e s

vegl materials 'MDPL
we w
Article

Self-assembly Processes in Hydrated
Montmorillonite by FTIR Investigations

Maria Teresa Caccamo !, Giuseppe Mavilia !, Letterio Mavilia 2, Domenico Lombardo 3 and
Salvatore Magazu »*

1 Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Universita di
Messina, Viale Ferdinando Stagno D’ Alcontres n 31, S. Agata, 98166 Messina, Italy;
mcaccamo@unime.it (M.T.C.); gmavilial@unime.it (G.M.)

2 Dipartimento di Patrimonio, Architettura e Urbanistica; Universita Mediterranea di Reggio Calabria,
(PAU), Via Melissari, I-89124 Reggio Calabria, Italy; letterio.mavilia@unirc.it

3 CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy; lombardo@ipcf.cnr.it

* Correspondence: smagazu@unime.it

Received: 4 February 2020; Accepted: 27 February 2020; Published: 2 March 2020

Abstract: Experimental findings obtained by FTIR and Raman spectroscopies on montmorillonite-
water mixtures at three concentration values are presented. To get some insight into the hydrogen
bond network of water within the montmorillonite network, FTIR and Raman spectra have been
collected as a function of time and then analyzed following two complementary approaches: An
analysis of the intramolecular OH stretching mode in the spectral range of 2700-3900 cm™! in terms
of two Gaussian components, and an analysis of the same OH stretching mode by wavelet cross-
correlation. The FTIR and Raman investigations have been carried as a function of time for a
montmorillonite-water weight composition (wt%) of 20%-80%, 25%—-75%, and 35%—-65%, until the
dehydrated state where the samples appear as a homogeneous rigid layer of clay. In particular, for
both the FTIR and Raman spectra, the decomposition of the OH stretching band into a “closed” and
an “open” contribution and the spectral wavelet analysis allow us to extract quantitative
information on the time behavior of the system water content. It emerges that, the total water
contribution inside the montmorillonite structure decreases as a function of time. However, the
relative weight of the ordered water contribution diminishes more rapidly while the relative weight
of the disordered water contribution increases, indicating that a residual water content,
characterized by a highly structural disorder, rests entrapped in the montmorillonite layer structure
for a longer time. From the present study, it can be inferred that the montmorillonite dehydration
process promotes the layer self-assembly.

Keywords: self-assembly processes; montmorillonite; IR spectroscopy; OH stretching band; wavelet
Analysis

1. Introduction

Among various silico-aluminate precursors used for the preparation of geopolymers, we can
certainly mention clays and in particular those characterized by cation exchange, such as
montmorillonite. The most used cation exchange clays are those belonging to the class of layered
phyllosilicates. Phyllosilicates are clay minerals, readily available, characterized by a lamellar
structure consisting of two-dimensional layers (i.e., lamellae) with spaces between the various
lamellae containing cations and water molecules. Each lamella is formed by the union of individual
layers of silica with tetrahedral coordination, joined to layers of alumina or magnesia with octahedral
coordination [1-4].
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There are two types of phyllosilicates: Those having a 1:1 ratio, such as kaolin, in which each
lamella is made up by only two layers (one octahedral and one tetrahedral) and the phyllosilicates
with a 2:1 ratio, such as montmorillonite, in which a single lamella is formed by an octahedral layer
interposed between two tetrahedral layers and, moreover, there is the presence of weak Van der
Waals bonds between the various lamellae. Figure 1 shows, in a schematic way, the layered structure
of montmorillonite.

ALUMINA OCTAHEDRAL -
SHEET

VAN DER WAALS BONDS
SILICA TETRAHEDRAL

: - .

Figure 1. Layered structure of montmorillonite with a 2:1 ratio, in which a single lamella is formed by
two silica tetrahedral sheets with an interposed alumina octahedral sheet.

