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Abstract: The absence of a band gap in graphene is a hindrance to its application in electronic devices.
Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures
led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now,
an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene
structure, which caused the formation of a boron nitride composite with specified stoichiometry.
BC2N nanotubes are more stable than other triple compounds due to the existence of a maximum
number of B–N and C–C bonds. This paper focused on the nearest neighbor’s tight-binding method
to explore the dispersion relation of BC2N, which has no chemical bond between its carbon atoms.
More specifically, the band dispersion of this specific structure and the effects of energy hopping in
boron–carbon and nitrogen–carbon atoms on the band gap are studied. Besides, the band structure is
achieved from density functional theory (DFT) using the generalized gradient approximations (GGA)
approximation method. This calculation shows that this specific structure is semimetal, and the band
gap energy is 0.167 ev.
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1. Introduction

Nowadays, frontier technologies, especially in the semiconductor and battery industries, are
improving material scaling to enhance the efficiency of their products. In particular, foiling unwanted
transport between anode and cathode in the batteries is engaged by material performance. One the
other hand, from the semiconductor-based point of view, one of the available techniques to progress the
artifact is hidden in the BN material performance, which can be controlled by supplementary carbon
atoms. For example, in the form of BC2N, the band gap can be controlled effortlessly. On the other hand,
the BC2N allotropes as negative electrodes and anchoring materials for Li-S has been reported [1,2].
Since an increase in the numbers and efficiency of transistors diminishes the cost and leads to computers
with faster processing ability, the number of such transistors on a microchip is commonly on the
rise. Given this, it seems very cost effective to reduce the size of transistors [3,4]. However, this
minimizing process will be finally stopped due to the need for developments in electronic commerce;
thus, alternative technologies are needed [3]. Hence, the search for a matter with good nanoelectronics
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and optoelectronics functions is an important issue [5]. Alternative technology should solve past
problems and have economic justification. Hereupon, to deal with this problem, the nanotechnology
was integrated with electronic industry, and therefore, nanoelectronics was born [6].

Over the past 50 years, the use of Moore’s law has been effective in relieving silicon-based
electronic components for nanoelectronics [7] and optoelectronics [8]. The two-dimensional graphene,
due to its extraordinary electronic properties including high carrier velocity and mechanical strengths,
is a good candidate for electronic devices [9,10]. However, the lack of a gaping band prevents it from
being used in field effect transistors (MOSFET) [11], and this has led to the use of two-dimensional
minerals such as graphite or single-layer boron nitride. Moreover, boron nitride has a structural
similarity to carbon (C) and appears in different crystalline forms [12]. Besides, unlike graphene, due
to the specific accumulation of monolayers by boron nitride, it is rarely available. In addition, because
of the polarity of the bonds between B–N atoms in forming a multilayer of boron nitride, the whole
system will be stable [13]. Boron nitride is known as a semiconductor with a large gap of 5 to 6 electron
volts due to its wideband semiconducting behavior [14,15]. Furthermore, an interesting possibility
is the substitution of the C atoms with B and N atoms in the sites of the honeycomb structure of
graphene [16], which leads to the formation of a triplet-stoichiometric compound.

In 2006, the structure and electronic properties of BXCYNZ with stoichiometry ratios and various
formations of the Ab Initio calculations were studied [17]. The results show that the amount of stability
and energy gap depends on the array of atoms and their stoichiometry properties and is not related to
the dimensions of the cell [17]. The structural similarity between graphite and hexagonal boron nitride
became a motive for synthesizing the alloys of this compound [18]. On the one hand, the electronic
properties of BXCYNZ are similar to graphite in a semimetal manner [19], and the insulator attitude is
similar to that of boron nitride based on the doping with boron and nitrogen atoms [20]; therefore, the
location and the amount of impurities affect the structure’s stability. Meanwhile, the structure of BC2N
is zigzag-bonded, and it makes separate units of graphite and island-like boron nitride [21]. Therefore,
determining the preferable structure of the BC2N monolayer, configurational strain, and the atomic
bond has a considerable role [22].

It was theoretically predicted that through the use of first-principles calculation and CVD (chemical
vapor deposition) synthesis in the presence of BC13, CC14, N2, and H2 based on XRD analysis, the
existence of hexagonal layers by a 2.44 angstrom lattice constant with a 3.40 angstrom interlayer space
has been confirmed [23]. Although the X-ray data fail to provide the atomic arrangement in planar
form, they do designate that the boron, carbon, and nitrogen atom arrangement in the BC2N is in the
form of sp2-type bonding [24]. As a result, it has been anticipated that the atoms will be arranged in
planes of hexagonal rings similar to graphite, with weak interplanar interactions [25]. At this point,
it remains vague whether BC2N functions as a semiconductor or a semimetal [26]. Furthermore,
presumably the struggle between strain and bonding energy leads to the single-layered BC2N structure.
Hence, whether BC2N is a semiconductor or a semimetal is an issue of controversy [26]. Therefore,
band-gap engineering is a traditional and an influential technique in adjusting a new energy gap to
a desirable value and designing new semiconductor materials [27]. To this end, there are diverse
methods, including atom arrangement change, doping, and applying electric fields, among others.

