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Abstract: Multiwall boron nitride (BN) nanotubes were synthesized by a novel physical vapor
deposition (PVD) method, in which the BN nanotubes grow on a compact substrate composed of
AlN, γ-Al2O3, Y2O3, and carbon powders. The obtained BN nanotubes assemble in an orderly
manner with a typical length of over one millimeter and a diameter of one-hundred nanometers. The
hollow multiwall tubes have a spherical tip, which is presumed to be a liquid drop at the synthesis
temperature, indicating the vapor–liquid–solid (VLS) growth mechanism.
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1. Introduction

Boron nitride (BN) nanotubes are structurally analogue to carbon nanotubes—they substitute
B and N atoms entirely for C atoms in graphitic-like sheets with nearly no change in the atomic
spacing [1–3]—but exhibit superior thermal and chemical performances to carbon-based materials [4].
Hence, there has been a growing interest in utilizing BN nanotube materials in specific applications in
high-temperature or chemically hazardous environments in recent years [3]. In addition, BN tubes
and continuous fibers can also be applied to reinforce electromagnetic windows because of their low
dielectric constant [5].

Rubio et al. first proposed the idea of rolling up individual hexagonal boron nitride (h-BN)
sheets to form BN nanotubes in 1994 [1,2]. Zettl et al. successfully obtained BN nanotubes by an
arc-discharged method that used refractory metal as electrodes in 1995, inspired by the successful
preparation of carbon nanotubes [6]. However, the yield of the resultant nanotube material was
limited. Afterwards, many other synthesizing methods were developed, such as laser ablation [7],
chemical vapor deposition [8], the heating of milled mixtures [9,10], the plasma-jet method [11],
and atom deposition [12]. However, most of these methods are too complicated to be suitable for
industrial manufacturing.

In 1999, Kukovitsky et al. developed a vapor–liquid–solid (VLS) method to grow carbon nanotubes
on a supported catalyst, in which the arc discharge between graphite electrodes was used as the
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carbon vapor source and nickel particles were used as a catalyst [13]. However, the morphology
of the resulting carbon products was variable because of the unstable vapor source. A similar VLS
growth method was also applied in the synthesis of BN nanotubes. In 2011, Li et al. [14] synthesized
BN nanotubes on stainless-steel substrates by reacting Boron and Fe2O3 at 1300 ◦C under a flowing
ammonia atmosphere. The B–N–O–Si–Mn particles were considered to be the catalyst for the growth of
BN nanotubes. Afterwards, Wang et al. [15] developed an optimized self-cracking catalyst VLS growth
mechanism to manufacture BN nanotubes by using boron-containing precursors. The BN nanotubes
were formed on the surface of glass fabrics, which were used as a product collecting framework and
growth catalyst. The critical issue of this method was to synthesize the boron-containing precursor
in advance via the dilution self-propagation high-temperature synthesis and post- annealing (SHS)
method. It is known that h-BN will evaporate at an elevated temperature [16]. In this case, physical
vapor deposition might be a possible method to manufacture BN nanotubes. The critical issue is to
develop a liquid catalyst to control the deposition of BN vapor.

In the present work, a physical vapor deposition method based on the VLS-growth mechanism
was developed for the growth of the BN nanotubes by using a Y–Al–O ternary compound as the
active catalyst. The structure of the BN tubes was analyzed by scanning electron microscopy (SEM),
transmission electron microscopy (TEM), an X-ray diffractometer (XRD), and energy dispersive
spectroscopy (EDS). The growth mechanism of the BN tubes was also explored.

2. Methods and Materials

A h-BN ceramic disk, which contained 0.5 wt.% Al2O3, 0.2 wt.% CaO, and 1.0 wt.% ZrO2, was
used as the resource of B and N. High purity AlN, γ-Al2O3, Y2O3, and carbon were mixed by ball
milling in ethanol with the weight ratio of 100:100:3:80. After drying, the mixture was compressed
into a pellet with a diameter of 40 mm by cold isostatic pressing at 200 MPa for 5 min. The above
compact pellet was used as the substrate for the growth of BN tubes. The substrate was placed on the
h-BN ceramic disk directly, which was then put inside a covered alumina crucible. A vertical slot of
about 5 mm in width was designed on the alumina crucible wall to produce a system with a semi-open
atmosphere. The experiment was performed in a graphite furnace. The furnace was heated with a
heating rate of 10 ◦C/min to 1850 ◦C and held for 4 h in a flowing N2 atmosphere.