The montmorillonite chemical formula is (Si78Al02)V(A134Mg06)VIO20(0OH)s; its composition,
without considering the presence of the material between the various lamellae, is: SiO2 (66.7%), Al203
(28.3%), H20 (5%), which allows us to explain how in the montmorillonite there may be isomorphic
substitutions of the Si* cations with Al** within the tetrahedral units, and of the Al3* cation with Mg?
in the octahedral units. In this way, the montmorillonite net charge for each layer of is: [7.8 (+4)] +[0.2
(+3)] + [3.4 (+3)] + [0.6 (+2)] + [20 (-2)] + [4 (-1)] = —0.8 charge/unit cell [5-7]. Thus, the lamellae
constituted by these layers are characterized by an excess negative charge, which is balanced by the
elements in the interlamellar spaces such as alkaline or alkaline-earth cations, solvated, in turn, by
water molecules. Montmorillonite is a material highly available in nature: It constitutes, in fact, the
main component of bentonite, representing 50% of it.

In addition, montmorillonite crystallizes in lamellae with a thickness of nanometric sizes,
characterized by a surface length that can reach the micrometric sizes, forming aggregates composed
of about 25 overlapping lamellae. This feature gives montmorillonite a very high surface/volume
ratio (250-800 m?/g versus 10 m?/g of talc). The crystallographic structure of montmorillonite (Figure
2) is, as also partially anticipated and represented previously in Figure 1, a 2:1 layered structure of
silica and alumina: A single octahedral layer of alumina (Al2Os) is therefore observed between two
tetrahedral layers of silica (SiOs4), and so the oxygen ions of the octahedral layer also belong to the
tetrahedral layer [8,9].

The number of terminal oxygenals of the silicate layers is often not sufficient to complete the
octahedral coordination, and therefore the remaining vertices are occupied by additional OH-ions.
Lamellar silicate is characterized by having only two thirds of the available octahedral sites occupied:
The cations that occupy them are Al**. They are isomorphically replaced by Mg? and Fe?* cations and,
in addition, there are also Al** cations in place of the tetrahedral silicon cations. The excess of negative
charge that is created is balanced by various mono or bivalent cations (Ca?, Mg?, Na*, K*) solvated
and which, being unable to be inserted inside the crystal, remain located on the edges of the same,
occupying the interlayer region [10-12].
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Figure 2. Crystallographic structure of montmorillonite, which is composed by a central alumina
octahedral sheet within two silica tetrahedral sheets, forming a common layer [5].

Cations and water are not part of the crystalline structure and can be easily replaced by other
cations: The lamellae layers are bonded each other by weak interaction forces (Van der Waals bonds)
and therefore can be easily separated from each other [13,14].

As far as functional properties are concerned, montmorillonites are characterized by significant
Cation Exchange Properties (C.E.C.): The values of C.E.C. for montmorillonite vary between 80 and
120 meq/100 g depending on the degree of isomorphic substitutions occurred in the lattice (Table 1).

Table 1. Specific surface and Cation Exchange Properties (C.E.C.) values of montmorillonite.

Mineral Specific Surface (m?g™") C.E.C. (meq/100 g)
kaolinite 10+20 3+10
illite 80 + 100 20+ 30
montmorillonite 250 + 800 80 +120
chlorite 80 20+30

Another important property of montmorillonite, in addition to the cation exchange capacity
evaluated by C.E.C,, is that related to the expansion capacity of this molecular structure linked to the
presence of H2O molecules between one layer and another. This expansion also occurs in the presence
of polar liquids such as ethylene glycol and glycerin [15,16].

Furthermore, the distance between the reticular planes of montmorillonite depends on the
degree of hydration of the mineral: By increasing the number of water layers, the crystalline lattice
expands (Figure 3); by complete dehydration, however, it loses its ability to expand. In fact, in the
presence of water, H2O molecules dispose themselves within the montmorillonite interlayer space,
generating a space increase between the layers. In aqueous solutions, montmorillonite aggregates can
disassociate, giving rise to montmorillonite nanolayers [17,18].

Such disassociation depends on the montmorillonite concentration, and on the nature of the
cations in the interlayer space [19]. As a rule, the higher the cationic charge is, the larger the particle
size are.

