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Abstract: Thin-ply laminates exhibit a higher degree of freedom in design and altered failure
behaviour, and therefore, an increased strength for unnotched laminates in comparison to thick-ply
laminates. For notched laminates, the static strength is strongly decreased; this is caused by a lack of
stress relaxation through damage, which leads to a higher stress concentration and premature, brittle
failure. To overcome this behaviour and to use the advantage of thin-ply laminates in areas with high
stress concentrations, we have investigated thin-ply hybrid laminates with different metal volume
fractions. Open hole tensile (OHT) and open hole compression (OHC) tests were performed with
quasi-isotropic carbon fibre reinforced plastic (CFRP) specimens. In the area of stress concentration,
90° layers were locally substituted by stainless steel layers of differing volume fractions, from 12.5% to
25%. The strain field on the specimen surface was evaluated in-situ using a digital image correlation
(DIC) system. The embedding of stainless steel foils in thin-ply samples increases the OHT strength up
to 60.44% compared to unmodified thin-ply laminates. The density specific OHT strength is increased
by 33%. Thick-ply specimens achieve an OHC strength increase up to 45.7%, which corresponds to
an increase in density specific strength of 32.4%.

Keywords: stainless steel foil; stress distribution; hybrid material; non-destructive testing; digital
image correlation

1. Introduction

Fibre reinforced composites (FRPs) are used in structural applications, such as aircraft
construction, automotive manufacturing, shipbuilding and sports equipment because of their excellent
weight-specific mechanical properties. Fastener-based joining techniques such as bolting or riveting
are commonly used in these applications, as parts become highly maintainable and can be easily
disassembled and reattached. However, for FRPs such as carbon fibre reinforced plastics (CFRPs),
riveting is not a material-appropriate design, due to their low bearing strength and high notch
sensitivity [1,2]. Therefore, different attempts to reduce the notch sensitivity of composites are utilised;
e.g., local thickening of the laminate [3], optimised laminate layup and stacking sequence [4,5], local
inserts [6], z-pinning [4,7] and hybridisation with other materials [8-10].

High-performance carbon-fibre reinforced plastics (CFRPs) are widely applied as structural
materials in applications where a low density combined with high stiffness and strength is required.
Due to the multi-scale nature and the different constituents, the failure in composites is complex.
Matrix-cracks, delamination and fibre failure can occur, and failure at the micro-level influences the
failure process at all higher levels. As a result, not only do the mechanic properties of the constituents
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of the composite define the strength and failure process, but the lay-up design and the layer thickness
do as well [11-15]. Thin-ply laminates are characterised by a layer thickness of less than <60 pm. These
layer thicknesses became available through the advancement and industrialisation of the spread-tow
process as presented by Kawabe [16] and Sihn [13]. By reducing the thickness of the single layer, the
number of layers can be chosen to be more load-dependent. This increases the degrees of freedom in
the orientation and the quantity of the individual layers.

Thin layers suppress transverse microcracking and free edge delamination. As a result,
the occurring failure modes change from complex multi-mode failure to a quasi-brittle failure, from
thick- to thin-ply [13-15,17,18]. For unnotched quasi-isotropic laminates, this leads to a significant
increase in tensile strength, which utilises the potential of the constituents [13,19]. The damage
initiation changes with decreasing layer thickness to higher strains. Thin-ply specimens show little to
no visible premature damage before ultimate failure. Under compressive loading of quasi-isotropic
specimens, a similar behaviour is observed. The compressive strength increases with decreasing
layer thickness. In addition to the changing failure behaviour, the material quality also plays an
important role. Due to the small layer thicknesses and the spreading process, a more homogeneous
fibre distribution and smaller resin-rich regions are achieved [15].

For notched laminates, the static strength is strongly decreased, because the lack of stress relaxation
through damage leads to a higher stress concentration and premature, brittle failure compared to
thick-ply laminates [13,15,18], which is limiting to the design space of thin-ply composites.

One possibility to change the failure mechanisms and improve the mechanical properties of
notched specimens is to insert metallic layers into the laminate. Fibre metal laminates (FMLs) show
improved load-bearing and a progressive failure mechanism. Fibre metal laminates are utilised to
combine the favourable properties of metallic and composite behaviours. The main advantages
compared to pure fibre reinforced composites are: quasi ductile failure behaviour due to the additional
plasticity of the steel foils [3,20], better energy absorption under tensile loads, better structural integrity
in crash tests and local electrical conductivity, which allows amongst other things for non-destructive
testing (NDT) and structural health monitoring (SHM) [21].

