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Abstract: A modified method of interpreting a heat flux differential scanning calorimetry records
in pore structure determination is presented. The method consists of determining the true phase
transition energy distribution due to the melting of water during a differential scanning calorimetry
(DSC) heating run. A set of original apparatus functions was developed to approximate the recorded
calorimetric signals to the actual processes of the water phase transition at a given temperature. The
validity of the proposed calorimetric curves-based algorithm was demonstrated through tests on a
cement mortar sample. The correct analysis required taking into account both the thermal inertia
of the calorimeter and the thermal effects that are associated with water transitions over the fairly
narrow temperature ranges close to 0 °C. When evaluating energy distribution without taking the
shifts of the proposed modified algorithm into account, the volume of the pores with radii bigger than
20 nm was greatly overestimated, while that of the smaller pores (r, <20 nm) was underestimated,
in some cases by approximately 70%.
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1. Introduction

Water phase transition in the mortar pore space has long been in the scope of interest and has
been investigated by using numerous methods. Differential scanning calorimetry (DSC) seems to be a
particularly well-suited technique for this purpose. Thermoporometry through the use of the DSC has
been widely applied to study the influence of curing conditions [1-3], admixtures [4], additives [5] and
the types of cement [6] that are used on the freezing process in cement-based materials. Thermograms
and the latent heat of fusion provide information for calculating the content of ice at specific temperatures,
the volume of ice in pores, and pore size distribution (only those filled with water). By investigating the
amount of heat that is released/supplied to the system at a given temperature, it is possible to determine
the pore size distribution, especially over the range between 2 and 50 nm. The theoretical principles of
thermoporometry were thoroughly described by Brun et al. [7].

Between the liquid and solid phases in the pore space, there is a curved interphase. The curvature
of the meniscus reduces the free energy of the liquid phase and consequently lowers the temperature
of the phase transition. The relationship between the phase transition temperature and the radius of
the pore with the trapped liquid is described by Equation (1):
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where r is the curvature of the solid-liquid interface; T is the freezing temperature of the bulk liquid;
K, T is the pore liquid phase transition temperature; K, M is the molar mass of the liquid, kg/mol; AHys
is the heat of fusion, J/mol; and pj is the density of the liquid, kg/m3.

The known values of surface tension and absolute free entropy allow for the obtainment of
the relation between the pore radius and the phase transition temperature depression. The task
of determining such a relation on the basis of available data for particular physical quantities was
undertaken by Ishikiriyama [8-10], Brun et al. [7], Fagerlund [11], and Landry [12].

Thermoporometry, similarly to other pore space research methods, has its limitations. The
presence of curved gas—ice and gas-liquid interphases affects the recorded thermograms [13,14] and
their interpretation. The time and manner of soaking, as well as the occurrence of hydrophobic groups
in investigated materials, may affect the degree of pore filling [15]. In thermoporometry, the pore space
needs to be fully saturated for only a water—ice interface to occur. The most common liquid that is used
in this method is distilled water. Compared to other liquids, e.g., benzene [16], it has a relatively high
heat of fusion that positively influences the relation of the recorded signal to the “apparatus noise.”
It may be impossible to amplify the recorded signal with respect to the baseline. This problem can
be solved with the use a derivative scanning calorimetry (DeSC). Derivative scanning calorimeters
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allow for direct access to minor thermal events that are hidden in the signal-to noise-ratio of classical
DSCs [17] due to the special design of pans and the generation of the temperature difference between
the cells.

Ata fixed scanning rate of calorimetric tests, the signals recorded lag behind the actual temperatures
at which the processes take place. The discrepancy between the temperature inside the sample and the
temperature sensor increases with an increase in the scanning rate [12,18]. When thermoporometry
based on these signals is used to calculate the pore radius distribution for ice melting within the pore
space, and the delays due to measuring system thermal inertia can significantly affect the results.

The influence of inertia can be reduced by lowering the cooling or heating rate. However, even at
a small scanning rate, there is always a certain temperature shift of the recorded signals in relation to
the temperatures at which the exo- or endothermic processes occur. Another approach to eliminate
the influence of thermal inertia on the temperature of recorded effects is the quasi-isothermal mode
(QI-MDSC) in differential scanning calorimetry [19], which allows for the assignment of the obtained
results to temperatures. This method is able to handle samples of the order of milligrams in which
temperature gradients are small. It is impossible to prepare small representative samples for the
examination of macroscopically heterogeneous materials such as cement mortars, concrete, and rock by
QI-MDSC. In the case of measuring instruments in which there is a significant difference between the
temperature of the external casing (which is responsible for maintaining the programmed temperature)
and the central part of the calorimeter in which the samples (such as in the tests described in this paper)
are placed, the use of this method would require a considerable extension of the time of the experiment.

