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Abstract: Flexible perovskite solar cells (PSCs) have received increasing attention in wearable and
portable devices over the past ten years. The low-temperature process of electron transport layer
plays a key role in fabricating flexible PSCs. In this paper, we improve the performance of flexible
PSCs by controlling the thermodynamic procedure in the low-temperature annealing process of
solution-processed TiO2 layers and modulating the precursor concentration of (6,6)-phenyl c61 butyric
acid methyl ester (PC61BM) deposited on fluorine-doped tin oxide (FTO)/TiO2 substrate. The results
show that slowing down evaporation rate of residual solvent and adopting PC61BM of appropriate
precursor concentration are confirmed to be effective methods to improve the performance of flexible
PSCs. We also demonstrate carbon electrode-based flexible PSCs. Our work expands the feasibility of
low temperature process for the development of flexible perovskite photodetectors and light-emitting
diodes, as well as flexible PSCs.

Keywords: perovskite solar cells; flexible; low-temperature annealing process; solution-processed
TiO2 electron transport layer

1. Introduction

Organometal halide perovskite solar cells (PSCs) have aroused great interest in academia and
industries [1–5]. The environmental issues concerning the footprint of PSC manufacturing processes
are also of great importance [6]. Flexible PSCs expand the feasibility for the application in wearable
and portable devices [7–10]. Recently, the power conversion efficiency (PCE) of flexible PSCs has
rocketed to 18.4% [10].

There are many papers on low fabrication oxide. For example, Wang et al. adopted
solution-processed amorphous WOX as electron selective layer for PSCs [1], and Eze et al. Fabricated
efficient planar PSCs using solution-processed amorphous WOX/fullerene C60 as electron extraction
layer [2]. In this paper, we use TiO2 as electron transport layer (ETL). However, the traditional TiO2
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ETL-based PSCs require high temperature sintering (>400 ◦C) [11–15], which exceeds the thermal
budget of flexible substrates such as FTO-coated polyethylene terephthalate (PET) (≤150 ◦C). Therefore,
low temperature process of TiO2 ETL has been intensively studied [16–20]. Yang et al. and Feleki
et al. demonstrated magnetron sputtering and electron beam to prepare highly dense TiO2 layer,
respectively [16,17]. A solution process was also reported to fabricate compact TiO2 ETL [18].

In 2019, based on solution process, Chu et al. studied the influence of treatment time of UV/O3

process following the annealing process of TiO2 film on a hotplate on the properties of TiO2 ETL
and discovered that 80 min-UV/O3-treating endowed the flexible PSCs with a best PCE of 7.33%
owing to UV/O3-induced removal of residual organic solvent as well as enhanced hydrophilicity and
conductivity of TiO2 films [19]. In the same year, You et al. investigated the effect of different solvent
used to re-disperse TiO2 nano-sol on the quality of solution-processed TiO2 ETL prior to the annealing
process of TiO2 film on a hotplate and demonstrated flexible PSCs of better PCE of 15.8% based on N,
N-dimethylformamide (DMF) solvent, which has high zeta potential and low surface tension [20].

In this paper, we prepare the nano TiO2 films with solution process and perform the annealing
process on a hotplate at low temperature (≤150 ◦C). We control the morphology of TiO2 ETL by
adjusting evaporating rate of the organic solvent in the annealing process on a hotplate, which leads to
the change of thermodynamic process in the growth and formation of TiO2 films. Furthermore, we
optimize the ETL with PC61BM of different precursor solution to reduce the defects on the surface
of TiO2 layer [21]. It is worth noting that all the exploring experiments are carried out on the rigid
substrates at first, and then we prepare the carbon electrode-based flexible PSCs based on the optimized
preparing process.

