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Abstract: Compressive strength is considered as one of the most important parameters in concrete
design. Time and cost can be reduced if the compressive strength of concrete is accurately estimated.
In this paper, a new prediction model for compressive strength of high-performance concrete (HPC)
was developed using a non-tuned machine learning technique, namely, a regularized extreme learning
machine (RELM). The RELM prediction model was developed using a comprehensive dataset
obtained from previously published studies. The input variables of the model include cement,
blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age of
specimens. k-fold cross-validation was used to assess the prediction reliability of the developed RELM
model. The prediction results of the RELM model were evaluated using various error measures and
compared with that of the standard extreme learning machine (ELM) and other methods presented
in the literature. The findings of this research indicate that the compressive strength of HPC can be
accurately estimated using the proposed RELM model.

Keywords: high-performance concrete; compressive strength; extreme learning machine;
regularization; prediction

1. Introduction

Concrete is the most commonly used structural material in the construction industry. It has
several properties that make it more desirable than other construction materials. These properties
include high strength, ease of fabrication, and high durability. Since different construction projects have
specific performance requirements, improved concrete mixes known as high-performance concretes
(HPCs) have been developed based on extensive research on concrete technology over the last three
decades. The use of certain mineral and chemical admixtures such as fly ash and superplasticizer in
HPC mixtures enhances the strength, durability, and workability of concrete. HPC is primarily used in
bridges, tunnels, high-rise buildings, and hydropower structures.

The HPC mix design procedure requires several trial mixes to produce a concrete that meets the
structural and environmental requirements of the construction project. This often results in a loss of
time and materials. Compressive strength is one of the most important parameters in the design of
HPC. It generally has a strong relationship with the overall quality of concrete. Early and accurate
prediction of it can save time and cost by generating the required design data [1,2]. Conventional
methods may not be suitable for predicting the compressive strength of HPC because the relationship
between the concrete components and the compressive strength is highly nonlinear and, therefore,
obtaining an accurate regression equation is difficult [3]. Several prediction models for compressive
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strength of different types of concrete have been developed using machine-learning (ML) techniques.
These ML techniques include artificial neural network (ANN) [4–9], support vector machine (SVM) [10,
11], and ensemble methods [12]. The compressive strength of fly ash concrete [13,14] and ground
granulated blast furnace slag (GGBFS) concrete [15,16] was modeled using ANNs trained with a
back-propagation (BP) algorithm. Cascardi et al. [17] used ANN to develop a prediction model for
compressive strength of fiber reinforced polymer (FRP)-confined concrete. The developed model was
formulated into a mathematical formula which could be useful for practical applications. Due to the
environmental concerns regarding the scarcity of natural resources, several concrete mixtures have
been designed with the use of recycled aggregates as replacement of natural materials. The influence
of recycled aggregates, such as construction and demolition waste (CDW), on the compressive strength
of concrete has been investigated using ANN in [18–20]. Yu et al. [21] proposed a novel approach
based on SVM to predict the compressive strength of HPC. Behnood et al. [1] modeled the compressive
strength of HPC using M5P model tree algorithm. Mousavi et al. [22] developed a gene expression
programming (GEP)-based model for predicting the compressive strength of HPC. The proposed model
outperformed the regression-based models. ANNs have gained more attention from ML researchers
due to their universal approximation capability. Chithra et al. [23] investigated the applicability of
ANN for predicting the compressive strength of HPC containing nanosilica and copper slag. Several
other researchers have used ANN—either individually, as a hybrid with other methods, or in ensemble
models to predict the compressive strength of HPC [3,12,24–26].

In the previous works, the modeling of concrete compressive strength was mostly carried out
using classical neural networks trained with BP algorithm or other gradient-descent-based learning
algorithms. These algorithms train all the parameters (i.e., weights and biases) of the network iteratively
and may get stuck in local minima. Recently, a non-iterative learning method called extreme learning
machine (ELM) has been proposed for training ANNs [27]. The output weights in ELM are analytically
computed using the least-square method [28,29]. The hidden layer parameters (i.e., the input weights
and hidden biases) are randomly assigned and need not be trained. These simplifications enable ELM
to learn very quickly and achieve good generalization performance. However, since the standard
ELM is based on the principle of empirical risk minimization, it may produce an overfitting model.
Regularized extreme learning machine (RELM) [30] is an improved ELM method based on L2 penalty
(i.e., ridge regression), which provides better generalization performance than ELM. To the best of our
knowledge, RELM has not been used for modeling the HPC strength.

