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Abstract: (Na0.8,K0.2)0.5Bi0.497Eu0.003TiO3 (NKBET20) piezoelectric ceramic powders were prepared
by the solid-reaction method. The phase structures of the NKBET20 powders under various pressures
were investigated by photoluminescence (PL) spectra and X-ray diffraction (XRD). The PL spectra of
the doped Eu3+ ions suggest a pressure induced transformation from the tetragonal to rhombohedral
phase (R phase), and the phase transformations were confirmed by XRD analyses. Furthermore,
the fluorescence intensity ratio of the 5D0 →

7F2 transition to the 5D0 →
7F1 transition (FIR21) could

be utilized for the quantitative analyses of the phase transformation. The results from the PL method
show that as the pressure increases from 0 to 500 MPa, the fractions of the R phase of the NKBET20
powders increase from about 11% to 58%, while the fractions of the tetragonal phase (T phase)
decrease from about 89% to 42%, which are consistent with the XRD Rietveld refinement. Unlike
the ceramic bulks, the pressure induced phase transformation in the ceramic powders shows no
obvious trigger point and is much gentler. This work suggests a different viewpoint to study the
pressure induced phase transformation qualitatively and quantitatively, which can be used for more
phase analyses.

Keywords: pressure; phase transformation; piezoelectric material; photoluminescence; rare-earth
ions; quantitative analyses

1. Introduction

Piezoelectric material has been widely applied in numerous electromechanical devices. In fact,
piezoelectric material usually works under mechanical pressures [1], thus, some researchers concentrate
on the effects of mechanical pressures on piezoelectric material [2–7]. For example, Yao et al.
reported that the piezoelectric coefficient decreases with increasing the mechanical pressures in
the PbTiO3-based piezoelectric ceramic, which was further explained by the pressure-induced
depolarization [4]. Pressure induced phase transformations are also reported widely [5–9]. Hall et al.
suggested a phase transformation from the rhombohedral to the orthorhombic phase within the
PbZrO3-PbTiO3 piezoelectric ceramic, induced by pressure [3]. Dong et al. found that pressure could
drive (Na1/2Bi1/2)TiO3-based ceramics from the ferroelectric to the relaxor phase [7]. Pressure induced
phase transformations in piezoelectric ceramic bulks have been studied extensively, however, the effects
of pressures on piezoelectric ceramic powders are seldom considered, which are also of important
scientific significance and practical applications. For instance, when grinding, the influence of the
mechanical pressure upon piezoelectric ceramic powders is vital in the X-ray diffraction analyses,
as pressure induced phase transformation often occurs in the piezoelectric material. Moreover,
the properties of the ceramic bulks and powders with the same compositions may differ, so, in
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this present work, we focus on the effects of pressures on piezoelectric ceramic powders, which are
seldom considered.

As a Pb-free piezoelectric material, the (Na1−x,Kx)0.5Bi0.5TiO3 (NKBT100x) ceramic has been
extensively investigated for its superior electrical properties [10–12]. The NKBT100x ceramic crystallizes
the R phasein the Na0.5Bi0.5TiO3-rich compositions, and crystallizes the T phase in the K0.5Bi0.5TiO3-rich
compositions [13]. While in compositions with x located at 0.16–0.2, the NKBT100x ceramic forms a
morphotropic phase boundary (MPB) [14,15]. In these critical compositions, the R and T phases coexist,
and NKBT100x ceramic exhibits optimal piezoelectric properties [13,15]. Furthermore, the Gibbs
free energy gap between the two phases is small [16], therefore, phase transformation often occurs.
For example, it is reported that phase transformation induced by electric fields occurs within the
NKBT20 ceramic [17]. In addition, as described above, mechanical pressures could also induce
phase transformations in piezoelectric materials. Thus, it seems that pressures could induce a phase
transformation within NKBT100x materials.

On the other hand, piezoelectric materials doped with rare-earth (RE) ions have received significant
consideration [18–22]. The crystallographic symmetry of the host material is one of the most important
factors affecting the photoluminescence (PL) property of RE ions. Even if RE ions are doped in a
dilute concentration, enough PL signals can be obtained because of their efficient emission. In such
concentrations, RE ions hardly influence the initial structures of the host material, while their PL signals
could reflect the structural information of the host material; thus, RE ions can be used as probes [23,24].
Pr3+ ions were used to detect the phase transformation of (Ba0.77Ca0.23)TiO3 materials [25]. Er3+

ions were used to probe the phase structures in Pb-based piezoelectric materials [26]. Furthermore,
the PL spectra of Eu3+ ions were utilized for quantitative analyses of the phase structures of the
(Na,K)0.5Bi0.5TiO3:Eu piezoelectric materials in our earlier work [27]. Here, we try to use the PL method
for phase analyses in the pressure induced phase transformation.