The present study is concerned with the analytical investigation of energy dispersion through the
use of the Nearest Neighbor Tight Binding (NNTB) approximation method [28] for BC2N material
in which boron and nitrogen are both bonded with three carbons in a way that none of the carbons
are bonded with each other, as shown in Figure 1. Another feature of this structure is that it has no
symmetry in the space group, but the angle between the straight lines of combined boron and nitrogen
atoms is 60 degrees.
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Figure 1. a) Unit cell of BC2N; b) ultimate Structure of BC2N. 
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Figure 1. (a) Unit cell of BC2N; (b) ultimate Structure of BC2N.

2. Modeling

The NNTB approximation method is used to model the band structure of BC2N, based on
Figure 1a [28]. In this regard, one-way is used to investigate how the electron–electron interaction in
the structure of crystalline solves a separable Schrödinger equation, and this model is achieved by
means of a time-independent Schrödinger equation. The outcome of the time-independent equation
(Schrödinger) is written in the form of

E∅0 = [h(k)]∅0 (1)

where ∅0 is the wave function, and h(k) is the matrix equation as

h(k) =
4∑

m=1

Hmneik(dm−dn) (2)

In Equation (2), Hmn stands for the Hamiltonian matrix equation, k is the wave vector, and dm

and dn are the displacements of the mth and nth unit cells from the origin, respectively. On the other
hand, for this special model, no chemical bonds between carbon–carbon bonds are considered. Now,
in this case, B assigns EoC, EoB, and EoN to the onsite energies of carbon, boron, and nitrogen atoms,
respectively, and the overlapping energy between the two atoms of B–C and N–C are designated by
tbc = t and tcn = tp, respectively. Thus, Equation (2) can be presented via:

h(k) =


h1 0
0 h1

tp h2

h2 h4

tp h3

h2 h4

h1 0
0 h1

 (3)

where h1 = (E0 + 2 × E0 × (cos(k.r1) + cos(k.r2)))E, h2 = t + t × (cos(k.r1)), h3 = tp + tp × (cos(k.r1)),
h4 = t × (cos(k.r2)), k = kx i + ky j, r1 = 3 × a0 i, and r2 = 3a0i +

√
3 a0j. For interpretation purposes, it

is assumed that Figure 1b is an ideal hexagonal shape and has an equal bond length of a0 = 1.446 Å
between boron and nitrogen atoms. Therefore, to define the energy eigenvalues in the matrix form, the
energy matrix is diagonalized by

det


h1 0
0 h1

tp h2

h2 h4

tp h3

h2 h4

h1 0
0 h1

 = 0. (4)

The energy eigenvalues based on the Schrödinger equation solution lead to the following four
energy dispersion relations for this particular BC2N structure due to the introduced unit cell, as shown
in Figure 1a.
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E1,2 = (2 cos(a) + 2 cos(b) + 1)E0 ±
√

2
2 ((2t3t′ cos(a)2 cos(b)2

+4t3t′ cos(a)2 cos(b) + 4t3t′ cos(a) cos(b)2

+8t3t′ cos(a) cos(b) + 4t2t′2 cos(a)2 cos(b) + 8t2t′2 cos(a) cos(b)
+2tt′3 + t′4 + 3t2t′2 + t4 + t4(cos(a)4

× 4t4 cos(a)3 + 6t4 cos(a)2

+4t4 cos(a) + t4 cos(b)4 + 2t4 cos(b)2
− 2t3t′ + 4tt′3 cos(a)

+2tt′3 cos(a)2t3 + 4t2t′2 cos(b) + 8t2t′2 cos(a) − 2t2t′2 cos(b)2

+4t2t′2(cos(a))2 + 8t2t′2(cos(a))2 + 2tt′2(cos(b))2
− 8t3t′ cos(a)

+4t3t′ cos(b) + t2t′2(cos(a))4
− 2t3t′(cos(a))4

− 8t3t′(cos(a))3

−12t3t′(cos(a))2 + 2t4(cos(a))2(cos(b))2

+2t4(cos(a))2(cos(b))2)
1
2 + tt′ + t2(cos(a))2) + t2(cos(b))2

+t2 + t′2 + 2t2 cos(a) + 2tt′ cos(a) + tt′(cos(a))2)
1
2

(5)