2. Experiments

2.1. Materials

FTO (7–8 Ω/square, Hunan Yiyang Xiangchen Tech Co., Ltd., Yiyang, China), low-temperature
TiO2 nanoparticle (LT-TiO2 NP) (Shanghai Mater Win New Materials Co., Ltd., Shanghai, China),
PC61BM (Xi’an Polyme Light Technology Corp., Xi’an, China), DMF (99.8%, Shanghai Mater Win New
Materials Co., Ltd., Shanghai, China), dimethyl sulfoxide (DMSO, 99.8%, Shanghai Mater Win New
Materials Co., Ltd., Shanghai, China), methyl ammoniur iodide (CH3NH3I, >99.5%, white powder in
appearance, Shanghai Mater Win New Materials Co., Ltd., Shanghai, China), lead(II) iodide (PbI2)
(99.99%, yellow crystalline powder in appearance, Xi’an Polyme Light Technology Corp., Xi’an, China),
2, 2′, 7, 7′-tetrakis-(N, N-dip-methoxyphenylamine)-9, 9′-spirobifluorene solution (Spiro-OMeTAD)
(≥99.5%, yellow solution in appearance, Xi’an Polyme Light Technology Corp., Xi’an, China).

2.2. Device Fabrication

2.2.1. Cleaning of FTO Substrate

First, the FTO conductive glass was cleaned with deionized water (Beijing Information Science
and Technology University, Beijing, China) and detergent with ultrasonic vibration cleaners (KQ-100E,
Skymen Cleaning Technology Shenzhen Co., Ltd., Shenzhen, China) for 20 min. Next, FTO was
cleaned with ethanol (Sinopharm Chemical Reagent Co., Ltd., Beijing, China) for 20 min. Then, FTO
was cleaned with a mixed solution of isopropyl alcohol (Sinopharm Chemical Reagent Co., Ltd.,
Beijing, China), acetone (Sinopharm Chemical Reagent Co., Ltd., Beijing, China) and deionized water
in a volume ratio of 1:1:1 for 20 min. Finally, the cleaned conductive glass was treated with UV light
cleaner (BZS250GF-TC, Shenzhen Huiwo Technology Co., Ltd., Shenzhen, China) for 15 min.

2.2.2. Formation of Electron Transport Layer

LT-TiO2 NP solution was deposited on the FTO substrate by spin-coating at 2000 rpm for 30 s and
then dried at 150 ◦C for 20 min on a hot plate to form a nano TiO2 layer.
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(1) Giving the heating mode, we determine three kinds of annealing procedures (Process 1):
(a) The annealing temperature was directly raised to 150 ◦C (Direct method); (b) The annealing
temperature was raised from room temperature to 150 ◦C at rate of 8 ◦C/min (Proportional method);
(c) The as-grown nano TiO2 layer had been delayed for one hour before the annealing temperature was
raised from room temperature to 150 ◦C at rate of 8 ◦C/min (Delayed method);

(2) Based on Process 1(c), we demonstrated an interface modifying procedure (Process 2):
Depositing PC61BM of different precursor concentration (5, 10, 15, 20, 25 mg/mL) on nano TiO2 layer
by spin-coating at 1500 rpm for 30 s. After the deposition, PC61BM was left in the ambient condition
for forty minutes to evaporate slowly with no annealing process. It is worth noting that the PC61BM
was dissolved in chlorobenzene (Shanghai Mater Win New Materials Co., Ltd., Shanghai, China).

2.2.3. Formation of Perovskite Light-absorption Layer

First, the PbI2 was fully dissolved in a mixed solvent of DMF and DMSO in the volume ratio of
0.95:0.05 by vigorous stirring to form 600 mg/mL precursor solution. The methyl ammonium was fully
dissolved in anhydrous isopropanol to form 70 mg/mL precursor solution. Then, the PbI2 precursor
solution was deposited on the PC61BM layer by spin-coating at 1500 rpm for 30 s. Immediately,
the CH3NH3I precursor solution was drop-cast on the as-grown PbI2 film at 1500 rpm for 30 s and
then dried at 150 ◦C for 20 min.

2.2.4. Formation of Hole Transport Layer

The hole transport layer was formed by spin-coating Spiro-OMeTAD on perovskite layer at
3000 rpm for 30 s. After the spin-coating, Spiro-OMeTAD was left in the ambient condition for 40 min
to evaporate slowly with no annealing process.

2.2.5. Formation of Counter Electrode

The soot from the burning candle was collected with an FTO glass substrate to form a sponge-like
carbon electrode, which was then pressed against the prepared hole transport layer [22].