In this contribution, we fabricated (Na0.8,K0.2)0.5Bi0.497Eu0.003TiO3 (NKBET20) piezoelectric
ceramic powders by a solid reaction method, and investigated their phase structures under various
pressures by PL spectra and XRD. The PL spectra of doped Eu3+ ions suggest that pressures induced
the increase of the fraction of the R phase, and the decrease of the fraction of the T phase. Unlike the
ceramic bulks, the pressure induced phase transformation in ceramic powders shows no obvious
trigger point and is much gentler. Furthermore, FIR21 were shown to quantitatively analyze the phase
transformation. These analyses were further confirmed by the XRD results.

2. Materials and Methods

(Na1−x,Kx)0.5Bi0.497Eu0.003TiO3 (NKBET100x; x = 0.1, 0.2, and 0.3) ceramic pellets were fabricated
by the solid-reaction method, as described elsewhere [27]. Next, ceramic pellets were ground to a
powder and annealed at 600 ◦C for 2 h. Then, the ceramic powder of NKBET20 was pressed into a
stainless-steel die for 30 min under various pressures, ranging from 0 to 500 MPa, which was loaded
by a tablet machine (DY-30, Keqi Ltd., Tianjin, China). The XRD measurements were executed using
the Rigaku D/max-2500H X-ray diffractometer, which works under 40 kV and 150 mA. The scan
angle ranged from 20◦ to 120◦, with an interval of 0.01◦. A spectrophotometer (FLSP920, Edinburgh
Instruments, Livingston, UK) was used to record the PL properties. The excitation wavelength was
set at 525 nm. For the PL spectra, the monitored luminescence range was from 570 to 645 nm with a
bandwidth of 0.2 nm, and for the decay curves, the monitored wavelength was 592 nm.

3. Results and Discussions

Figure 1 depicts the PL spectra of the NKBET20 ceramic powders excited at 525 nm under various
pressures. The magnetic dipole transition (MD) 5D0 →

7F1 (585–600 nm) is independent of the local
environments [28], while the so-called “hypersensitive transition” 5D0 →

7F2 (600–630 nm) is sensitive
to the local environments [29]. Figure 1 shows that as the pressures increase, the fluorescence intensity
of the 5D0 →

7F2 transition (I2) increases. As Eu3+ ions present the same PL spectra when distributed
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in NKBET100x materials with the same phase [27], utilizing the NKBET10 and NKBET30 ceramic
powders as the reference of the R and T phases, the variations of I2 suggest a transformation from the T
to R phase.
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Figure 1. Photoluminescence (PL) spectra of the (Na0.8,K0.2)0.5Bi0.497Eu0.003TiO3 (NKBET20) ceramic
powders under various pressures. The peak intensity of the magnetic dipole (MD) transition 5D0 →

7F1
is normalized to 1; the dashed lines represent the PL spectra of the NKBET10 and NKBET30 ceramic
powders; the black arrow represents the variations of the PL spectra.

Considering the sensitivity of the hypersensitive transition of 5D0 →
7F2 , and the independence

of the MD transition of 5D0 →
7F1 , FIR21 is a good measure of the Eu3+ ions’ local environments.

As the discussed intensity of the transition is the integral intensity, Lorentz profiles were used to fit the
spectra so as to obtain accurate values [24,30]. As the pressures increases, the FIR21 of the NKBET20
ceramic powders increase from about 1.75 to 1.99, as shown in Figure 2. Using NKBET10 and NKBET30
ceramic powders as references, the increase of FIR21 also indicates a transformation from the T to R
phase. In an earlier study [27], we utilized FIR21 to quantitatively analyze the phase structures of the
NKBET100x with compositions at the MPB by Equations (1) and (2):

KM =
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Here, K is FIR21; α is the volume phase fraction; τ is the decay time; and superscripts M, R,
and T represent the MPB, R, and T phase, respectively. KR, KT, τR, and τT are calculated from the
PL properties of the NKBET10 and NKBET30 compositions. KM is calculated from the PL spectra
of the NKBET100x with compositions near the MPB, then the phase fractions of αR and αT can
be quantitatively calculated via Equations (1) and (2). Similarly, this PL method could be applied
in pressure induced phase transformations. The FIR21 of the NKBET20 ceramic powders under
various pressures are shown in Figure 2. The decay time of the R and T phases (using NKBET10
and NKBET30 compositions as references) are used to correct the phase fractions according to the
analyses of the previous work [27], obtained from the decay curves of the NKBET10 and NKBET30
ceramic powders, as shown in Figure 3. Using NKBET10 and NKBET30 ceramic powders as references,
KR, KT, (2.227 and 1.701, Figure 2), τR, and τT (684.19 µs, 751.09 µs, Figure 3) in the above equations
are identified. Then, the phase fractions of the NKBET20 powders under various pressures can be
calculated by inputting K, thus solving Equations (1) and (2).
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Figure 3. The decay curve of the ceramic powders of (A) NKBET10 and (B) NKBET30. The excitation
wavelength is 525 nm and the monitored luminescence wavelength is 592 nm. The monoexponential
function, I(t) = I(0) exp(−t/τ), was used to fit the decay curve in order to obtain the decay time.

