) were investigated at a temperature of 650 ◦C and in
set airflows equal to 2, 4, 5, 6, 8, 10, and 15 L/min. The total airflow, which is a sum of primary and
secondary airflows, did not exceed 50 L/min. The length of cable specimens were 600 mm. Details of
the tests are summarized in Table 1.

During the thermal decomposition of the non-metallic (PVC) compound, fire effluent gases
were produced and moved into the mixing/measurement chamber. They then passed through the
non-dispersive infrared (NDIR) sensors (CO2), paramagnetic analyzer (O2), and Fourier Transform
Infrared spectrometer equipped with a gas cell (Figure 3) for the analysis of CO2, CO, and HCl.
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Table 1. Test conditions and specimens’ description.

Specimen No Specimen Description φ, - Primary Airflow, L/min

1 PVC wire 0.82 2

2 PVC wire 0.42 5

3 PVC wire 0.37 10

4 PVC wire 0.27 15

5 Pure PVC polymer 0.04 10

6 Pure LDPE polymer 0.10 10

Figure 3. FTIR spectrometer at the accredited ITB Fire Laboratory in Pionki, Poland.

Parts of the fire effluents were passed through the secondary furnace in order to determine the
amount of light hydrocarbons after the complete oxidation to CO2. Concentrations of hydrocarbons
were calculated as a difference between CO2 obtained from the secondary furnace and CO2 (as a product
of complete oxidation) and CO concentrations directly from the mixing chamber. The secondary
CO2 and O2 concentrations were measured using NDIR sensors. The pathlength during the FTIR
measurements was set at 4 m. Regions with the following wavelengths were selected for analysis:
754.99–743.06 cm−1 (CO2), 2005.00–2025.00 cm−1 (CO), and 2699.19–2705.46 cm−1 (HCl). The yields of
combustion gases were calculated according to the ISO 19700 [31] specification.

The authors were focused only on main fire gases as products of the combustion process of the
electric wire. The narrow range of the studied gases was also due to the limitations of the research
infrastructure available in the course of the experiments.

2.2. Statistical Analysis

A single experiment of samples in various ventilation conditions was performed. The excellent
intralaboratory repeatability and interlaboratory reproducibility of the ISO 19700 test method by Purser
et al. [32] has been verified previously. Three samples of four different pure polymers, i.e., rigid
polyvinyl chloride (PVC), low-density polyethylene (LDPE), polymethylmethacrylate (PMMA), and
polyamide 6.6 (PA6.6) in the form of pellets were tested in well-ventilated conditions at a furnace
temperature of 650 ◦C and φ < 0.75 (fire stage 2) and under-ventilated post-flashover at a furnace
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temperature of 825 ◦C at a previously calculated ventilation condition based on φ set to 2+/−0.2 (fire
stage 3b) (according to ISO 19706) [11] by three independent laboratories. the tests were carried out
according to ISO/TS 19700 [31]. It was found that intralaboratory repeatability was less than 10%
for most cases (overall average 7.8%), whilst interlaboratory reproducibility was somewhat higher
(overall average equal to 15.8%) [32]. On the basis of these results, one specimen was tested under
each ventilation condition in the course of the experiments, which is in accordance with the published
work of other authors [5,8].

3. Results and Discussion

Due to the type of construction of cables and wires, complete combustion is not possible because
of the presence of a metallic (copper in the current study) conductor and a large amount of inorganic
fillers, which are incombustible. The yield of each fire gas may be presented as a function of the mass
of the entire cable or of the mass loss of a non-metallic fraction. The results are presented as a function
of mass loss of a non-metallic fraction.

For the PVC wire only, the loss of mass of the polymer (PVC) fraction was included in the yield
calculations. The ventilation conditions were indicated by equivalence ratios φ calculated using the
oxygen concentration inside the tube furnace in each test according to Equation (2) [10].