The aim of this paper is to develop a new prediction model of compressive strength of HPC using
the RELM method. The model was developed using 1133 experimental test results obtained from
the literature. The prediction results of the developed RELM model were compared with that of the
ELM and other individual and ensemble models reported in the literature. This investigation adds
insights to the literature by highlighting the advantages of using ELM-based methods for predicting
the compressive strength of concrete.

2. Experimental Dataset

A comprehensive dataset consisting of 1133 data records was obtained from the literature to
develop the models [31,32]. This dataset has been used in many studies to develop prediction models
for HPC strength [3,22,33]. The dataset contains eight input variables and one output variable.
The input variables include cement (C), blast furnace slag (B), fly ash (F), water (W), superplasticizer
(S), coarse aggregate (CA), fine aggregate (FA), and age of specimens (A). The output variable is the
concrete’s compressive strength (CS). The compressive strength was calculated by uniaxial compressive
strength test which was carried out according to ASTM C39. All the cylinders were made with
ordinary Portland cement and cured under normal conditions. The statistical values of the dataset
variables are shown in Table 1. Figure 1 shows the frequency histograms of the variables. For data
interdependency analysis, the correlation coefficients between the predictor (i.e., input) variables were
computed. As shown in Table 2, the values of the correlation coefficients indicate that there are no high
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correlations between the input variables. This is mainly due to the influence of high range of the data
variables. In this research, the water to binder ratios were 24%–90%, which almost include all concrete
mixtures except ultra-high-performance concrete. In addition, two types of cementitious materials
with a high range of replacement ratios (0%–61%) were also considered.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 1. Histograms of the dataset variables.
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Table 1. The statistical values of the dataset variables.

Variable Minimum Maximum Average Standard Deviation

C (kg/m3) 102.00 540.00 276.51 103.47
B (kg/m3) 0.00 359.40 74.27 84.25
F (kg/m3) 0.00 260.00 62.81 71.58
W (kg/m3) 121.80 247.00 182.99 21.71
S (kg/m3) 0.00 32.20 6.42 5.80
CA (kg/m3) 708.00 1145.00 964.83 82.79
FA (kg/m3) 594.00 992.60 770.49 79.37
A (Days) 1.00 365.00 44.06 60.44
CS (MPa) 2.33 82.60 35.84 16.10

Table 2. Correlation coefficients between the input variables.

Variable C B F W S CA FA A

C 1.0000 −0.2728 −0.4204 −0.0890 0.0674 −0.0730 −0.1859 0.0906
B −0.2728 1.0000 −0.2889 0.0995 0.0527 −0.2681 −0.2760 −0.0442
F −0.4204 −0.2889 1.0000 −0.1508 0.3528 −0.1055 −0.0062 −0.1631
W −0.0890 0.0995 −0.1508 1.0000 −0.5882 −0.2708 −0.4247 0.2420
S 0.0674 0.0527 0.3528 −0.5882 1.0000 −0.2747 0.1985 −0.1984
CA −0.0730 −0.2681 −0.1055 −0.2708 −0.2747 1.0000 −0.1534 0.0233
FA −0.1859 −0.2760 −0.0062 −0.4247 0.1985 −0.1534 1.0000 −0.1394
A 0.0906 −0.0442 −0.1631 0.2420 −0.1984 0.0233 −0.1394 1.0000

3. Methods

3.1. Extreme Learning Machine

Traditional algorithms for training ANN are usually based on a gradient descent approach in
which the network weights and biases are tuned iteratively. Gradient-descent-based learning methods
may get stuck in local minima or converge slowly. Huang et al. [27] proposed an efficient method for
training ANN, called extreme learning machine (ELM). ELM significantly increases the speed of ANN
learning process and obtains good generalization performance. In ELM, only the output weights of the
network need to be determined (i.e., the hidden layer parameters are randomly initialized and fixed).
No iterations are required for computing the output weights. The Moore–Penrose (MP) generalized
inverse is used to determine the output weights [28,29,34]. Figure 2 shows a typical architecture of
ELM with one hidden layer.