In the case of Na*-Montmorillonite, when water is added to powder, Na* ions hydrate; in such a
case, a huge number of H20 molecules penetrate within the interlayer space; due to such a
penetration, the montmorillonite crystalline structure expands along a direction which is
perpendicular to the layers.

In the case of Ca*-Montmorillonite, instead, when water is added to powder, the Ca? ions
remain within the space between the layers and on the hydroxyl sites located within the layers. In
order to increase the montmorillonite exfoliation process in solution, ultrasonication is often used
[20-23].

Another peculiar characteristic of montmorillonite is thixotropy, that is, that peculiar
characteristic of a few clays to give rise, when they are dispersed in a certain aqueous solution with
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appropriate concentration to colloidal suspensions, which remain in the liquid state (sol) if stirred;
however, when at rest, they take on a certain consistency and viscosity (gel).

SWELLING IN WATER

el

MONTMORILLONITE

Figure 3. Swelling of montmorillonite in water [19].
Other important physical properties of montmorillonite are reported in Table 2 [4].

Table 2. Physical properties of montmorillonite.

Property Name Specific Surface (m?*/g)
Density 2-3 g/cm? (measured)
Molecular weight 36,031 g/mol
Crystal system Monoclinic
Hardness 1-2 on Mohs scale
Transparency Translucent
Color White, green, yellow, pink, red

In addition, among other functional properties of montmorillonite, one can mention electrical
conductivity (mS/m), whose value, being this clay characterized by an intrinsic porosity, depends on
the conductivity of the fluid that passes through these pores [24-26]. Furthermore, as far as thermal
properties are concerned, montmorillonite is a good thermal insulator. As far as the water absorption
capacity, this feature is very important for these natural clays. In fact, clays can absorb or desorb
water as a function of changes in the moisture content: As above reported, when H20 molecules are
absorbed, they fill the space between the various layers [27]. Montmorillonite has excellent water
absorption properties; however, the interaction between the water molecules and montmorillonite
can cause swelling. The absorption of water molecules and the swelling of montmorillonite leads to
the formation of hydrated states and can give rose to hysteresis phenomena. Ionic migration towards
the central plane between the layers, determines the phenomenon of montmorillonite swelling [28].
The montmorillonite swelling and hydration processes play a key role for a wide variety of
engineering applications. Moreover, the anisotropy of a wide class of clay minerals is reflected in a
wide variable range of mechanical properties. The structure of hydrated Na-montmorillonite is
shown in Figure 3. Molecular Dynamic (MD) simulations performed by Zheng and A. Zaoui [29]
showed that the elastic constants of dried and hydrated Na-MNT are different. The anisotropy of Na-
montmorillonite can generate great differences in the values of elastic constants, bulk, and shear
modulus, and Young’s modulus. These mechanical quantities decrease with increasing hydration.

Montmorillonite is used as both silico-aluminate precursor to be subjected to alkaline activation
for the production of geopolymers and as nanofiller for the production of nanocomposite materials
used in the food and biomedical fields with high antibacterial properties. In addition, they can be
used as adsorbent materials and as catalysts in green chemistry. Recent researches employ the self-
assembling methods between supramolecular objects to fabricate innovative well-defined
nanomaterials that link soft matter approaches to hard matter components. For example, the soft-
templated mesoporous nanomaterials allow to construct nanomaterials with controllable structure
and properties, and require the employment of techniques to simultaneously detect the structure—
structure re-organization and dynamics at the nanoscale [30-34]. In the present work, we have not
considered the acid activation process of montmorillonite. In this experimental work, FTIR and
Raman investigations on montmorillonite water mixtures as a function of time are carried out in
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order to follow the montmorillonite dehydration process, as well as to characterize the process of
montmorillonite layer self-assembly.