With conventional layer thicknesses, the adhesion between metal and matrix is a major challenge.
Interlaminar shear forces, caused by thermal loads from the curing process and external loads, act
between composite layers and metal foils. The strength of the interface is therefore of high importance,
as it influences the failure process of the laminate extensively. Due to the higher number of layers
and the associated higher number of interfaces, the shear stresses are lower and the pretreatment
process of the metal has less influence. In addition, a high number of layers offers freedom of design
concerning hybrid composites. Various proportions of steel or positions of the steel in the laminate can
be realised. An additional advantage is the use of thin and more flexible stainless steel foils. Especially
in components with complex geometries and curved areas like the wings of an aircraft, adapting and
shape forming of the material is necessary. Thicker steel foils would be needed to be preformed before
lamination, whereas thin steel foils can be shaped during the process of laminating up to a level of
deformation similar to the CFRP layers. A first study concerning the combination of thin-ply CFRP
and stainless steel foils was published in 2015 by Masani et al. [22]. They investigated open hole
tensile (OHT) and load-bearing properties of thin-ply fibre metal laminates with a CFRP-layer and
metal foil thickness of 30 um and a steel volume content of 25%. An increase of up to two times in
bearing strength was encountered. The specific bearing strength, bearing strength in relation to the
density of the specimen, is lower than that of CFRP without stainless steel foils. However, according to
Studer et al. [20], it is sufficient to use local stainless steel reinforcements in regions of load introduction
or high local stresses; as a result the component density would decrease. The aim of this study is to
analyse a new method to improve the open hole tensile and compressive strength of thin-ply laminates
by replacing 90°-CFRP-layers with stainless steel foils as patches with the same layer thickness.
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2. Materials and Methods

2.1. Materials and Specimen Preparation

In this study, austenitic steel alloy inserts 1.4310 (X10CrNi18-8) from Knight Strip Metals Ltd.
(Hertfordshire, UK) were used as metal reinforcement foil in CFRP. The alloy has a metastable
austenitic structure due to its high chromium and nickel content, which strengthens the material
during processing due to work hardening in a cold rolling process. The tensile strength is between
500 and 700 MPa, with a yield strength of 210 MPa and a Young’s modulus of 200 GPa. Due to its
good mechanical and durability properties, the alloy is used in aircraft construction and automotive
engineering, and has been used in multiple previous studies on fibre metal laminates [8,23-27].

The steel foils were cut with a precision cutter for electronic boards, which results in no visible
deformation at the edges of the foils. The samples for the tension tests of the stainless steel foils have
the dimensions 250 mm x 25 mm. The nominal thicknesses of the foils are 0.03 mm and 0.15 mm.
Unidirectional CFRP prepregs with fibre areal weights (FAWSs) of 30 gsm, 60 gsm and 120 gsm are
used. Other FAWs (150 gsm, 240 gsm) are achieved via block-scaling. The prepreg was manufactured
by North Thin Ply Technology Switzerland (NTPT), using T700S carbon fibres from Toray Carbon
Fibres America Inc (CMA) and ThinPreg 402 epoxy resin from NTPT. The experimentally determined
mechanical properties of the prepreg system are shown in Table 1. Tensile tests were conducted in
compliance to ASTM D 3039 [28] standard with a quasi-isotropic layup and specimen dimensions of
1.82 mm x 25 mm X 150 mm. Five specimens were tested per configuration. In Figure 1, microsections
of the tensile specimens show the difference in thickness of the individual layers in red. In order to
compare different steel foil surface pretreatments, interlaminar shear strength (ILSS) tests were carried
out. For ILSS tests, an unidirectional prepreg system HexPly M21/35%/268/T800S from Hexcel
Corporation, with M21 epoxy based resin and CMA’s T800S carbon fibres, was used. The single-layer
thickness of this prepreg system is 0.262 mm.

Table 1. Ply thickness dependent tensile properties of quasi-isotropic CFRP-laminates (ASTM D
3039) [28].