The morphology of the nanotubes was characterized by scanning electron microscopy (SEM,
CrossBeam 550, ZEISS Co., Jena, Germany). The phase structure was analyzed by an X-ray
diffractometer (XRD, D8-Advance A25, Bruker Co., Karlsruhe, Germany) with Cu Kα radiation
in the 2θ range from 10◦ to 80◦ with the step size of 0.02◦. Transmission electron microscopy (TEM,
JEM-2100F, JEOL Ltd., Tokyo, Japan) was used for microstructure analysis. An energy spectrum
analysis was carried out by energy dispersive spectroscopy (EDS, Oxford X-Max 80, Oxford Instruments
Co., Oxford, UK) attached to the SEM and TEM instruments.

3. Results and Discussion

The obtained white flocculent BN nanotubes attached to the surface of the substrate are
demonstrated in Figure 1a. It is notable that the length of the nanotubes is over one millimeter
and the volume of the products indicates that the BN nanotubes could be manufactured on an
industrial scale.
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Figure 1. Photograph (a) and SEM photograph (b) of the obtained boron nitride (BN) nanotubes. 

Figure 2 shows the XRD pattern of the flocculent BN nanotube materials after being pressed 

flatly. It is clear that a strong diffraction peak of the (002) plane for h-BN was detected, combined 

with a petty drum of the (004) plane. Other weak diffraction peaks were assigned to AlN crystals, 

which signals AlN contamination in the obtained BN nanotubes. Compared with the standard card 

(pdf-45-0893), many other diffraction peaks disappeared. Because the nanotubes were pressed to lie 

down for XRD measurement, the surface of the nanotubes is the (001) plane, which indicates that the 

nanotubes could be regarded as rolled-up hexagonal h-BN sheets. 
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The microstructure of the BN nanotubes was confirmed by TEM, as shown in Figure 3. It is 

obvious that the hollow BN nanotube exhibits a smooth surface with a diameter of about 175 nm, as 

shown in Figure 3a. Figure 3b shows the multiwall structure with an interlayer distance of about 0.33 

nm, which is close to the (002) plane of h-BN crystals [19]. This microstructure is coincident with the 

results of the XRD patterns shown in Figure 2. The TEM microstructure of the top end of the resulting 

BN nanotubes is shown in Figure 3c. A dark spherical tip was found clearly on top of the nanotubes. 

It was composed of Y, Al, and O elements as indicated by EDS, as shown in Figure 3d. This is a typical 

characteristic of one-dimensional (1-D) materials growth via the vapor–liquid–solid growth method, 

where the tip acts as the catalyst [20]. 

Figure 1. Photograph (a) and SEM photograph (b) of the obtained boron nitride (BN) nanotubes.

The SEM microstructure of the resulting BN nanotubes is shown in Figure 1b. It is obvious that
the nanotubes assembled in an orderly manner with a smooth surface. The morphology of the present
nanotubes, both for a single tube’s morphology and their assembly, is much better than the products
manufactured by earlier synthesis methods [17,18].

Figure 2 shows the XRD pattern of the flocculent BN nanotube materials after being pressed flatly.
It is clear that a strong diffraction peak of the (002) plane for h-BN was detected, combined with a petty
drum of the (004) plane. Other weak diffraction peaks were assigned to AlN crystals, which signals
AlN contamination in the obtained BN nanotubes. Compared with the standard card (pdf-45-0893),
many other diffraction peaks disappeared. Because the nanotubes were pressed to lie down for XRD
measurement, the surface of the nanotubes is the (001) plane, which indicates that the nanotubes could
be regarded as rolled-up hexagonal h-BN sheets.
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Figure 2. XRD patterns of the obtained BN nanotubes.