An important element that is necessary to make corrections that are related to the thermal inertia
of the measuring system when using constant heating or cooling rates is the knowledge of the so-called
apparatus function a(E; j.,¢). In calorimetric tests, the apparatus function allows for the determination
of the value of the recorded signal over designated temperature ranges, when the signal is triggered
by a single thermal pulse, which is understood as the amount of energy that is released or absorbed
by the sample within a very narrow temperature range. Koztowski [20,21] discussed the application
of apparatus functions in the study of the phase transition of water in water—clay systems. In his
works, a single apparatus function was used, regardless of the energy pulse value. The total energy
of phase transition was broken down into equal components, and appropriate combinations of these
components were analyzed, in particular temperature ranges. The result of the calculations was the
energy distribution for which the difference between the experimentally determined curve and the
curve that was obtained from the convolution of energy distribution with the apparatus function
was as small as possible. The idea of Koztowski’s solution was used to construct modified algorithm.
In studies of calorimetric phase transitions of water confined in the pore space of materials such as
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concrete, mortar, or paste, the effects to thermal inertia of the measuring system have been omitted.
Hence, the proposal of the algorithm based on consecutive approximations in which a separate
apparatus function is determined for each thermal pulse.

2. Apparatus Function

The experimental determination of calorimetric curves is possible through the use of a material in
which thermal effects that result from water melting inside the pore space occur within a very narrow
temperature range. When this condition is met, the recorded signal is assumed to originate from a
single thermal pulse. Because of the spontaneous, random nature of the initial stage of water freezing
in the material and the temperature at which the process begins, the signals that are recorded during
the ice melting can be used to analyze the volume and dimensions of the pores. In addition, it is
known that there may be pore groups with dimensions below 50 nm in which water does not freeze
according to the Gibbs-Thomson rule, though spontaneous nucleation is already complete [22]. Only
by examining the melting process can the size of the ice-filled pores be correctly assessed. Here, the
apparatus functions were experimentally determined for five porous ceramic materials in which more
than 97% of the pore volume was made up of pores with dimensions above 0.1 pm (using mercury
intrusion porosimetry MIP). Figure 1 shows the values of the recorded thermal effects. The tests
were carried out on cylindrical samples (913.5 X 70 mm), and which were vacuum saturated with
water. The scanning rate was 0.09 C/min. Ice in the pores of the samples melted in a relatively narrow
temperature range close to zero degrees Celsius. Therefore, it was possible to assume that the observed
heat fluxes were the result of transition processes, which can be referred to as single thermal pulses.
In the presented analyses, the temperature range corresponding to the hypothetical “single thermal
pulse” was assumed to be 0.05 °C.
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Figure 1. Plots of thermal capacity difference among differential scanning calorimetry (DSC)
measurement targets for five samples.

The curves of the thermal capacity ¢(T) (Figure 1) were divided into 0.05 °C-wide segments,
and the values were determined in the center of each segment/interval ¢;. The ¢(T) curves provided
apparatus functions according to the following equation:
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where g; is the value of apparatus function in the i-th interval,

n

Y ai(E) =1 @)

i=1

In this way, five apparatus functions were obtained from the ¢(T) curves for SAMPLES 1-5,
corresponding to their total phase transition energies Eg;m (Table 1).

Table 1. Total energy of phase transition.

Esum—Total Energy of Phase

Sample no. Transition Designation
1 193.8] SAMPLE 1
2 586.5] SAMPLE 2
3 595] SAMPLE 3
4 1039] SAMPLE 4
5 1195] SAMPLE 5

For the calculations presented for cement mortar, the basic issue is the knowledge of apparatus
functions that are generated by single thermal pulses with a total energy amount of less than 193.8 |
(Figure 2).
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Figure 2. Relationship between the peak maximum and end-of-effects temperature against the total
energy of a single thermal pulse.

In order to obtain any apparatus function (corresponding to the thermal pulse of Eg,;; of less than
193.8 ]) the curve of thermal capacity ¢1(T) for SAMPLE 1 (Figure 1) was transformed according to the
equation below.