FAW Lay-up Tensile Strength Young’s Modulus

30gsm  [45/90/—45/90]ss 956.59 & 31.81 MPa  47.88 + 1.65 GPa
60 gsm  [45/90/—45/90]4 963.66 + 1821 MPa  50.02 + 1.60 GPa
120 gsm  [45/90/—45/90], 82549 £ 2456 MPa  48.13 & 2.54 GPa
240 gsm  [45,/90,/—45,/90,]s  736.86 £ 32.61 MPa  47.30 + 1.47 GPa

The prepreg was cut using a computer numerical control (CNC) cutter Aristomat TL 1625 from
ARISTO Graphic System GmbH and Co. KG. and laminated by hand. For every fourth prepreg layer,
a pre-evacuation was performed to further compress the laminate and to prevent voids and air
inclusions. The different laminate layups are shown in Table 2. Depending on the layer structure,
some 90°-layers were replaced by stainless steel foils, which exhibit a limited contribution to the global
load carrying capacity; 60 mm wide stainless steel foils were inserted as patches in the area of the
centred hole of the specimens. This is shown schematically in Figure 2. The black areas represent
the stainless steel foil. In the case of the hybrid laminates with a metal volume content of 12.5%, the
stainless steel layers were placed on the outside, so that the benefit of the bending stiffness of the
metal foils could be utilised under compressive load. For each ILSS sample, a steel foil with a layer
thickness of 0.15 mm was placed in the middle of the laminate. The remaining layers are unidirectional
in 0°-orientation. The Layup is listed in Table 2. The sample dimensions of the ILSS samples were
40 mm x 12 mm X 6 mm according to the ASTM D2344 standard [29].
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Table 2. Laminate layups for the OHT, OHC and ILSS tests.

Test Setup  Configuration (SF: Steel Foil) Layup Number of Specimen
OHT/C CFRP: 30 gsm [45/—45/0/90]165 5
OHT/C CFRP: 30 gsm; SF: 25% (0.03 mm) [45/—45/0/SF16s 4
OHT/C CFRP: 60 gsm [45/—45/0/90]ss 5
OHT/C CFRP: 120 gsm [45/—45/0/90]4s 5
OHT/C CFRP: 150 gsm; SF: 12.5% (0.15mm)  [(45/—45/SF/0),/(45/-45/0/90),]s 3
OHT/C CFRP: 150 gsm; SF: 25% (0.15 mm) [45/—45/SF /045 3
OHT/C CFRP: 240 gsm [45/—45/0/90]s 5
ILSS CFRP: 268 gsm [0]16 5
ILSS CFRP: 268 gsm; SF: 6.25% (0.15 mm)  [(07/SF)/0s] 5

£ 200 pm

Figure 1. Microsections of the used CFRP laminates, left to right: 30, 60, 120 and 240 gsm (block-scaling
2 x 120 gsm).

36 mm

25 % stainless steel ! 60 mm '

12.5 % stainless steel

@6 mm

Figure 2. Schematic drawing of the sample design for OHT and OHC tests according to the standards
ASTM D5766 [30] and ASTM D6484 [31].

The surfaces of stainless steel foils were pretreated to ensure sufficient adhesion between the
stainless steel and the epoxy resin matrix. Six pretreatment methods which had been proven to be
effective were investigated [32]. For all methods presented, the first step was to clean the stainless
steel foils with acetone. Two chemical etching methods were chosen. For the first method, the
samples were chemically etched by sulphuric acid (30% concentration at 60 °C for 4 min) followed by
a solution of 22-28 parts by weight (PBW) of sulphuric acid and 2-3 PBW of potassium dichromate.
For the second etching method, the samples were primarily preparated with hydrofluoric acid (4%
concentration at 50 °C for 20 min), followed by a solution of 22-28 PBW of sulphuric acid and 2-3 PBW
of potassium dichromate.

Plasma surface treatment was chosen for methods three and four. In one group, the stainless steel
foils were plasma treated directly after the cleaning process with acetone, and the other group was
sanded with 500 grit silicon carbide sandpaper before plasma treatment. The plasma system in use
was a SmartPlasma 10 system by Plasma Technology GmbH (parameters: 300 W, 90 s, 0.3 mbar).