The microstructure of the BN nanotubes was confirmed by TEM, as shown in Figure 3. It is
obvious that the hollow BN nanotube exhibits a smooth surface with a diameter of about 175 nm, as
shown in Figure 3a. Figure 3b shows the multiwall structure with an interlayer distance of about 0.33
nm, which is close to the (002) plane of h-BN crystals [19]. This microstructure is coincident with the
results of the XRD patterns shown in Figure 2. The TEM microstructure of the top end of the resulting
BN nanotubes is shown in Figure 3c. A dark spherical tip was found clearly on top of the nanotubes. It
was composed of Y, Al, and O elements as indicated by EDS, as shown in Figure 3d. This is a typical
characteristic of one-dimensional (1-D) materials growth via the vapor–liquid–solid growth method,
where the tip acts as the catalyst [20].
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formed in the substrate at the synthetization temperature. 

Figure 3. TEM microstructures of (a) the BN nanotube, (b) the tube wall, (c) nanotubes of the end tip,
and (d) the EDS pattern of the spherical end tip.

Figure 4 shows the element scanning maps of the BN nanotube close to the tip by EDS in SEM.
It is clear that the nanotube is BN and the spherical tip has the components of Y2O3 and Al2O3.
This indicates a typical mechanism of VLS growth, which is normally used for the growth of nanowires
and nanowhiskers [21]. In this process, the vapored species condenses preferentially into the catalytic
liquid drops and deposits serially from the supersaturated liquid drops.
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Figure 4. Element scanning maps of a typical BN nanotube under SEM: single element distribution
(left), and combination maps (right).

In the present synthesis system, the substrate contains Y2O3 and Al2O3, which have a eutectic
point at 1780 ◦C [22,23]. Hence, when heated up to 1850 ◦C, some eutectic liquid is formed in the
substrate. It was noted that the substrate also contains carbon, which will react with Al2O3 and N2 gas
at elevated temperatures, producing CO gas. The designed semi-open system keeps a weak oxide
atmosphere inside the alumina crucible, which allows for the survival of the residual Al2O3. From the
Y2O3–Al2O3–AlN pseudo-ternary phase diagram [24], it can be found that AlN may also dissolve into
the eutectic liquid. Because the amount of Y2O3 is very low, there should be very small liquid drops
formed in the substrate at the synthetization temperature.
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The schematic diagram of the BN nanotubes synthesized by thermal evaporation is illustrated
in Figure 5, which demonstrates the VLS mechanism of BN nanotubes in this research. As shown in
Figure 5, firstly, the eutectic liquid drops of Y2O3–Al2O3, which may have contained AlN, formed on
the surface of the substrate at the synthesis temperature of 1850 ◦C. Then, the vapored BN species
dissolved into the liquid drops and condensed in preferential sites. Unlike the normal VLS growth
process, the precipitation of BN atoms was along the (001) plane rather than stacking layer by layer.
The extension of BN sheets was restricted to inside the liquid drops on the scale of 100 nm. Hence,
the BN sheets rolled up to become the embryo of the BN nanotube. Serially, the supersaturated BN
atoms in liquid drops precipitated along the nanotubes, which resulted in the growth of BN nanotubes.
The sequential steps of evaporation, dissolution, and precipitation extended the BN nanotubes to one
millimeter in length. The liquid drop diameter determined the diameter of the BN nanotubes, where
the BN sheets rolled up at the beginning. Modifying the liquid drops to control the morphology of the
final BN nanotubes may be valuable in the future.
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Figure 5. A schematic diagram of vapor–liquid–solid (VLS) growth for BN nanotubes.

4. Conclusions

In summary, multiwall BN nanotubes were synthesized by a PVD method, where h-BN ceramics
were used as a BN source. The resulting BN nanotubes exhibited a smooth surface and were arranged
in an orderly manner. The spherical Y2O3–Al2O3 eutectic tip on the top of the BN nanotubes indicated
the VLS growth mechanism. Given the synthesis conditions, the Y–Al–O ternary liquid drops were
formed on the surface of the substrate, and then acted as a catalyst for the growth of BN nanotubes. It
is believed that this simple fabrication method can effectively accelerate the industrial production of
BN nanotubes in the near future, since the current fabrication processes are mainly based on complex
chemical methods.
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