2.3. Characterization

Field emission transmission electron microscope (FE-TEM) (Tecnai G2 F20, FEI, Hillsboro,
OR, USA), field emission scanning electron microscope (FE-SEM) (SU8020, Hitachi, Tokyo, Japan)
images were obtained for structural and morphological characterization of TiO2 films, PC61BM layers
and perovskite films. The current-voltage (J–V) curves were obtained under standard simulated
air-mass (AM) 1.5 sunlight generating from a solar simulator (Sol 3A, Oriel, Newport, RI, USA).
UV-vis absorption spectra were characterized by ultroviolet visible absorption spectrometer (Avantes,
Apeldoom, The Newtherlands). Photoluminescence (PL) spectrum was measured with PL testing
system (LabRAW HR800, HORIBA Jobin Yvon, Paris, France). All the characterization of devices was
performed in ambient atmosphere at room temperature.

3. Results and Discussion

In this paper, we investigate the effect of low temperature process of conventional TiO2-based
ETL on the performance of PSCs. Hence, we have characterized the structure of TiO2 nanoparticles
with TEM, as demonstrated in Figure 1, showing the average size of about 5 nm.
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Figure 1. Transmission electron microscope (TEM) images of TiO2 nanoparticles: (a) The low 
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Figure 1. Transmission electron microscope (TEM) images of TiO2 nanoparticles: (a) The low
magnification; (b) The high magnification.

Firstly, we investigate the influence of thermodynamic process on the growth and formation
of nano TiO2 films. The detailed information about experiments is shown in the second paragraph
of experimental Section 2.2.2. The SEM images are shown in Figure 2. The J–V curves of PSCs and
the corresponding data extracted from J–V curves are shown in Figure 3 and Table 1, respectively.

It is clearly observed from Figure 2a that there are large holes remained in nano TiO2 film prepared
with Direct method. Figure 2b shows that these holes locate at valleys of FTO where the surface
curvature changes greatly. Some voids can still be discovered from Figure 2c and d obtained from nano
TiO2 film prepared under Proportional method, however, they are smaller compared with Figure 2a,b.
Figure 2f shows the FTO is effectively covered by nano TiO2 film with few defects fabricated under
Delayed method. We can also observe that the nano TiO2 layer and FTO surface fit well with each
other, indicating the conformal growth of nano TiO2 on FTO substrate.
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Figure 2. Scanning electron microscope (SEM) images of nano TiO2 films using Process 1:
(a,c,e) The top-view images under Direct method, Proportional method, and Delayed method,
respectively; (b,d,f) The corresponding cross-sectional images. The meaning of Process 1, Direct
method, Proportional method and Delayed method is described in the second paragraph of experimental
Section 2.2.2.

We can conclude that the morphology of nano TiO2 film deposited on FTO substrate can be
controlled by optimizing annealing process and nano TiO2 film exhibits high quality when Delayed
method was introduced, which is ascribed to the slower evaporating rate of the residual solvent,
resulting in conformal covering of TiO2 over FTO substrate. Generally, films with fewer cracks and
defects endow the PSCs with better performance, which is also confirmed by reverse scanning J–V
curves of the devices in Figure 3 and data extracted from reverse scanning J–V curves in Table 1.Materials 2020, 13, x FOR PEER REVIEW 6 of 14 
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Figure 3. Reverse scanning J–V curves of PSCs based on Process 1. The letter Di, Pr, De represent films
prepared with Direct method, Proportional method, and Delayed method, respectively. The device
active area is 0.25 cm2 (0.5 cm × 0.5 cm). The meaning of Process 1, Direct method, Proportional method
and Delayed method is described in the second paragraph of experimental Section 2.2.2.
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Table 1. Data extracted from reverse scanning J–V curves of perovskite solar cells (PSCs) based on
Process 1. The letter Di, Pr, De represent films prepared with Direct method, Proportional method,
and Delayed method, respectively. The device active area is 0.25 cm2 (0.5 cm × 0.5 cm). The meaning
of Process 1, Direct method, Proportional method and Delayed method is described in the second
paragraph of experimental Section 2.2.2.