In addition, the sol-gel process was used. This surface pretreatment was prepared according
to the procedure outlined by 3M Aerospace and Aircraft Maintenance Division with the 3M surface
pretreatment AC-130-2. The surface pretreatment AC-130-2 is a water-based system and can be used
in combination with different metals. According to 3M, the achieved benefits of the pretreatment
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are in the same range or better than conventional etching processes. An additional advantage of the
system is the formation of a chemical bond between the metal and the matrix without using potentially
carcinogenic and allergenic chromates. The sol-gel surface pretreatment can be easily applied to the
metal by spraying, brushing or immersion, allowing for an on-site use on the aircraft. For one sample
group, the surface was roughened with 500 grit silicon carbide sandpaper, which increases the metal
bonding surface and removes coarse contamination. Further, the foil surface was cleaned with acetone
to remove any sanding residue and grease from the surface. After this, the AC-130-2 was applied
with an immersion bath at room temperature and dried for 60 min. This increases the adhesion effect
due to an increased surface area and more chemical bonds between the metal surface and the epoxy
resin. The second group was directly pretreated with AC-130-2 after cleaning the surface with acetone
without any surface roughening. To compare the results with samples without stainless steel foil, some
reference samples were prepared for the ILSS tests.

The laminates (420 mm x 300 mm) were cured in an autoclave at 120°C and 4 bar in a
nitrogen atmosphere. The cured plates were milled using an Isel Euromod 25 three axis milling
machine. The specimen dimensions are determined according to the standards for OHT (ASTM
D5766 [30]), OHC (ASTM D6484 [31]) and ILSS (ASTM D2344 [29]) tests. The dimensions are
300 mm x 36 mm X 3.84 mm with a central hole (diameter: 6 mm) for the OHT and OHC samples.
After milling, the edges of the samples were polished and all samples dried in a vacuum furnace at 40 °C
for 12 h before they are tested.

2.2. Experimental Methods

All mechanical tests were performed under constant ambient conditions (temperature 23 °C,
relative humidity 50%). An universal testing machine Z2.5 by ZwickRoell GmbH and Co. KG
(Ulm, Germany) was used for the tensile tests of the stainless steel foils. The foils were clamped
using mechanical clamping jaws. The test speed was set to 3 mm/min. For the strain measurement,
cross-head position and an optical camera measuring system from ZwickRoell were used. In order
to achieve this, two high contrast markings were applied to the specimen surface and tracked by the
camera system.

The ILSS tests were carried out according to ASTM D2344 [29] on a ZwickRoell Z10 universal
testing machine. The support radius was 1.5 mm and the radius of the compression cylinder was
3 mm. The span length was chosen as proposed by the standard (24 mm) and the speed of testing
applied was 1 mm/min. Displacement and strain measurement were recorded using the traverse path
of the upper stamp, directly connected to the cross-head displacement.

Open hole tensile and compression tests were performed in accordance to ASTM D5766 [30] and
ASTM D6484 [31] using a ZwickRoell Z400 universal testing machine. Mechanical wedge clamps
were used for the tensile tests, whereby the forces were introduced into the specimen via shear forces.
The cross-head speed was set to 2 mm/min. The displacement and strain were recorded using
mechanical displacement transducers (MultiXtens from ZwickRoell), and the digital image correlation
(DIC) system Aramis 4M system from GOM GmbH. A high contrast speckle pattern (consisting of
white and black acrylic paint) sprayed onto the specimen surfaces allowed for computer-aided image
evaluation and strain monitoring with the software GOM Correlate Professional. The camera focus
was set directly at the open hole in the centre of the specimen.

For the open hole compression tests, a cross-head speed of 2 mm/min and an anti-buckling
support as specified in the ASTM were used. The mechanical loads were applied via the end faces of
the specimens. The displacement was determined over the cross-head traverse, since there was no
possibility of using the MultiXtens due to the anti-buckling support. Furthermore, the DIC system was
used, recording the sample through a small window inside the anti-buckling support.

For the micrographs, the tested specimens were embedded in epoxy resin so that the fracture
surfaces were not damaged during further mechanical processing. Depending on the specimen and
the fracture pattern, the specimens were sawn and embedded in resin so that they could be polished.
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The subsequent polishing was done in several steps. First, the samples were ground with sandpaper
in various grit sizes and then polished with diamond suspension up to a particle size of 3 um.