2. Materials and Methods

Pure powder montmorillonite purchased from Merck (Milano, Italy, surface area 250 m?/g) and
double distilled water were employed to prepare the samples. Three samples of hydrated
montmorillonite were prepared by weight at three concentration values: i) 20 wt% of montmorillonite
and 80 wt% of water; ii) 25 wt% of montmorillonite and 75 wt% of water; and 35 wt% of
montmorillonite and 65 wt% of water. The samples were then mixed and then treated in order to get
a Imm thick layer of hydrated montmorillonite.

Fourier Transform Infrared (FTIR, Bruker Optics, Ettlingen, Germany) spectroscopy allows us
to characterize the molecule rotational and vibrational motions [35-40]. Such a spectroscopic
technique explores 14000-10 cm™ range of the e-m spectrum, which encompasses the Near-IR (NIR)
range (14000-4000 cm™), the Mid-IR (MIR) range (4000400 cm™), and the Far- IR (400-10 cm™). FTIR
is, in some regards, a complementary technique in respect to other techniques such as Raman and
inelastic neutron spectroscopies and density function simulations [28,41-48]. In the present study,
the FTIR study was carried out in the range 4004000 cm™ with a spectral resolution of 4 cm™.

Furthermore, Raman spectra were registered by the spectrometer BRAVO (Bruker Optics),
operating in the 450-3200 cm™ range. The source was constituted by two lasers working at the
wavelength of 785 nm and 1064 nm. The explored spectral range was 300-3200 cm™. The spot size
was 10-15 micron at 10x lens.

3. Analysis and Discussion

In Table 3, the FTIR spectral features of the hydroxyl groups associated with octahedral cations,
quartz, silicates, and water are listed. The most intense bands are at 1035 cm™ (stretching in the Si-O
plane) and at 529 cm™ (Si-O bending vibration). The vibration at 1113 cm™ represents the stretching
out of the Si-O plane. The wide bands at 3440 and 1639 cm™ represent the stretching and bending
vibrations of the OH water molecules.

Table 3. FTIR band assignments for montmorillonite clay.

Wavenumber (cm™) Assignments
3697 O-H stretching
3623 O-H stretching
3440 O-H stretching, hydration
1639 O-H bending, hydration
1113 Si-O stretching, out-of-plane
1035 Si-O stretching, in-plane
915 A]AIOH bending
793 Tridymite (platy forms)
692 SiO2 (Quartz)
529 Si-O bending

The FTIR spectrum of pure montmorillonite (Figure 4) shows bands located at 3697 and 3623
cm™, which are attributed to the OH groups coordinated with the octahedral cations, including the
vibration at 3623 cm™!, which is due to the OH group bound with A3 cations.
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Figure 4. FTIR spectrum of pure montmorillonite showing the characteristic bands and vibration

frequencies.

The 3623 cm™ band indicates the substitution of octahedral Al** by Fe? or Mg?* cations. As far as
the hydrated samples are concerned, in the present work we address the attention to the OH
stretching band, which interests the frequency range of 2700-3900 cm™. In particular, the FTIR spectra
are observed as a function of time (Figure 5), and then deconvoluted into Gaussian components;
finally, their time dependence is discussed [49-57]. For a comparison, the spectral profiles were
normalized. It should be noticed that a typical FTIR spectrum is characterized by two major bands;
by lowering temperature, the low-frequency band, centered at 3200 cm™, becomes more prominent
in respect to the high frequency peak at 3400 cm™, while the total spectrum shifts towards lower
frequencies; at the same time, in presence of a dehydration process, it is expected that at first the
water open contribution, corresponding to bulk water decreases, whereas the so called water closed
contribution, connected with bound water persists for a longer time [58-62]. However, it should be
noticed that the spectrum could be deconvoluted into five Gaussians centered at 3050, 3200, 3400,
3500, and 3650 cm™. However, in the present study, we will adopt a two-state model [63-66]. To
describe the structure and thermodynamic properties of liquid water within the montmorillonite
matrix, we adopt the so-called two-state model [67,68], which assumes two different states of
intermolecular bonding: One is an ice-like state where water molecules are more ordered, and
another one is a more densely packed arrangement where hydrogen bonds are distorted [69-71].
Here, we apply the two-state model and we partition the H.O molecules into: i) H20 molecules with
two OH groups both hydrogen-bonded to a tetrahedral network, and ii) H2O molecules whose
hydrogen bond is broken or weakened by distortion.
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Figure 5. FTIR spectra of montmorillonite-water mixtures, for the concentration of 25 wt% of
montmorillonite; and 75 wt% of water, in the 400 < Aw <4000 cm™ spectral range vs. time.