Consider N training samples (xi, ti)
N
i=1, where xi = [xi1, xi2, . . . , xid] ∈ Rd and ti =

[ti1, ti2, . . . , tim] ∈ Rm. Let L denote the number of neurons in the hidden layer of an ANN. If this ANN
with random hidden neurons can approximate these N training examples with zero error, the output
of ANN will be as follows:

f (xj) =
L

∑
i=1

βββihi(xj) = h(xj)βββ = tj, j = 1, . . . , N, (1)

where βββi = [βi1, βi2, . . . , βim] is the weight vector connecting the ith hidden neuron to m output
neurons, hi(xj) = a(zi, bi, xj) is the output of the ith neuron in the hidden layer, where zi ∈ Rd and
bi ∈ R are the input weights and bias of the ith hidden neuron, respectively. a(·) is the hidden
neuron activation function which can be a sigmoid, Gaussian, or any function satisfying the universal
approximation capability theorems of ELM [29,35,36]. h(xj) = [h1(xj), h2(xj), . . . , hL(xj)] is the hidden
layer output vector corresponding to the input xj. βββ = [βββ1, βββ2, . . . , βββL]

T is the output weight matrix.
Equation (1) can be written compactly as follows [28]:

Hβββ = T, (2)
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where H is the hidden layer output matrix of ELM [37]:

H =

 h(x1)
...

h(xN)

 =

 a(z1, b1, x1) . . . a(zL, bL, x1)
... . . .

...
a(z1, b1, xN) . . . a(zL, bL, xN)

 , (3)

and T is the target matrix of the training data:

T =

 t1
...

tN

 =

 t11 . . . t1m
... . . .

...
tN1 . . . tNm

 . (4)

 

 
     Input layer              Hidden layer               Output layer 

 

𝐙 
 

Figure 2. Architecture of the extreme learning machine (ELM).

The parameter βββ can be computed as follows [27]:

βββ = H†T, (5)

where H† is the MP generalized inverse of H [38], which can be computed using different methods such
as orthogonal projection method and singular value decomposition (SVD) [39]. If HHT is nonsingular,

the orthogonal projection method computes H† as HT
(

HHT
)−1

; otherwise, H† =
(

HTH
)−1

HT when

HTH is nonsingular [40].

3.2. Regularized Extreme Learning Machine

Even though the standard ELM is designed to provide good generalization performance at fast
learning speed, it may tend to produce an overfitting model because it is based on the empirical risk
minimization (ERM) principle [30,41,42]. The ELM solution may not be stable if the hidden layer
output matrix H is an ill-conditioned matrix. To overcome these problems, regularization is used in
ELM [30]. Based on ridge regression theory [43], if a positive value is added to the diagonal of HHT or
HTH, the solution of ELM will be more stable and provide better generalization performance [30,40].
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Therefore, the solution (i.e., the output weights βββ) of the RELM method can be calculated as follows [30]:
if the number of hidden neurons is less than the number of training examples, then

βββ =

(
I
λ
+ HTH

)−1

HTT; (6)

otherwise,

βββ = HT

(
I
λ
+ HHT

)−1

T, (7)

where I is an identity matrix and λ is the regularization parameter. The steps of the RELM method are
given in Algorithm 1 [30].

Algorithm 1: Regularized extreme learning machine (RELM) Algorithm

input : Training examples (xi, ti)
N
i=1 and ANN with L hidden neurons

output :The output weights βββ

1 Assign random values to the input weights and hidden layer biases;
2 Compute the matrix H;
3 Determine βββ as follows:;
4 if L < N then
5 Compute βββ using Equation (6) ;
6 else
7 Compute βββ using Equation (7);
8 end

4. Experimental Setting

The network architecture used in this paper was a feedforward network with a single hidden layer.
As shown in Figure 3, the compressive strength of HPC is represented by one neuron in the output
layer. The input layer of the network contains eight neurons which represent the input variables: C, B,
F, W, S, CA, FA, and A. Sigmoid function a(x) = 1/(1 + exp(−x)) was used as an activation function
in the hidden layer. According to the ELM theory, a good generalization performance can be obtained
if the number of neurons in the hidden layer is large enough [28,40,44]. This is due to the random
determination of the hidden layer parameters. The number of hidden neurons was selected from the
range [50, 60, . . . , 300]. To find the optimal number of hidden neurons, each network architecture was
evaluated based on cross-validation method. For ELM, the optimal number of hidden neurons was
230. RELM is not very sensitive to the size of the hidden layer, provided that the number of hidden
neurons is large enough and the parameter λ is appropriately chosen [40]. For RELM, similar to [40],
the number of hidden neurons was set to 1000 and the parameter λ was chosen from the range [25, 220].
The input variables were normalized into the range of [LB, UB] using the following equation:

Xn = pXo + q, (8)

where
p =

UB− LB
Xmax − Xmin

(9)

and
q = LB− pXmin, (10)
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in which Xn and Xo are the normalized and original values of the input variable, respectively. Xmax

and Xmin are the maximum and minimum values of the corresponding input variable, respectively.
In this paper, LB = −1 and UB = 1.
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Figure 3. The network architecture used in the ELM and RELM models.