@(T) = Ap1(BT) @)

where A is the variable responsible for the vertical translation of apparatus function, B is the variable
that is responsible for the horizontal translation of apparatus function, and T is temperature.

With the known plot ¢(T) for the given pulse energy Es,,, it is possible to determine the apparatus
function in accordance with Equation (1).

Variable A is the ratio of the maximum value on the ¢(T) plot that is triggered by a given heat
pulse to the maximum signal value ¢1(T1 max) for SAMPLE 1 (Figure 1). To determine the Variable
A equation, the values of Variable A were determined for ceramic SAMPLES 1-5, and the quadratic
trendline was produced (Figure 3).
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Figure 3. Variable A variation against total thermal pulse energy.

Variable B value is the ratio of the maximum peak temperature on the ¢(T) graph, triggered by a
given thermal pulse, to the maximum peak temperature T1y,x of SAMPLE 1 (Figure 1). The procedure
was the same as for Variable A; the values of Variable B were determined for ceramic SAMPLES 1-5
(points B1—Bs in Figure 4), and the quadratic trend line was produced for them (Figure 4).
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Figure 4. Variable B variation against total thermal pulse energy.

The quadratic equations were used for the A and B trendline formulas. The authors of this
paper are aware that for the extrapolated energy area from 0 to 193.8 ], there may be another relation
for Variables A and B. Nevertheless, at that stage of analysis, the formulas above were used in
further calculations.

The selection of the apparatus function depends not only on the amount of energy of the given
thermal impulse for which the function is defined but also on the values of neighboring thermal
impulses and the "distance” between them. Whether the thermal impulses influence each other depends
on their position with respect to each other on along the temperature axis, which is expressed as ATj;g.
In the case of very close location of two peaks (ATsig ~ 0), the recorded effect is the same as in the case
of a single peak whose apparatus function is selected on the basis of their cumulative energy (Figure 5).
Thus, when determining the apparatus function of a given thermal pulse, one should take into account
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not only the amount of energy of this peak but also a certain percentage of the value of neighboring
peaks, where this value depends on ATj;g.

Two not affecting each other Two affecting each other
pulse-like heat events pulse-like heat events
Pulse-like heat
eventno. 1 - - =
Pulse-like heat
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Figure 5. Signals recorded for thermal pulses far away from each other and when the pulses
nearly overlap.

Note that the assumed width of the AT intervals affects the value of energy, in particular the
intervals of the energy distribution plot, and thus influences both the apparatus function that is
assigned to them and the resolution of the calculations (Figure 6).
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Figure 6. Influence of temperature interval widths on energy value, (a) 0.05 K wide interval, (b) 0.1 K
wide interval.

The following assumptions related to the apparatus function were made:
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- Temperature functions have the same shape regardless of the temperature at which the thermal
pulse is located (i.e., the only variable on the basis of which the apparatus function is selected is the
value of the thermal pulse expressed in joules of energy).

- Apparatus functions that are obtained on the basis of ceramic sample tests may be used for
testing other materials (thermal conductivity of the skeleton of the sample is negligible).

3. Algorithm Based on the Thermal Inertia of the Measurement System

Since the calorimetric curve depends on the value of the thermal pulse, which is unknown at the
beginning of calculations, an original algorithm that involves approximations of the true distribution
of thermal pulses and the corresponding apparatus functions was used.

The first step was to divide the recorded signal into segments 0.05 K in width and calculate the
amount of energy in each segment (E; jeqt-cvent) according to Figure 7. As a result, a series of single
thermal pulses with (E; jeat-event) that were assigned to specific temperatures (initial energy distribution)
was obtained.

Ei,heat—event = (P(Ti)AT ®)

E

= (T )AT

i, heat-event

t AT=0.05K

Figure 7. Schematic of the breakdown of the thermal capacity (¢(T)) signal into segments 0.05 K in

wide with the amount of energy in each segment E; jent-cvent-

Apparatus functions a(E; j,.;;) were determined for each single pulse (Figure 8) according to
Equation (4). Knowing that the selection of the apparatus function for a given pulse (E; jet-event)
depends on the values of neighboring pulses, the energy on the basis of which the apparatus function
was determined is the sum of energies of the i-th thermal pulse, its preceding pulse, and the one that
followed, according to Equation (6):

i+1
Ei,hezzt = Z Ej,heat—event (6)
j=i-1

Then, on the basis of the initial energy distribution, the shifted energy distribution was calculated
from Equation (7), as shown in Figure 9.

n

Ej,shift = Z Ei,heat—eventaj(Ei,heat) (7)
i=1
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Figure 8. Apparatus function for the single thermal pulse E; heat-event-
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Figure 9. Shifted energy distribution calculated on the basis of thermal pulse values and the
corresponding apparatus functions.