Samples PCE a (%) Voc
b (V) Jsc

c (mA/cm2) FF d

Di 0.26 0.55 1.94 0.27
Pr 0.11 0.47 0.93 0.25
De 0.96 0.66 4.82 0.30

Notes: a. PCE: power conversion efficiency; b. VOC: open-circuit voltage; c. JSC: short-circuit current; d. FF:
fill factor.

Secondly, as shown in Figure 2, the TiO2 nanoparticles are not connected tightly with each other,
which may lead to leakage of PSCs. Therefore, we studied the effect of PC61BM on the interface
between nano TiO2 layer and perovskite layer. The detailed information about experiments is shown
in the third paragraph of experimental Section 2.2.2. The SEM images are shown in Figure 4.
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Figure 4. SEM images of nano TiO2 layer under Process 2: (a,c,e,g,I,k) Represent 0, 5, 10, 15, 20,
25 mg/mL, respectively, the low magnification; (b,d,f,h,j,l) The corresponding high magnification.
The meaning of Process 2 is described in the third paragraph of experimental Section 2.2.2.

As shown in Figure 4d,f,h,j,l, it is clearly observed that there are some light islands distributed on
the dark substrate. We can determine that the light islands are peaks of nano TiO2 layer and the dark
substrate is PC61BM comparing with Figure 4b. From the magnified SEM images, we can conclude
that the islands disappear gradually with the concentration of PC61BM increasing from 5 to 25 mg/mL.
When the concentration of PC61BM is 5 mg/mL, the PC61BM just filled the valleys of nano TiO2 layers.
With the concentration of PC61BM increased to 15 mg/mL, the nano TiO2 film was well covered by
PC61BM and we can hardly find the light islands, leaving few cracks. While the concentration further
rises to 25 mg/mL, the nano TiO2 layer was fully covered by PC61BM, giving smooth and uniform film.

As demonstrated in previous report [23], it is too hard for thick ETL to transfer the electron from
the absorption layer to FTO substrate and instead relatively thin ETL leads to a serious recombination
of electrons and holes. Hence, we can infer that the device optimized with PC61BM of 15 mg/mL
exhibits the best performance, in which PC61BM filled the most valleys of nano TiO2 layer, leaving few
cracks, preventing the contact between FTO substrate and perovskite layer and improving the electron
transporting efficiency.

Finally, to investigate the influence of PC61BM substrate on the formation and properties of
perovskite films, we studied the SEM images and absorbance spectra of perovskite films deposited on
PC61BM of different concentration (5, 10, 15, 20, 25 mg/mL), absorbance spectra of PC61BM of different
concentration and PL spectra of perovskite films deposited on PC61BM of different concentration, as
shown in Figures 5–7, respectively.
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Figure 6. UV–vis absorption spectra of films: (a) Perovskite films deposited on PC61BM layers of
different concentration.; (b) PC61BM films of different concentration.
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Figure 7. Photoluminescence spectra of perovskite films deposited on PC61BM of different concentration.
The number 5, 10, 15, 20, 25 represent different concentration of PC61BM.

As shown in Figure 5, when the PC61BM precursor solution concentration is lower than 15 mg/mL,
a good grained and uniform perovskite films were obtained. In contrast, obviously different perovskite
surface morphologies are observed on 20 and 25 mg/mL PC61BM substrate, where the crystallinity of
the perovskite films is distinctly deteriorated with serious grain boundary distortion and large holes.

From Figure 6a, we can observe that the absorption spectra signify the similar light-harvesting
capabilities over 400 to 900 nm regardless of the different PC61BM concentration adopted. All five
films exhibit approximately the same absorption edge at about 790 nm with no red-shift or blue-shift,
corresponding to optical bandgap of perovskite. Particularly, perovskite films deposited on 25 mg/mL
PC61BM manifest inferior light-harvesting capabilities, which is caused by the internal defects resulted
from crystal distortion, and it is consistent with Figure 5j. From Figure 6b, we can observe that
the PC61BM exhibits higher light-harvesting capabilities with the concentration increasing. However,
perovskite films deposited on 15, 20 and 25 mg/mL PC61BM manifest similar absorbance, which
indicates that light-harvesting capabilities of perovskite films deposited on PC61BM layers decrease
with the precursor concentration (≥15 mg/mL) of PC61BM.