4.1. Performance-Evaluation Measures and Cross Validation

In this paper, the prediction accuracy of the ELM and RELM models was evaluated using root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and the Pearson correlation coefficient (R). These statistical measures are widely used in the literature
and are expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(t− y)2, (11)

MAE =
1
n

n

∑
i=1
| t− y |, (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ t− y
t

∣∣∣∣ , (13)

R =

n
∑

i=1
(t− t̄)(y− ȳ)√

n
∑

i=1
(t− t̄)2

n
∑

i=1
(y− ȳ)2

, (14)

where t and y are the experimental and predicted values of compressive strength, respectively. n is the
number of data instances, t̄ is the mean of the experimental values of compressive strength, and ȳ is
the mean of the predicted values of compressive strength.

The k-fold cross-validation procedure is often used to minimize bias associated with random
division of the dataset into training and testing sets. In k-fold cross-validation, the dataset is divided
into k partitions (e.g., k = 5 or k = 10). Each partition of the data is called a fold. A single fold is used
to test the model and the remaining k− 1 folds are used to train the model. This process is repeated k
times, each time with a different testing set. After running cross-validation, the mean and standard
deviation of the performance measures are computed. The ten-fold cross-validation method is shown
in Figure 4. In this paper, ten-fold cross-validation was used to assess the prediction capability of the
ELM and RELM models.

In this paper, as it has been mentioned above, the number of hidden neurons for the RELM
model was set to 1000. To see how the RELM method performs with a varying number of neurons,



Materials 2020, 13, 1023 8 of 15

several experiments were conducted and the results are shown in Figures 5 and 6. It can be observed
that the RELM method is stable, not very sensitive to the number of hidden neurons, and good
predictions can be obtained.

Figure 4. The ten-fold cross-validation method.
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Figure 5. Average root mean squared error (RMSE) values of the RELM method with different
network architectures.
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Figure 6. Average Pearson correlation coefficient (R) values of the RELM method with different
network architectures.
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5. Results and Discussion

The prediction results—in terms of the average values of different statistical measures—of the
ELM and RELM models are shown in Table 3. From Table 3, it can be observed that the developed
RELM model achieves better performance than the ELM model in all the statistical measures on the
training set. It obtains 3.6737 and 0.9736 in the RMSE and R measures, respectively. The corresponding
values obtained by the ELM model are 4.1846 and 0.9656. The good results obtained by the RELM
model on the training set indicate the predictive capability of the developed model. For testing set,
the RELM model outperforms the ELM model by obtaining the lowest values in the RMSE, MAE,
and MAPE error measures and the highest value in the R measure. The obtained R-value of the
RELM model on the testing set is 0.9403, which indicates that there is a strong correlation between
the experimental and predicted values of the compressive strength. The accurate predictions of
the developed RELM model on the testing set suggest that the model is able to generalize well to
unseen data.

Table 3. Prediction results of the ELM and RELM models.

Model Dataset RMSE (MPa) MAE (MPa) MAPE (%) R

ELM Training data 4.1846 3.2062 11.3922 0.9656
Testing data 6.0377 4.4419 15.2558 0.929
All data 4.4087 3.3298 11.7787 0.9617

RELM Training data 3.6737 2.7356 9.74 0.9736
Testing data 5.5075 3.9745 13.467 0.9403
All data 3.8984 2.8595 10.1125 0.9702

Table 4 shows the standard deviations of the RMSE measure for the ELM and RELM models.
The standard deviations for the RELM model on the training, testing, and all data sets are 0.0405,
0.5054, and 0.0771, respectively, which are lower than that for the ELM model. From Tables 3 and 4,
it can be observed that the developed RELM model not only achieves accurate predictions on average,
but also obtains low standard deviations, which supports the reliability of the RELM model for
predicting the HPC compressive strength.

Table 4. The standard deviations of the RMSE measure for the ELM and RELM models.

Model Training Data Testing Data All Data

ELM 0.1001 0.6739 0.1401
RELM 0.0405 0.5054 0.0771

The prediction results of the ELM and RELM models were also compared with that of the
individual and ensemble methods presented in [3]. The individual methods include ANN trained by
BP algorithm, classification and regression trees (CART), Chi-squared automatic interaction detection
(CHAID) technique, linear regression (LR), generalized linear model (GENLIN), and SVM. A brief
introduction to these techniques is presented in [3]. The ensemble methods were modeled by combining
the best-performing individual models [3].