E3,4 = (2× cos(a) + 2 cos(b) + 1) × E0 ±
√

2
2 × (tt

′
± 2t3t′ cos(a)2 cos(b)2

+4t3t′ cos(a)2 cos(b) + 4t3t′ cos(a) cos(b)2

+8t3t′ cos(a) cos(b) + 4t2t′2 cos(a)2 cos(b) + 8t2t′2 cos(a) cos(b)
+2tt′3 + t′4 + 3t2t′2 + t4 + t4(cos (a))4

× 4t4(cos (a))3

+6t4 cos(a)2 + 4t4 cos(a) + t4 cos(b)4 + 2t4 cos(b)2
− 2t3t′

+4tt′3 cos(a) + 2tt′3 cos(a)2 + 4t2t′2 cos(b)
+8t2t′2 cos(a) − 2t2 t′2 cos(b)2 + 4t2t′2(cos(a))2

+8t2t′2(cos(a))2 + 2tt′2(cos(b))2
− 8t3t′ cos(a) + 4t3t′ cos(b)

+t2t′2(cos(a))4
− 2t3t′(cos(a))4

− 8t3t′(cos(a))3

−12t3t′(cos(a))2 + 2t4(cos(a))2(cos(b))2 + 4t4 cos(a)(cos(b))2)
1
2

+tt′ + t2(cos(a))2 + t2(cos(b))2 + t2 + t′2

+2t2 cos(a) + 2tt′ cos(a) + tt′(cos(a))2)
1
2

(6)

To elucidate the variation of the electronic band structure in BC2N, we generated an E–K relation
according to Figure 1. The variation in the band gap together with solving Equations (5) and (6), which
are named dispersion relation equations, is shown in Figure 2.Materials 2020, 13, 1026 5 of 10 
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Figure 2. (a) One of the acceptable respondents from the energy determinant with a three-dimensional
band structure scheme mainly consisting of BC2N; (b) The band gap resulting from the Equation (3) is
due to E1 is 2.416 ev; (c) The band gap corresponding to Equation (4), namely E2, is about 1.212 ev;
(d) On the other hand, the band gap resulting from Equation (5) E3 is 0.7182 ev. Finally, as shown,
through solving Equation (6), it is found that the fourth possible band gap E4 is 1.3254 ev.
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3. Result and Discussion

It is found that there are four answers due to the variables of wave vector and energy. The first
answer is E1 (Figure 2a), which indicates a gap of 2.416 ev; the second answer is E2 with a 1.212 ev
band gap (Figure 2b), the band gap due to the third answer, E3, is equal to 0.7182 ev (Figure 2c), and
finally, the fourth answer E4 with a 1.3254 ev band gap (Figure 2d). The band structure that is plotted
using E1, E2, E3, and E4, resulted from Equations (5) and (6), which demonstrates the suggested model,
as shown in Figure 3. In the other words, the dispersion relation (Equation (6)) leads to the formation
of the band structure, as shown in Figures 2 and 3.
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Figure 3. (a) Dispersion relation plotted for E1, which indicates a band gap = 2.312 ev; (b) dispersion
relation plotted for both E1, and E2, in which the minimum band gap is found to be 1.1988 ev; (c)
dispersion relations for both E1 and E3 are compared, and a minimum of about 0.7182 ev is reported;
(d) dispersion relations for both E1 and E4 are compared, and a minimum band gap of about 1.304 ev is
shown; (e) dispersion relation results for E1, E2, E3, and E4 are compared, and a minimum band gap of
about 0.7182 ev is addressed. Note: In the right-hand side of each figure, a two-dimensional view is
presented with the same label.
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As shown in Figure 3, the possible band gaps based on the presented mode are analyzed and plotted
in three-dimensional (right-hand side figures) and two-dimensional (left-hand side figures) forms in
comparison with each other starting with E1 as shown in Figure 2a, followed by the accumulation of
band structures E2 to E4.

In the technology application, the ultimate lattice structure is under unwanted strain and stresses
that cause band energy variation. To analyze this annoying effect, one of the imaginable methods
is the overlap energy variation investigation, which can be realized in the form of lattice parameter
variation. Therefore, the effect of overlap energy between carbon–nitrogen and carbon–boron atoms as
a disparity between the highest and lowest energy levels is considered as shown in Figure 4. In the
other words, the reduction in the lattice parameter could cause an increase in the spatial overlap of
the orbitals. On the other hand, the increased anti-bonding appears to be larger than the increased
bonding. For simplification purposes, the hopping energy of boron–carbon and nitrogen–carbon is
shown in terms of t and tp, respectively. As indicated in Figure 3, the energy overlaps between B–C,
namely, tp, is fixed at 2.59 ev, and the energy overlaps between C–N, namely t, is changed. Therefore,
band gap energies of about a) E1 = 2.594 ev, b) E1 = 4.266 ev, c) E1 = 5.11 ev, and d) E1 = 5.6 ev are
reported. These results show that in accordance with the increase in tp, the band gap increases.Materials 2020, 13, 1026 7 of 10 

 

 

 

Figure 4. a) t = 2.59 ev, tp = 1 ev; b) for t = 2.59 ev, tp = 2 ev; c) t = 2.59 ev, tp = 2.5 ev; d) t = 2.5 ev, tp = 

2.83 ev. 