Figure 7 shows PL spectra of perovskite films deposited on PC61BM of different concentration. It is
clearly observed that the peak of photoluminescence is fairly weak when nano TiO2 layer has not been
optimized with PC61BM, being explained by the existence of via holes in nano TiO2 layer, which leads to
leakage. Furthermore, from Figure 7, we can observe that the PL intensity decrease as the concentration
of PC61BM increasing from 5 to 15 mg/mL. However, when the concentration of PC61BM is further
increased to 25 mg/mL, the PL intensity raises up again and reaches the maximum value.

As demonstrated in a previous report, the PL intensity of the films is closely related to quenching
of excitons resulted from the following two reasons, radiative relaxation of excited electrons back to
the ground state of perovskite and electron injection from light-absorption layer into electron transport
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layer [24]. Hence, we can infer that the PC61BM of 15 mg/mL deposited on nano TiO2 layer guaranteed
the high-quality interface between ETL and perovskite layer, resulting in more efficient injection of
electrons from perovskite layer into nano TiO2 layer, leading to low PL intensity, which is consistent
with Figure 5f.

We also have performed J–V characteristics of PSCs optimized with PC61BM, as shown in
Figure 8 and Table 2. From Figure 8 and Table 2, we can discover that following the increasing of
the concentration, the PCE extracted from reverse scanning J–V curves shows up a different trend about
approximately 0.81%, 2.52%, 5.48%, 3.14% and 0.26% from the perovskite solar cells with PC61BM
concentration of 5, 10, 15, 20 and 25 mg/mL respectively. It is clearly observed that the PCE reaches
the maximum value when the concentration is increased up to 15 mg/mL, and then decreases with
the further increasing of the concentration, which is consistent with the above discussion.Materials 2020, 13, x FOR PEER REVIEW 12 of 14 
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Figure 8. Reverse scanning J–V curves of perovskite solar cells optimized with different concentration of
PC61BM. -rev represents reverse scanning. The number 5, 10, 15, 20, 25 represent different concentration
of PC61BM. The device active area is 0.25 cm2 (0.5 cm × 0.5 cm).
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Table 2. Data extracted from reverse scanning J–V curves of perovskite solar cells optimized with
different concentration of PC61BM. -rev represents reverse scanning. The number 5, 10, 15, 20, 25
represent different concentration of PC61BM. The device active area is 0.25 cm2 (0.5 cm × 0.5 cm).

Samples PCE a (%) Voc
b (V) Jsc

c (mA/cm2) FF d

5-rev 0.81 0.94 2.81 0.31
10-rev 2.52 0.90 8.76 0.32
15-rev 5.48 1.01 14.74 0.37
20-rev 3.14 1.02 9.94 0.31
25-rev 0.26 0.35 2.52 0.29

Notes: a. PCE: power conversion efficiency; b. VOC: open-circuit voltage; c. JSC: short-circuit current;
d. FF: fill factor.

Finally, we demonstrate the carbon electrode-based flexible solar cell of PCE of 3.24% and 2.60%
for reverse and forward scanning, respectively [25]. The carbon electrode is fabricated with spongy
film composed of carbon nanoparticles, which leads to unstable contact in characterization, resulting
in poor device performance. The golden electrode-based device is under investigation. Moreover,
we are investigating the optimization process for perovskite layer and hole transport layer and
the optimization process for the interface between layers to improve the device performance.

4. Conclusions

We have discovered a method to improve the performance of PSCs by optimizing low-temperature
annealing process of solution-processed TiO2 ETL. In this work, we have received better nano TiO2

films using Process 1c (the as-grown nano TiO2 film had been delayed for one hour before the annealing
temperature was raised from room temperature to 150 ◦C at rate of 8 ◦C/min). Moreover, the surface
of nano TiO2 film optimized with 15 mg/mL PC61BM endows the device with better performance.
Finally, we have demonstrated the carbon electrode-based flexible perovskite solar cell, and the golden
electrode-based device is under investigation. Our results can serve as a platform to fabricate
high-efficiency flexible PSCs and have a potential in flexible and wearable devices.
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