O2(tube) =
total air f low

primary air f low

(
O2(mixing chamber) −

20.95·secondary air f low
total air f low

)
(2)

where total airflow = 50 L/min in the test equipment.
As a reference for the results of the experiments, pure unplasticized polyvinyl chloride (PVC)

and the simplest reference polymer-low-density polyethylene (LDPE), were tested at 10 L/min airflow
through the tube. LDPE was chosen as an example of polymer, because it does not contain chlorine
in the polymer chain. A thorough discussion of the results is hindered by the fact that producers do
not provide details about the components contained in the PVC polymeric materials used for cable
formulation. More information on the matter is available in the literature as presented in Section 1.

CO2 yields for the H07V-U PVC-insulated electric wire were tested at set primary airflows, and
pure unplasticized PVC and pure LDPE at 10 L/min of primary airflow (Figure 4). For the PVC-insulated
wire, lower values of CO2 yields at different ventilation conditions were obtained, whereas for both
pure polymers the yields were higher at well-ventilated conditions: three times higher in the case of
pure LDPE and two times higher for pure PVC.

Figure 4. CO2 yields (mass loss basis) for H07V-U cable, pure PVC and pure LDPE polymers at different
ventilation conditions.
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A different trend was observed in the case of CO yields (Figure 5). Higher values were obtained
for the PVC-insulated electric copper wire compared to the CO yields of pure polymers, peaking
at four times higher at the same primary airflow of 10 L/min. The maximum value of CO yield
(0.57 g/g) was determined in the case of 5 L/min of primary airflow (φ = 0.42) and decreased with
increasing ventilation.

Figure 5. CO yields (mass loss basis) for H07V-U cable, pure PVC and pure LDPE polymers at different
ventilation conditions.

For φ = 0.82, lower CO yield (0.32 g/g) was observed than expected. This was due to the
experimental conditions, where the set primary airflow (2 L/min) was relatively low. This forced the
set secondary airflow (48 L/min) to be transferred back into the tube to the combustion zone, resulting
in more effective oxidation.

The reference values for the pure PVC polymer were equal to 0.11 g/g of CO, which was
approximately four times better than the corresponding values of the PVC-insulated electric copper
wire (0.42 g/g) tested at the same ventilated conditions (10 L/min).

The dependence of hydrocarbon (product of incomplete combustion) yields was a function of
increasing ventilation conditions and the equivalence ratio φ (Figure 6). There was no clear tendency
observed. In essence, the measured yields resembled the reference values except for φ = 0.27, where the
obtained hydrocarbon yield was equal to 0.45 g/g. It has been argued [33] that PVC has a consistently
high level of products of incomplete combustion arising both from the flame inhibition by HCl and
oxygen depletion, even at well-ventilated fire conditions.
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Figure 6. Hydrocarbon yields (mass loss basis) for H07V-U cable, pure PVC and pure LDPE polymers
at different ventilation conditions.

During the combustion process, most cables self-extinguished and then reignited. As a
consequence, the non-flaming period may result in higher concentration of products of incomplete
combustion, such as CO and various hydrocarbons (Figure 7).

Figure 7. CO and hydrocarbon concentration changes during the steady state combustion test of the
H07V-U wire at 15 L/min primary airflow.

A significant increase in hydrocarbon yield at 15 L/min primary airflow could also be a consequence
of aromatic hydrocarbon emission obtained by cross-linking, and the intramolecular decomposition of
polyene segments resulting from dehydrochlorination (Figure 8) [18,34]. Even at φ < 1 various light
hydrocarbons produced during the decomposition of PVC were observed, which might be due to a
larger proportion of smaller volatile species than the large ones that remain as soot.
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Figure 8. PVC decomposition process.

The difference between HCl yields from PVC-insulated copper wire and pure unplasticized PVC
was significant. The HCl yields (Figure 9) in fire effluents obtained from the PVC-insulated wire
were similar in all ventilation conditions and, as expected, show about 1.5 times lower values (about
0.3 g/g in each case) than pure PVC polymer (yield equal to 0.45 g/g). Plasticized PVC, used as a
cable insulation material, is often filled with calcium carbonate (chalk) and a flame retardant, such as
antimony trioxide (Sb2O3) or aluminum trioxide (Al(OH)3). This may yield only one third of the HCl,
but higher levels of carbon monoxide (Figure 5) [5].