Finally, the differences between the initial and the shifted energy distributions were determined
(Figure 10).
AE; = Ei,heat—event - Ei,shift (8)
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Figure 10. Energy difference between the energy distribution graph and the shifted energy
distribution graph.

With the energy differences and the known the shifted energy distribution, it was possible to,
respectively, increase or decrease individual heat pulses according to Equation (9) and to obtain the
first approximation of the energy distribution (Figure 11).
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Figure 11. Schematic of heat pulse segments to be increased or decreased depending on the energy
differences data.
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In subsequent cycles, E; 5r0x Was used to compute the shifted energy distribution by comparing it
to the initial energy distribution.

With consecutive cycles, the values of E; 5yr,x became closer to the true values, and, in this way,
the effect of the thermal inertia of the measurement system could be eliminated and the effect related
to water melting at individual temperatures could be separated.

4. Calculations

Appendix A describes the procedure for the phase change energy calculation from a
calorimetric signal.

When the spontaneous nucleation ends, the freezing process depends on the pore neck sizes [14].
Melting provides information about the pore internal sizes. The studies of Homeshaw et al. [23] and
Kjeldsen et al. [18] showed that heating thermograms ensure a better assessment of the pore size
distribution than cooling curves. In this paper, only some of the thermal effects that are associated
with ice melting were used to investigate the pore space. To calculate the volume of pores in which ice
melts at a given temperature, the latent heat L(T) (10) and ice density pj, (11) must be known. In this
paper, the values given by Sun and Scherer [22] for ice melting in a cylindrical pore were used:

L(T) ~ 333.8 +1.797-(T — Tp) (10)

Pice ~ 0.9167 —2.053-10~*-(T — Ty) — 1.357-10~0-(T — Ty ) (11)

where T is pore liquid phase transition temperature and K, T is the freezing temperature of the
bulk liquid.

The mass of ice melting at a given temperature interval Am(T) can be obtained from the following
equation:

E; aprox
Am(T) = — (12)

D=1

where L(T}) is the latent heat value at temperature T;.
The volume of the melting ice at a given temperature was calculated from the formula:

Am(T

avy(r) = A0 (13)
Pice

The equations above, when using the known values of both the exact phase transition temperature
and the amount of energy, enabled the determination of the pore size distribution. In this paper,
the equation proposed by Brun et al. [7] for ice melting (14) in a hypothetical cylindrical pore was used:

. 323
P T-T,

+0.68 (nm) (14)

Water close to pore walls does not freeze. The thickness of molecular layer that does not solidify
was assumed to be equal 6 = 0.8 nm. The volume of the pore was calculated from Equation (15):

AVy(T) = AV,(T)( )n (15)

p
rp—0
For cylindrical pores, n = 2.

5. Sample Preparation and Experiment

The application of the algorithm presented above was shown by using a mortar sample that
was made with cement CEM II/B-V 32,5 [24] (w/c = 0.53). The fresh mortar mixture was degassed.
A sample of fresh mortar was placed in a mold with dimensions of 15 x 15 x 15 cm. After removing the
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mold, the sample was stored in water for seven days and under dry conditions (temperature 20 + 2 °C,
relative humidity 50 + 5%) for 80 days. Then, the DSC sample (¢13.5 X 70 mm) was obtained by using
core drilling. Prior to performing the test, the specimen was dried at 105 °C and vacuum saturated with
degassed distilled water. The measurement was performed by using a differential scanning calorimeter
(model BT2.15CS SETARAM). The scanning program included cooling the sample from +20 to —80 °C,
allowing it to stabilize at —80 °C for 30 minutes, and the reheating it to +20 °C. The calorimetric block
was cooled with liquid nitrogen. The rate of cooling and heating was exactly 0.09 °C/min (5.4 °C/h).
The sample was weighed and wrapped in Teflon foil before being placed in the calorimeter chamber to
avoid evaporation. After completing the measurement, the samples was reweighed.