On the other hand, via changing the overlapping energy between nitrogen and carbon, namely 

t, an overlap between energy bands is reported. Besides, the effect of overlap energy between carbon 

and boron is plotted, as shown in Figure 5.  

 

 

Figure 5. a) t = 1 ev, tp = 1 ev; b) t = 1 ev, tp = 2.83 ev; c) t = 2 ev, tp = 2.83 ev; d) t = 2.5 ev, tp = 2.83 ev. 

It is concluded that any variation in the overlap energy indicates a direct effect on the BC2N band 

structure, which can be explained by an applied quantum confinement effect in the energy matrix. In 

the presented model, it can be assumed that the quantum confinement effect is buried in the overlap 

energy variation. On the other hand, density functional theory (DFT) and tight binding (TB) methods 

have been employed intensively in the material property investigation [29–32]. The DFT illustrates 
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tp = 2.83 ev.

On the other hand, via changing the overlapping energy between nitrogen and carbon, namely t,
an overlap between energy bands is reported. Besides, the effect of overlap energy between carbon
and boron is plotted, as shown in Figure 5.

It is concluded that any variation in the overlap energy indicates a direct effect on the BC2N band
structure, which can be explained by an applied quantum confinement effect in the energy matrix. In
the presented model, it can be assumed that the quantum confinement effect is buried in the overlap
energy variation. On the other hand, density functional theory (DFT) and tight binding (TB) methods
have been employed intensively in the material property investigation [29–32]. The DFT illustrates
good agreement with experimental results; however, it is computationally very expensive. Therefore,
its application has been limited to a small amount of atom calculations [32]. In contrary, the TB
method in the band structure calculation without self-consistent progressions needs smaller amounts
of computational possessions. Therefore, TB models have been applied in the large structure (up to
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millions of atoms) investigations [29]. In addition, the TB model often leads to analytical terminologies
that improve the logical investigation of material properties; consequently, in this research, a TB model
is being implemented. On the other hand, to simulate the DFT, we use an OPENMX3.8.5-open source
computer code with a lattice constant of about a = b = 5.0503 Å and c = 15.2997 Å. In addition, for
the linear combination of the pseudo-atomic localized basis set, 150 Ry cutoff energy and 10 × 10 ×
1 k-point are used. The basis set function is B7.0-s2p2d1, N6.0-s2p2d1, and C6.0-s2p2d1 for boron,
nitrogen, and carbon, respectively. The first symbol shows the chemical name together with the cutoff

radius and the initial orbitals, which is shown via the last set. All data are achieved using generalized
gradient approximations (GGA) and the PBE exchange-correlation functional.
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The result of the simulated structure is closer to the results of Figure 5 in response to the analytical
model (comparison between Figures 5 and 6), which indicates that the band structure is about 0.167
ev. The comparison study between the presented model and DFT simulation result is carried out as
shown in Figure 7.
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An acceptable agreement—especially on the k point—is detected, which confirms the accuracy of
the proposed model. Therefore, the proposed analytical calculation could represent the prediction
of electrical performance of BC2N, which also provides very fast modeling and simulation tools for
band-gap investigation. On the other hand, the lattice parameter effect on the BC2N gap performance
can be explored by the overlap energy gradient due to the stress and strain associated with the
temperature or device fabrication limits.

4. Conclusions

BC2N is one of the most stable structures of CX (BN) y configuration. This structure is an
in-between combination of hexagonal graphene and hexagonal boron nitride. The calculations showed
that the band-gap energy of CX (BN) y is between pristine graphene with a band gap of zero and boron
nitride with a band-gap energy of 5.5 eV. The band gap firmly depends on either the formation energy
or binding energy. Conceding and doping in the graphene sheet with boron and nitrogen atoms firmly
depends on its location and amount, which affects its stability. In the present study, we focused on the
amazing and notable structures of the BC2N family. In this structure, no bonding is found between
C–C atoms, which caused the inspiration of unique electronic and optical properties as well as its
application in designing electronic devices. This study focused on the dispersion relation investigation
using an analytical calculation based on the nearest neighbor’s tight-binding method. This method
supposes that the band gap of the main structure of BC2N alters from 2.41 in E1 to 1.12 in E2 and from
0.7182 eV to 1.3254 eV in E4. On the other hand, using figured alternating wave vector versus energy, it
is found that the changes in overlap energy between boron–carbon and nitrogen–carbon can engender
the band gap.
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