Figure 9. HCl yields (mass loss basis) for H07V-U cable and pure PVC polymer at different
ventilation conditions.

Antimony trioxide reacts with HCl released from burning PVC to form antimony oxychloride,
which then decomposes to form antimony trichloride (SbCl3). The aluminum trioxide flame-retardant
mechanism is based on the release of water, which cools the combustion zone and dilutes active species.
An intumescent structure is also formed [35].

The high values of CO2, CO, and hydrocarbon yields may be the result of the typical radicals’
reaction for polyvinyl chloride (PVC). HCl production was dependent on temperature and occurred
during the stripping reaction (Figure 8).

The relatively weak bonding of chlorine atoms to carbon atoms within the polyvinyl chloride
chain cause the early generation of HCl leading to the gasification of an equivalent mass of carbon [3].

Since HCl can be released before significant carbon from the material is combusted, the mass
yield of HCl can exceed the stoichiometric value early in the material’s decomposition. Far better
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results have been revealed from PVC insulation rather than from pure unplasticized PVC, because
insulation materials contain a high fraction of calcium carbonate filler (chalk) as previously mentioned
by Gann et al. [36].

HCI formation is the critical stage of the PVC decomposition phase (Figure 8) [16,37] and is due,
among others, to the oxidation and decomposition processes. Therefore, the amount of available
oxygen is crucial in this process and depends on ventilation efficiency. Even an exiguous amount of
highly reactive radicals can cause propagation of the oxidation process in the gas phase.

Consequently, when the number of these highly reactive radicals constantly increases, ignition
and flaming combustion occur. This process can be described by Reactions (3) and (4).

H· + O2→ OH· + O (3)

·O· + H2→ OH· + H (4)

In the Reactions (3)–(10) given above and below, each dot “·” represents an unpaired electron.
For example, [16,19] in the presence of halogen-containing compounds, the above radical chain

mechanism in the gas phase is changed due to the creation of chlorine radicals and hydrogen chloride
(see Equations (5)–(8)). The high energy OH· and H· radicals formed by chain branching are removed
by the halogen-containing compounds (RCl)–polymers.

RCl→ R· + Cl (5)

Cl· + RH→ R· + HCl (6)

HCl + H· → H2 + Cl (7)

The removal of H· is key for eliminating the main chain branching step.

HCl + OH· → H2O + Cl (8)

The removal of OH· blocks the main heat release step of hydrocarbon combustion, namely the
conversion of CO to CO2, through replacement with less reactive halogen radicals in the gas phase [38].
The H· and OH· radicals are essential for many flame reactions and are involved in the main heat
release in Reaction 7.

CO + OH· → CO2 + H (9)

Loss of H· and OH· reduces the CO2/CO ratio. The high energy H· and OH· radicals are
removed through a reaction with HCl and replaced with lower energy Cl· radicals. The actual
flame-retardant effect is thus produced by HCl. Chloric halide consumption is regenerated through
reaction with hydrocarbons:

Cl· + RH→ R· + HCl (10)

As a consequence, higher HCl yields are obtained for the pure PVC polymer.
In the case of PVC cables, HCl yield depends only on mass loss and mass charge of the polymeric

fraction of cables. Changes in HCl yields from PVC insulation depend only on the nature of the
polymer and its fillers, which are not evenly distributed in the polymer fraction and may act as a
flame retardant. HCl is well known as a strongly corrosive compound. The occurrence of copper
wire decreases the amount of HCl due to a reaction between copper and hydrogen chloride’ and
between HCl and inorganic fillers. This phenomenon was previously investigated by Grimes et al. [39].
Thermogravimetry, ion chromatography and gas chromatography test methods were used for the
investigation. It was found that ’the presence of Cu, CuO and CuCl2 retards the thermal degradation of
PVC in air and in nitrogen and decreases the percentages of volatile products produced at both stages
of the decomposition. These effects are greatest for PVC-CuO. The presence of copper, CuO or CuCl2
in PVC has a major effect on the nature of the gaseous emissions of the thermal decomposition in air
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and in nitrogen. The concentrations of total chlorine, aliphatic hydrocarbons, aromatic hydrocarbons,
chlorinated hydrocarbons and soot particulates are all affected relative to an equivalent amount of PVC’.