6. Results

Figure 12 shows the change in energy distribution when the algorithm (Section 3), which took
the thermal inertia of the measuring system into account, was used. Even small energy shifts over
the temperature range from —2 to 0 °C affected the radius to which a given amount of energy was
assigned and hence, the calculated pore size distributions. Note that a portion of the energy was still
assigned to temperatures greater than 0 °C.

w
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Energy distribution (J)
= N w
\ |
S
-~ — |

// \

-25 -20 -15 -10 -5 0 5
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o

o
S

before application of the algorithm
after application of the algorithm/100 cycles

Figure 12. Distribution of phase transition energy of the CEMII/B-V cement mortar, w/c = 0.53.

Assigning the recorded signals to lower temperatures caused the corresponding amounts of
energy to be divided by the lower value of the latent heat, and, thus, the calculations gave a higher total
mass of ice. On basis of the initial energy distribution, the mass of ice equaled 1.08 g and increased to
1.09 g after the application of the algorithm.

The second factor that influenced the difference between the total volume of pores without
accounting for thermal inertia of the measuring system and after applying the algorithm was the
assumed volume of a film of non-freezable water, which was strongly adsorbed on pore wall surfaces.
The relative portion of unfrozen water increased with the decrease in pore size (Figure 13).

Thus, the calculated pore volume increased proportionally to the increase in the amount of
adsorbed water (Table 2). The example of the studied cement mortar showed that by taking the
apparatus function into account, the decrease in the calculated volume of pores that were larger than
20 nm nearly doubled (Figures 14 and 15).
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Figure 13. Pore size distribution that was obtained by thermoporometry from the phase transition
energy distribution with the use of the modified algorithm.

Table 2. Pore volume.

Pore Volume before Application

Pore Radius Pore Volume after Application of

of the Algorithm . 3,3
(nm) (cm/em?) the Algorithm (cm?/cm?)
1.48-2.5 0.00525 0.00763
2.5-3 0.00403 0.00537
34 0.00718 0.01051
4-6 0.01195 0.01946
6-10 0.01667 0.02774
10-20 0.01859 0.02903
>20 0.07114 0.04597
_ 0.0s8
‘g 0.07
o
= 0.06
5 0.05
@
£ 0.04
= 0.03
°
> 0.02
2
© 0.01
-

1.48-2.5 2.5-3 3-4 4-6 6-10 10-20 >20
Pore radius (nm)

Figure 14. Pore size distribution that was obtained with thermoporometry on the basis of phase
transition energy distribution, without taking thermal inertia into account.
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Figure 15. Pore size distribution that was obtained by thermoporometry from the phase transition
energy distribution with the use of the modified algorithm. Running the proposed algorithm on the
obtained phase transition energies was paramount to correctly determine the pore size distribution
and, consequently, to predict the durability of materials. This knowledge provides an explanation of
material properties, including the amount of capillary water in a unit of time, strength, and resistance
to an aggressive environment.

7. Conclusions

If the process of the reasoning underlying the calculation procedure with the algorithm that
accounts for the thermal inertia of the measurement system is correct, the size of pores and their
distribution in cement mortar can be described with much greater precision.

In the case of the tested CEMII/B-V mortar (w/c = 0.53), 38.6% of the total ice-water energy of
phase transition Eg,,;; was recorded over the temperature range above 0 °C. This is obviously a result
that diverges from physical knowledge. When the energy distribution was used without taking the
proposed modified algorithm into account, the volume of the relatively largest pores was greatly
overestimated, while that of the smaller pores (r, < 20 nm) was underestimated, in some cases by 70%.

The proposed calculation formula can be used to analyze pore structure in other capillary and
porous materials.
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Appendix A

Figure Al shows the heat capacity @(T) diagram that was obtained as a result of the
calorimetric measurements.

To separate part of the signal that was related only to the phase transition, a ¢,(T) reference
curve was constructed according to the procedure described below. Separately produced ¢,(T) curves
for cooling and heating were used to plot the accumulated energy of the water—ice phase transition,
E3 coo1,a(T) (for cooling), and Ejp jeq: A (T) (for heating).

The algorithm for the ¢, (T) baseline:

In the first step, a reference straight line ¢y (T) was determined. It linked the ¢(T) values for the
freezing start temperature Tsn and the temperature of —50 °C.
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In the next step, the amounts of energy Eg .4,/(—50 °C) per the area between the ¢o(T) and ¢(T)
for the temperature range from the spontaneous nucleation onset Tsyy and —50 °C were calculated
from (A1).