Before the analysis, spectra of pure montmorillonite were subtracted from the spectra of
hydrated montmorillonite. Therefore, considering the spectra of the O-H stretching band for
montmorillonite-water mixtures at different times, it is possible to decompose the spectra into a
‘closed’ and an ‘open’ contribution; the open contribution (~3200 cm™?) is attributed to the O-H
vibrations in tetrabonded H20O molecules, while the closed contribution (~3400cm™!) can be
attributed to the O-H vibration of H2O molecules with a not fully developed hydrogen bond. Figure
6 shows the decomposition of the intramolecular contribution into a Gaussian band corresponding
to “open” water and a Gaussian band corresponding to “closed” water.
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Figure 6. Decomposition of the intramolecular contribution into a Gaussian band corresponding to
“open” water (blue dots) and a Gaussian band corresponding to “closed” water (red points).
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Figure 7 reports the behavior of the weights of the open contribution as a function of time for a
concentration value of: a) 20 wt% of montmorillonite and 80 wt% of water; b) 25 wt% of
montmorillonite; and 75 wt% of water; and c) 35 wt% of montmorillonite and 65 wt% of water. Figure
7d) shows the data obtained starting from the three different concentration values, scaled along the
time axis. As it can be seen, the data arrange along the same trend. What emerges is that while the
total water contribution decreases in time with a characteristic time of 1093 sec, determined by the
inflection point of the fitting curve, the relative weight of the open contribution decreases faster with
a characteristic time of 734 sec; in the meantime, the relative weight of the closed contribution, in
respect to the open contribution, increases.
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Figure 7. Behavior of the weights of the open contribution as a function of time for a concentration
value of: (a) 20 wt% of montmorillonite and 80 wt% of water; (b) 25 wt% of montmorillonite; and 75
wt% of water; and (c) 35 wt% of montmorillonite and 65 wt% of water; finally, (d) data obtained
starting from the three different concentration values, scaled along the time axis; as it can be seen, the

data follow the same trend.

To characterize the montmorillonite-water interaction, an innovative wavelet cross correlation
technique has been employed [72-78]. In particular, such a method allows us to identify the degree
of similarity between two individual spectra. Furthermore, this method has been employed in
different scientific domains, like physics, mathematics, climate, geoscience, and engineering science
[79-88]. The wavelet cross-correlation coefficient, ryys, takes into account the two wavelet
transforms, w;(a,t) and w,(a, 1), of the considered spectra and the two wavelet spectra S;(a) and
Sy(a) [89-99]. More precisely, a wavelet transform wt(a, t) is the inner product of the function f(x)
with translated and scaled mother wavelets :
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1
w(a,7) =~ B fOOY™|x — ] dx; (1)

where a denotes the scale parameter (a > 0), t represents the shift parameter, f(x) is the one-
dimensional function, * characterizes the complex conjugate, and 1 is the mother wavelet:

Yx—7)
Yor = — )
by these expressions, one defines the wavelet spectrum S(a):
1
S(@) =_lw(a, 7)|?dx; (3)

Finally, one determines the wavelet cross-correlation coefficient, ryy,:
[ wi(a, T)w;(a,7)dt

T S s @ @

In this work we choose as reference wavelet spectrum the first spectrum at time 0 s. Figure 8
reports the evaluated wavelet cross-correlation coefficient, rxyr, as a function of time for the
concentration of 25 wt% of montmorillonite; and 75 wt% of water [100-105]. It clearly emerges from
the figure that the wavelet cross-correlation coefficient ryyr decreases as a function of time

following a decreasing sigmoid behavior whose inflection point abscissa is in excellent agreement
with the value extracted from the behavior of the open contribution weight as a function of time (see
Figure 7).