The equivalence ratios for tests at 2 L/min of airflow slightly exceeded the 0.7 value, which directly
indicated that well-ventilated flaming conditions (1b) were obtained close to the border line between
the well-ventilated and under-ventilated ranges. Due to low oxygen concentration as an oxidizer,
the decrease of CO2 (equal to 1.09 g/g) was observed CO and hydrocarbon yields, however, gave
much worse results in terms of fire toxicity and were much higher than for pure PVC and LDPE
polymers under the same ventilation and temperature conditions. It was also shown that CO yield for
the PVC-containing cable decreases together with decreasing φ, which was expected due to oxygen
concentration accelerating the thermal decomposition reaction of PVC in the combustion zone.

During the combustion process, most cable samples self-extinguished and then reignited. As a
consequence, the non-flaming period may result in increasing concentration of products of incomplete
combustion, such as CO and various light hydrocarbons. Such behavior, however, corresponds well
to a real fire situation, particularly to the early stages of fire development. A significant increase in
hydrocarbon yield at 15 L/min primary airflow could also be a consequence of aromatic hydrocarbon
emission obtained by a Diels–Alder reaction type cross-linking, and intramolecular decomposition of
the polyene segments, resulting from dehydrochlorination.

4. Summary and Conclusions

Assessment of fire effluent toxicity is an essential component of fire hazard analysis, especially for
cables constructed mostly of materials of unknown composition. Due to the construction of the PVC
electric wire, complete combustion is not possible because of the metallic (copper) conductor and the
large amount of inorganic fillers, which are incombustible.

The following conclusions could be drawn from this study:

1. Fire gases yields generated from PVC-based electric copper wire were approximately four times
higher than from pure polymers (pure rigid PVC and pure LDPE) tested under the same ventilated
conditions (10 L/min).

2. Decreasing values of CO2 yields at different ventilation conditions were obtained for the
PVC-insulated wire, compared to the reference sample of pure unplasticized PVC and additionally
for pure LDPE. The values of the yields increase in well-ventilated conditions: threefoldin the case
of pure LDPE and twofold for pure PVC. A different tendency was observed in the case of carbon
monoxide. Increasing values of CO yields were obtained for the PVC-based electric copper wire
in comparison to pure polymers. The maximum value of CO yield (0.57 g/g) was determined
in the case of 5 L/min of primary airflow (φ = 0.42) and decreased with increasing ventilation.
The minimum value of CO yield, equal to 0.29 g/g, was observed at higher ventilation conditions
(φ = 0.27). This phenomenon confirms the significant contribution of the hyperventilation effect
caused by CO2 inhalation during a cable fire.

3. In the case of light hydrocarbons (products of incomplete combustion), which are highly irritating
to the skin and respiratory track, there was no clear tendency observed; in essence, the measured
yields were similar to the reference values except for φ = 0.27, where the obtained hydrocarbon
yield was equal to 0.45 g/g. The large amount of observed hydrocarbons in comparison with
carbon monoxide in the case of φ = 0.27 might be caused by lots of smal-size volatile hydrocarbon
species, while large-size hydrocarbon species create soot in the combustion zone.

4. The corrosive and toxic HCl occurring in fire effluents from the plasticized PVC-based electric
copper wire was found to be independent of ventilation conditions. This is due to the
composition of the cable, which contains copper wire and inorganic fillers acting as flame
retardants. The reaction between copper and the HCl compound, as well as the flame-retardant
mechanisms of the additives, caused lower values of HCl in fire effluents from the PVC-based
electric copper wire as compared to pure unplasticized rigid PVC (about 1.5 times lower). High
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yields of HCl, resulting from the chain stripping of PVC, and of CO as an effect of the inhibition
of the oxidation of CO by HCl demonstrate the increased toxicological significance of HCl and
CO in PVC-based materials under fire conditions. The strong effect of HCl is particularly evident
when incapacitation prevents escape during fires.
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