3. Results and Discussion

Figure 3 shows the results of the stainless steel foil tensile tests. The yield strength is plotted
over the foil layer thickness in relation to the rolling orientation of the stainless steel. RD (rolling
direction) means that the main load direction is parallel to the rolling direction of the foil. Accordingly,
TRD (transverse rolling direction) means that the main load direction is perpendicular to the rolling
direction of the foil. A comparison of the measured yield strength reveals that a significant difference
between the rolling and transverse rolling direction is apparent in the case of the thin foils. For the
thick foils, no difference could be found. However, strong evidence of an increase of yield strength
with decreasing foil thickness was found. The yield strength of the thin foil in the rolling direction is
27.1%, and transverse to the rolling direction it is 18.9% higher than for the thick foils. The results of the
yield strength and the results of the fracture strength are shown in Table 3. No significant difference in
fracture strength was found. This can be explained by the work or strain hardening of the metal foils.

Table 3. Measured mechanical properties of stainless steel (1.4310) foils.

Foil Thickness in pm  Orientation  Strength in MPa  Yield Strength in MPa

30 RD 1347.3 £52.7 1273.8 +85.8
30 TRD 1410.2 £30.8 1121.7 £27.0
150 RD 1337.8 £71.1 1002.2 + 69.9
150 TRD 1371.3 £8.3 943.4+£55.0
1500 T T T T
RD: Rolling Direction 1
14004 T ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, TRD: Transverse Rolling Direction |
@ 1300 [ - .
s o
£
< 1200
>
5
= 1100 +
n
e ]
[}
S 10 B e N A .
S .
800 f f f f
RD TRD RD TRD
30 um 150 pm
1.4310 Steel 1.4310 Steel

Figure 3. Yield strength regarding foil thickness and orientation during the rolling process.

It is difficult to compare the results of the specimens with stainless steel with the specimens
without stainless steel, because ILSS samples with stainless steel do not have a symmetrical structure
and therefore cannot be regarded as ideal specimens. The lower and upper parts of the specimen
have different bending stiffness. However, the different pretreatment methods can be compared,
and significant differences between the pretreatments can be seen. A comparison reveals that the
interlaminar shear strength of the specimen pretreated with abrasive paper and AC-130-2 is most
pronounced. Figure 4 shows the results of the ILSS tests. CFRP without stainless steel foil reaches
92.91 MPa, which is 2.91 MPa above the value specified by the manufacturer Hexcel. It is also
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interesting to note that the interlaminar shear strength of the stainless steel decreases as a result of
plasma treatment, which is contrary to the current literature. From the results, it follows that due
to the high interlaminar shear strength and the low standard deviation, the sol-gel process with the
combination between abrasive paper and AC-130-2 surface treatment system from 3M was used for
further open hole tensile and compressive tests.

110 T T T T T T T
£ 108 CFRP: M21/35%/268/T800s
s O = Steel: 1.4310, 150um I
£ *
L N, i .
= *
C
S
» BTl é """"""""""""""""""""""""""""""""""""""""""""""""""""" .
: : ;
A B e T N 1
:
o S St .
2
Q
£ B0 e -
75 : : : : | | |
- Plain  Abrasive Plain  Abrasive HF H,SO,
- AC-130-2 Plasma 5 Acid
CFRP| | | FML |

Figure 4. Interlaminar shear strengths (ILSSs) of different surface pretreatments of the stainless steel
foils according to ASTM D2344 [29].

Figure 5 shows scanning electron microscope (SEM) images of the surface of pretreated stainless
steel foils. It is noticeable that the etched surfaces have a finely structured surface, which in
turn indicates theoretically good adhesion. Since the the sol-gel process merely forms a chemical
intermediate layer (film) on the stainless steel surface and thus does not cause any geometric changes
to the surface, no difference can be detected between the surfaces of the samples ground and those
ground and treated with AC-130-2 using SEM.

Figure 5. Scanning electron microscope images of the pretreated stainless steel surfaces.
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Figure 6 illustrates the open hole tensile strengths (black, left axis) of the samples with and without
stainless steel patches. The ordinate on the right side shows the specific open hole tensile strength
(grey). The specific open hole tensile strength means that the open hole tensile strength of a sample is
related to its density. The calculation of the density takes into account that the stainless steel foils are
only used as patches, as they will be used in practical applications; see Figure 2.