0.0..|.|.|.|.J,JJ|.|.|
0 200 400 600 800 1000 1200 1400 1600 1800

time (sec)

Figure 8. Wavelet cross-correlation coefficient, rxyr as a function of time for the concentration of 25
wt% of montmorillonite; and 75 wt% of water.

As far as the Raman measurements are concerned, the spectral features of pure montmorillonite
clay are reported in Table 4. The assignments agree with those reported in [106]. In montmorillonite,
the central octahedral atom substitution can be inferred from the spectral region of 785-915 cm™; the
AIMgOH spectral band is located at 840 cm™, the AlFeOH spectral band is located at 890 cm™, and
the AIAIOH spectral band is located at 915 cm™1.

Table 4. Raman band assignments for montmorillonite clay.

3620 cm™ v(OH) structural OH groups
1110 cm™! v(SiO) asymmetric mode of SiOs tetrahedron
915 cm™ d(OH) bonded with octahedral cations; AIOH; wagging mode
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840 cm™  d(OH) bonded with octahedral cations; MgAIOH; wagging mode
785 cm™ d(OH) bonded with octahedral cations; AIOH; wagging mode
710 cm™! 0(SiO) symmetric mode (A1) of SiOs tetrahedron

430 cm™! d(OH) libration of OH

Before the analysis, spectra of pure montmorillonite were subtracted from the spectra of
hydrated. Figure 9 reports, for the concentration value of 25 wt% of montmorillonite and 75 wt% of
water, the Raman OH stretching contribution as a function time, while in the insert, the behavior of
the weights of the water open contribution as a function of time is reported. In agreement with FTIR
data, while the total water contribution decreases as a function of time, the relative weight of the open
contribution decreases faster; in the meantime, the relative weight of the closed contribution, in
respect to the open contribution, increases. Furthermore, the inflection point for Raman data
coincides with that obtained for the same concentration value with FTIR data.

0.40
| | —t=0sec g os
B t=500 sec [,
| t=950 sec 5 »
" —— t=1600 sec 2%
0.30 o
i §01 b
025 | E
Eoolo o ..., @
- & 0 200 400 600 800 100012001400 16001800
0.20 time (sec)

0.15

Raman Intensity (a.u.)

0.10
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0.00 —
3100 3200 3300 3400 3500 3600 3700 3800

wavenumber (cm™)

Figure 9. Raman OH stretching contribution as a function time for the concentration value of 25 wt%
of montmorillonite and 75 wt% of water. In the insert, the behavior of the weights of the water open
contribution vs. time is reported.

These behaviors are due to the global decrease of the water content in the montmorillonite-water
mixtures, and to the fact that while the tetrahedral contribution connected with free water decreases
faster in respect to the closed contribution, being this latter connected to water bonded to the
montmorillonite surface.

4. Conclusions

FTIR and Raman data have been collected for montmorillonite-water mixtures, at a starting
weight composition (wt%) of 20%-80%, 25%-75%, and 35%-65%, until the dehydrated state where
the samples appear as a homogeneous rigid layer of clay. To get some insight into the water hydrogen
bond network in the presence of montmorillonite, FTIR and Raman spectra have been analyzed
following two alternative approaches. In particular, the intramolecular OH stretching mode in the
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frequency range of 2700-3900 cm™ has been deconvoluted into two Gaussian bands, while the same
spectral contributions were analyzed by means of a wavelet cross-correlation approach. The two
procedures suggest that the total water contribution decreases in time, with a characteristic time of
1093 sec at room temperature. The percentage of the open water contribution decreases in time faster,
whereas the percentage of the closed water contribution, in respect to the open contribution,
increases, so indicating that a residual water content, characterized by a higher structural disorder,
rests entrapped in the montmorillonite layer structures for a longer time, promoting the self-assembly
of montmorillonite layers.
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