—50
Eoo01( 50 °C) = fT ((T) - @o(T))dT (A1)

Then, the coefficients of the straight lines y, = apT + by and y; = 4T + b were found via the
interpolation of the ¢(T) curve for the section before the freezing onset and the section (—60 and —50
°C), respectively. These lines are shown in Figure A2. For the lines yp, y; and energy E ¢, the first
reference curve @1(T) had to be determined from the formulas:

®1(T) = a1(T)-T + by (T) (A2)

T (@(T) = o(T)AT  Egeonr = fy (@(T) = o(T))dT “

m(l) = = 500 T Eoco01(~50 °C) o (83)
oo [ (p(T) ~@o(T)AT  Eocwi - Ji. ((T) = po(T))dT "
1( ) B EO cool(_50 OC) : EO,cool(_50 OC) P ( )

80

40 TN /‘J4

Heat capacity (J/K)
o

N

-120
-80 -70 -60 -50 -40 -30 -20 -10 0 10

Temperature (°C)

Figure A1. Difference in heat capacity ¢(T) between the pan with the water saturated sample and the
pan with the dry sample of the CEM II/B-V mortar, w/c = 0.53.

50

N Ny =

;:a_;:;_/__ first linear baseline (po(T)I
20 | | |

60 50 40 30 20 10 T_0 10

Heat capacity {J/K)

Temperature (°C)

Figure A2. Heat capacity plot with marked lines yy,, y; and ¢ (T).
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For the thus constructed ¢1(T) curve, the amount of energy was calculated per the area between
the ¢1(T) curve and the heat capacity curve ¢(T) for the temperature interval in the Tsyy and —50 °C
range, according to Formula (A5).

—50
Exgoot( =50 °C) = fT ((T) - @1 (T))dT (A5)

Starting with the first step of the algorithm, the same procedure was repeated, but ¢1(T), not
@o(T), was taken as the reference curve. The reference curve was determined again, and ¢,(T) and the
related amount of energy E; .4,/(—50 °C) were obtained.

@2(T) = az(T)-T + ba(T) (A6)
o @) =@1(DNAT oo = fr (9(T) =1 (T))dT
a2(T) - El,cool(_SO C) & El,cool(_so C) ap (A7)
J@(T) = u(TNAT  Eggou— i (@(T) = p1(T))dT
bZ(T) - El,cool(_E’O C) " El,cool(_SO C) : (48)
—50
Ereoa(-50C) = [ (p(T) = p2(T))aT (A9)
Tsn

The phase transition energy for heating from —80 to +20 °C (Eg jiet) was determined in a similar
way. The difference was that the temperature of the beginning of the melting effects was assumed to
be —40 °C and not —50 °C. Two curves of accumulated phase transition energy Ej .,0/(T) and Ep jeq:(T)
were thus obtained, as shown in Figure A3.

The accumulated phase transition energy Ej c,0(T) and Ej jeq(T) were averaged according to

Formula (A10):
E2,cool(_50 OC) + Ezlhggt<_40 OC)

Esum - 5 (AlO)
50 T T T
| [ ' |
S |l B
| B TSR, oo B PP SIS e |
i B 3 1
B \ | | |
g \ LN | I
o 30 Fr———- e :————:‘——* + .| -
\ | |
-50° E -40°C
$ 20 Esum }Ez,cool( SDI C) : AY : : 2,heat( )
> - o —— A —— B
= : | I
—_ \ | | = |
g O S s B
\ ' | | | \
=1 ' | | |
SIS | N S B S
-60 -50 40 -30 -20 -10

Temperature (°C)

Figure A3. Schematic of determination of the total amount of phase transition energy.

The value of the calculated energy Es,;; was taken as the total amount of energy of the water
phase transition during heating or cooling.
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The plots of Ej ¢40/(T) and Ej .0¢(T) needed to be corrected |Egym — Ep ¢001(—=50 C)| following the

equations below:

) me @2(T))dT

E2,cool,A(T) = E2,cool |Esum + E2 cool( -50°C | E2 cool( 50 C) (All)
ot Jao(@(T) = pa(T)dT

Ep peat,s (T) = En peat (T) % |Esum + E2,0001(—50 °C)| (A12)

E2 heat( —40 C)

The plot of E jieqt A(T) was the basis for calculating the energy of the melting ice over individual

temperature intervals (0.05 K wide), and, in this way, the distribution of phase transition energy before
applying the algorithm (Figure 12) was obtained.
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