700 ]
+ 360

1 | -+ 320

-+ 280
500 ~

-+ 240

(o/p) in 103 MPam®/ kg

400

200

Open hole tensile strength in MPa
Specific open hole tensile strength

30 150 150  gsm
- - - - 25 125 25 steel-%
| CFRP | ] ] FML |

Figure 6. Open hole tensile strength and specific open hole tensile strength of CFRP samples with and
without steel foils and different layer thicknesses.

From Figure 6 it is obvious that the open hole tensile strength decreases significantly with
decreasing layer thickness without stainless steel foil. The open hole tensile strength of the thin-ply
specimens decreases by 12% compared to the samples with the thickest layer thickness. In contrast, the
tensile strength of quasi-isotropic (QI) samples without a hole increases from 736.86 MPa (thick-ply)
to 956.59 MPa (thin-ply), which corresponds to an increase of 29.8%. This can be explained by the
changing fracture behaviour of the specimens, as described by Sihn [13] or Amacher [15]. In the
case of thicker layers, the material is damaged at the hole during loading. Interfibre fractures and
delaminations occur. The different damages at the surface could be detected with the DIC system.
Figure 7 shows two fracture patterns on the left side after the tensile tests, where the left specimen
is a thin-ply and the right specimen a thick-ply. The right side shows DIC images taken one second
before final failure. The DIC images illustrate the strain field on the surface of the samples. The strain
field can be used to draw qualitative conclusions about the stress field of the samples. In the case of
thick-ply samples, predamage was detected before ultimate failure. As a result of this predamage,
there is a relaxation process near the hole, and the stress peak near the hole will be reduced. Stresses
are deflected by the damage in the material. In contrast, for thin-ply laminates, no predamage was
visible until final failure with the DIC system. The samples failed in a brittle way, perpendicular to
the load direction. Other studies used an acoustic emission system [13] and showed that there is no
predamage before final failure within thin-ply laminates. The result of this behaviour is reflected in
the fracture patterns (left side, Figure 7). It can be seen that in the case of the thin layer specimens, no
delaminations are visible, which suggests that the critical failure mechanism must be fibre breakage.
Only a partial detachment of the upper layer can be seen. In contrast, in the case of specimens with
thicker layer delaminations and pull-outs, a mixed failure mode can be found.
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A 2!
10 mm

Thin Ply Thick Ply

Figure 7. Digital image correlation (DIC) and fracture patterns of the open hole tensile specimens.

For comparison purposes, Figure 6 shows on the right side the specimens with stainless steel.
In the case of thin-ply specimens with a stainless steel content of 25%, the strength increases by 60.44%.
Hybridisation with stainless steel foils locally increases the strength of the specimen and reduces the
stress within the CFRP layers. Crack propagation at the hole is suppressed. The potential of the fibres
can be further exploited. Most thin layer specimens with stainless steel failed at the transition zone
between the area with and without stainless steel. This is also visible in the microsections in Figure 8.
The upper left and right images show a thin-ply hybrid sample after final failure.

Due to the transition from stainless steel foils to 90°-CFRP-layers, stress concentrations occur,
which could be increased by local defects. The microsections in Figure 8 show a small difference
in the locations of the transitions between steel foils and matrix. The positions of the foils vary on
average by 0.3 mm. In addition, some waviness of the foils or deformation at the edges can increase the
stress concentration at the transition zone, and resin rich areas appear in the transition zone. Another
disadvantage of this design is the local stiffness discontinuity due to the discontinuous transition
between metal layers and 90° CFRP layers. Nevertheless, it should be mentioned that although
high stresses were present, no delaminations are visible. This shows the advantage of thin-ply hybrid
materials. Due to a large number of layers and the associated interfaces, the interlaminar shear strength
between the layers is lower, so that the surface pretreatment selected here was sufficient.