Table 5 shows that the ANN model has the best performance among the individual methods
reported in [3]. The values of the RMSE, MAE, and MAPE measures for ANN are 6.329, 4.421,
and 15.3, respectively, which are the lowest compared to that for the other five individual methods
in [3]. However, the ELM model outperforms ANN in the RMSE and MAPE measures and obtains
comparable performance in the correlation coefficient measure. It obtains 6.0377 and 15.2558 in the
RMSE and MAPE measures, respectively. It can be seen that the ELM model outperforms SVM,
which is the second-best individual model in [3], in all the error measures. As shown in Table 5,
the combination of the individual ANN and SVM methods yielded the best ensemble model among
the ensemble methods. The ELM model obtains better performance than the ensemble ANN+SVM
method only in the RMSE measure. From Table 5, it can be observed that the proposed RELM model
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has the best performance compared to the ELM model and the other individual and ensemble methods
in all the performance measures. The high predictive accuracy of the RELM model suggests that the
model developed is a reliable method for estimating the compressive strength of HPC.

Table 5. Generalization performance comparison of ELM, RELM, and other methods presented in [3].

Method Testing Data

RMSE (MPa) MAE (MPa) MAPE (%) R

ELM 6.0377 4.4419 15.2558 0.929
RELM 5.5075 3.9745 13.467 0.9403

Individual methods [3]:
ANN 6.329 4.421 15.3 0.930
CART 9.703 6.815 24.1 0.840
CHAID 8.983 6.088 20.7 0.861
LR 11.243 7.867 29.9 0.779
GENLIN 11.375 7.867 29.9 0.779
SVM 6.911 4.764 17.3 0.923

Ensemble methods [3]:
ANN + CHAID 7.028 4.668 16.2 0.922
ANN + SVM 6.174 4.236 15.2 0.939
CHAID + SVM 6.692 4.580 16.3 0.929
ANN + SVM + CHAID 6.231 4.279 15.2 0.939

The values in Table 3 represent the average performance of the models. The representative RELM
model was selected based on its performance in the RMSE measure on the testing and on all data sets.
The selected RELM model obtained 3.6789 4.7459, and 3.7998 in the RMSE measure on the training,
testing, and all data sets, respectively. The corresponding R-values are 0.9741, 0.9459, and 0.9717.
The experimental values of compressive strength versus the predicted ones using the RELM model
for the training and testing sets are shown in Figures 7 and 8, respectively. It can be observed that the
points are distributed close to the regression lines, with the values of the slopes for training and testing
sets of 0.9897 and 0.9927, respectively. This indicates good agreement between the experimental values
and the predicted values obtained by the RELM model.
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Figure 7. Predicted versus experimental compressive strength values, RELM model for training data.

A sensitivity analysis was performed to investigate the response of the developed RELM model
to the changes of the input variables. In the analysis, only one input variable was changed at a time
and the remaining input variables were kept constant at their average values [25,33]. The results of the
sensitivity analysis using the RELM model are shown in Figure 9. It can be observed that the results of
the analysis indicate well-known properties of HPC that have been described in several published
papers in the literature. For example, in Figure 9a, the quantity of cement has a direct influence on
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hydration degree, and the degree of cement hydration has a direct effect on porosity and consequently
on strength. This is because of the pore refinement associated with the pozzolanic reaction and the
increase in Calcium-Silicate-Hydrate (C-S-H).
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Figure 8. Predicted versus experimental compressive strength values, RELM model for testing data.
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Figure 9. Sensitivity analysis of the developed RELM model.

In general, the models developed using ML techniques or similar approaches are valid only for
the range of data used for their development. However, it is recommended to consider the range of
data variables presented in Table 1 when using the developed RELM model to compute the concrete
compressive strength.

6. Conclusions

In the construction industry, developing a prediction model that provides accurate and early
estimation of compressive strength of concretes is very important as it can help in saving time and costs
by providing the required design data. In this paper, a regularized ELM model (RELM) was developed,
using a comprehensive database obtained from previous works, for estimating the compressive
strength of HPC. The findings of this research are outlined as follows:

• Although the ELM model achieves good generalization performance (R = 0.929 on average),
the RELM model performs even better.

• This research confirms that the use of regularization in ELM could prevent overfitting and improve
the accuracy in estimating the HPC compressive strength.
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• The RELM model can estimate the HPC compressive strength with higher accuracy than the
ensemble methods presented in the literature.

• The proposed RELM model is simple, easy to implement, and has a strong potential for accurate
estimation of HPC compressive strength.

• This work provides insights into the advantages of using ELM-based methods for predicting the
compressive strength of concrete.

• The prediction performance of the ELM-based models can be improved by optimizing the initial
input weights using optimization techniques such as harmony search, differential evolution, or
other evolutionary methods.
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