Figure 9 exhibits DIC images for selected loads. The upper four images show the damage process
of a thin-ply sample. It can be seen that there are no large delaminations due to a shift in the upper
layer. At the stress of 70% of the maximum stress, a stress peak is visible at the hole as well as stress
peaks at the outer edges of the transition zone (red areas in the lower left and right corner of the image).
However, these spread very slowly compared to the thick-ply specimens. The thick layer samples
(lower images) show a delamination growth starting from the transition zone and the hole at 70%
of the maximum stress. At 60% no delaminations are visible yet (left picture). As the load increases,
the delaminations increase and move towards each other until the complete area of the sample in the
area of the stainless steel shows delaminations.
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Tension - Thin Ply 25% Steel Tension - Thin Ply 25% Steel

Figure 8. Microsections of the fracture surfaces of the open hole tension specimens.

In addjition to the DIC images, the delaminations that occur can also be seen in the microsections
in Figure 8. All delaminations are between the stainless steel foils and the matrix layers. The bonding
between the stainless steel and the matrix was not sufficient. The interlaminar shear stress between
steel and matrix was higher than the bonding strength between them.

However, for technical applications, the specific strength is more valuable, as it provides
information on whether it is worthwhile to use such a material in the future. Even the strength
of thin-ply samples in relation to the density increases by 33.14%; see Figure 6. This shows that by
adding stainless steel foils as patches to make hybrid materials, an increase in strength relative to their
densities can be achieved.

The results of the open hole compressive tests are shown in Figure 10. The bar chart shows that
there is no difference in open hole compressive strength between the specimens without stainless steel
foils. However, strength is increasing with decreasing layer thickness. The strength of the thin-ply
specimens is 7.5% higher than that of the thick-ply specimens. Similar results were obtained by
Yokozeki et al. [33]. In his study, the strength of the thin-ply samples increased by 9%. The increase
of the strength can be explained by the changing failure behaviour and the tension. In the case of
thin layer specimens, the formation and spread of delaminations are suppressed. The critical failure
occurred in the formation of a kink band through the whole thickness of the specimen. This can also
be seen in Figure 11. On the left side, DIC images of a thin- (left DIC image) and a thick-ply (right
DIC image) sample one second before failure are shown. In the case of thin-ply samples, no previous
damage could be detected before final failure, whereas delaminations and fibre breaks of the surface
of the thick-ply specimens were visible. The failure of the thick-ply samples is a combination of fibre
kinking and delaminations. This combination results in final failure, as shown in Figure 11.

Concerning the hybrid samples, a significant increase in strength can be observed in the case of
the thick-ply samples with a steel content of 12.5%. The open hole compressive strength increased
from 340 MPa to nearly 500 MPa, an improvement of 47%. The other configurations did not show any
major improvements. In the case of thick-ply samples with a steel content of 25%, the OHC strength
did not change, and in the case of thin-ply hybrid specimens a large variation in the results could be
observed. Some samples showed an improvement in OHC strength from 333.4 MPa to 436.5 MPa, and
others a decrease to 303.3 MPa. The microsections (Figure 12) show the different failure behaviours.
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Thin Ply
i

Figure 9. DIC open hole tensile samples at 60%, 70%, 85% and 95% of maximum force (top, thin-ply
samples; bottom, thick-ply samples.
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Figure 10. Open hole compressive strength and specific open hole compressive strength of CFRP
samples with and without steel foils and different layer thicknesses.

In the case of thick-ply specimens with a steel content of 25%, delaminations occur between the
stainless steel foil and the matrix, as is already the case under tensile load. Depending on which side
the delaminations occur first, there is no symmetric bending stiffness, and the samples preferably
kink to one side. This can also be seen in the fracture patterns or microsections. Due to this failure
behaviour, no improvement in strength could be observed. In contrast, thick-ply specimens with a
steel content of 12.5% have a 47% higher open hole compressive strength. The sample is supported by
the increased bending stiffness of the hybrid composite due to the stainless steel layers and buckling is
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suppressed. No major delaminations can be detected within the sample such that a behaviour usual
for composite materials can be seen here, whereby this is further strengthened by the outer steel layers
as already mentioned.

Thin Ply Thick Ply

Thin Ply Thick Ply

Figure 11. DIC (top) and fracture patterns (bottom) of the open hole compressive specimens without
stainless steel.

The thin-ply hybrid specimens exhibit no predamage until final failure. No deformations in
Z-directions (perpendicular to the sample surface) could be found via DIC. The microsection in
Figure 12 displays numerous kinks in the specimen. Some kinks are local kink bands and other
extend globally over several layers. The steel layers with a thickness of 30 pm have low compressive
stiffness and due to small defects like waviness of the foil or voids lead to local deformations and
kinks. The open hole compressive strength of the thin-ply hybrid specimens shows a large standard
deviation based on this local deformations and bucklings. Specimens with a low content or number of
local kinks exhibit a higher strength. Specimens with a high content or a high number of local kinks
exhibit a lower strength.

Compression - Thick Ply 25% Steel Compression - Thick Ply 12.5% Steel Compression - Thin Ply 25% Steel

Figure 12. Microsections of the fracture surfaces of the open hole tension and compression specimens.

As in the case of the tensile results, the specific open hole strength is shown in grey in Figure 10.
The specific open hole compressive strength shows that in the case of thick-ply specimens with a steel
content of 25%, there is a decrease in the specific strength. In the case of the thin-ply specimens with a
steel content of 25%, a increase or decrease strength can be determined depending on the number of
kinks. Only in the case of thick-ply specimens with a steel content of 12.5%, an improvement in the
specific strength can be detected, which can be explained by the anti-buckling support of the laminate
by the outer steel layers.
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4. Conclusions

This study shows that the hybridisation of thin-ply CFRP samples with stainless steel foil patches
increases the open hole tensile strength by up to 60.44% compared to CFRP samples. Even if the
strength is normalised to the density of the samples, the OHT strength is increased by up to 33%.
Hybridisation with stainless steel foils locally increases the strength of the specimen and reduces the
stress within the CFRP layers. Crack propagation at the hole is suppressed. The potential of the fibres
can be further exploited. For thick-ply hybrid samples, no improvement in OHT strength could be
found. The laminates failed due to the formation of delaminations between the stainless steel foils and
the matrix. The compression test showed different results. The thin-ply hybrid and the thick-ply hybrid
samples with a steel content of 25% exhibit no improvement in open hole compressive strength. In
the case of the specimens with thin layers, many kinks could be found which led to premature failure.
The hybrid samples with the thicker layers and 25% steel failed due to delaminations. The thick-ply
samples with a steel content of 12.5% exhibited an improvement in open hole compressive strength
up to 47%. Due to the higher local bending stiffness of the hybrid material, buckling of the sample is
suppressed. In summary, the hybridisation of CFRP laminates with stainless steel foils in exchange
for the 90°-CFRP-layers can improve the OHT and OHC strength. Additionally, the specific OHT
and OHC strength increase, so that this hybrid material could be an opportunity to reduce the notch
sensitivity of composites, especially for thin-ply composites. For further investigations, the transition
zone should be modified so that a strong local stiffness discontinuity can be avoided.

Author Contributions: Conceptualisation, B.K. and J.K. (Julian Karsten); data curation, B.K. and
J.K. (Julian Karsten); formal analysis, B.K., ].K. (Julian Karsten) and J.K. (Johann Koérbelin); investigation, B.K.,
J.K. (Julian Karsten) and ].K. (Johann Kérbelin); methodology, B.K., ].K. (Julian Karsten) and J.K. (Johann Kérbelin);
project administration, J.K. (Julian Karsten) and B.F; resources, B.F.; supervision, B.F; validation, B.K.,
J.K. (Julian Karsten), J.K. (Johann Korbelin) and B.E; Visualization, B.K.; writing—original draft, B.K. and
J.K. (Julian Karsten); writing—review and editing, ].K. (Johann Kérbelin) and B.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors acknowledge 3M Germany GmbH for supplying surface pretreatment AC-130-2,
and the support for the Open Access fees by Hamburg University of Technology (TUHH) in the funding program
Open Access Publishing.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI  Multidisciplinary Digital Publishing Institute
OHT open hole tension

OHC open hole compression

CFRP  carbon fibre reinforced plastic

gsm grams by square meters
QI quasi-isotropic

UD Unidirectional

FML fibre metal laminate
NDT non-destructive testing

SHM structural health monitoring
NTPT  north thin ply technology
CMA  Toray Carbon Fibres America, Inc

ILSS interlaminar shear strength

CNC computer numerical control

ASTM  American Society for Testing and Materials
SF steel foil

SEM scanning electron microscope

DIC digital image correlation
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