XRD patterns are also utilized to analyze the phase structures of the NKBET20 ceramic powders
under various pressures, as shown in Figure 4. Variations in the XRD patterns in Figure 4A suggest
a phase transformation. Figure 4B shows the super-lattice reflection 1/2(311), which is related to the
a−a−a− tilting system of the space group R3c of TiO6 octahedral, with respect to other adjacent unit cells,
giving rise to the super-lattice reflection [31–33]. The super-lattice reflection 1/2(311) could be used
to confirm the R phase, as has been widely reported [34,35]. As the pressures increase, the intensity
of the 1/2(311) reflection increases, suggesting that pressures induce the increase of the fraction of R
phase (R3c). In addition, XRD Rietveld refinement was executed by the general structure analysis
system (GSAS) for quantitative phase analyses [36,37], as shown in Figure 5, in which R3c (R phase)
and P4mm (T phase) were utilized in the meanwhile [33,38]. The fitted parameters are summarized in
Table 1. From Figure 5 and Table 1, it can be seen that all of the patterns are fitted well.
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Figure 5. XRD Rietveld refinements of the NKBET20 ceramic powders under various pressures: (A) 0,
(B) 100, (C) 200, (D) 300, (E) 400, and (F) 500 MPa.

Table 1. The parameter of XRD Rietveld refinement.

P
(MPa)

R3c P4mm R Factors

a (Å) c (Å) V (Å3) vol% a (Å) c (Å) V(Å3) vol% Rwp% Rp%

0 5.5170 13.5200 356.377 14.87 3.9032 3.9111 59.586 85.13 7.25 5.73
100 5.5167 13.5171 356.263 34.30 3.9031 3.9100 59.566 65.70 6.39 4.95
200 5.5162 13.5137 356.116 41.38 3.9029 3.9096 59.555 58.62 6.18 4.79
300 5.5150 13.5133 355.946 53.29 3.9029 3.9092 59.548 46.71 6.59 5.06
400 5.5145 13.5135 355.892 58.34 3.9023 3.9079 59.514 41.66 6.86 5.28
500 5.5139 13.5129 355.798 59.60 3.9021 3.9071 59.490 40.40 6.96 5.26
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Figure 6 depicts the variations of the phase fraction of the NKBET20 ceramic powders as the
pressures increase. It can be seen from the results of the PL method that as the pressure increases
from 0 to 500 MPa, the fractions of R phase of the NKBET20 powders increase from about 11% to
58%, while the fractions of the T phase decrease from about 89% to 42%. The phase analyses from
PL method were consistent with the XRD Rietveld refinements. The phase transformation induced
by the pressures within the piezoelectric ceramic bulks usually presents a trigger point and sharp
variation [39,40]; however, the piezoelectric ceramic powders show no obvious trigger point and
the phase transformation is much gentler. This finding indicates that the grind of the piezoelectric
ceramic powders may induce a phase transformation, which needs additional care when doing the
XRD measurements. In addition, the pressure induced phase transformation could be detected by the
PL method, indicating the potential for Eu3+ ions to be used as in site probes for phase transformations.
The experiments set up for PL detection are easy to build, which can be home-made to satisfy various
demands, like electric field module, pressure module, and temperature module. Compared with the
XRD Rietveld refinements, which need demanding devices and precise patterns, the PL method is a
simple and fast procedure. We show that the PL method could be applied in pressure induced phase
transformation in this work, yet it has much potential in fields of other phase analyses.
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Figure 6. Variations of the fraction of the R phase of the NKBET20 ceramic powders under
various pressures.

4. Conclusions

In summary, pressures induce a phase transformation within the NKBET20 ceramic powders,
and the PL properties of Eu3+ ions can be utilized to analyze the transformation qualitatively and
quantitatively. Utilizing NKBET10 and NKBET30 ceramic powders as references, the increase of I2

suggests a pressure induced transformation from the T to R phase. Furthermore, FIR21 were shown
to quantitatively analyze the phase transformation. The results from the PL method show that as
the pressure increases from 0 to 500 MPa, the fractions of the R phase of NKBET20 powders increase
from about 11% to 58%, while the fractions of the T phase decrease from about 89% to 42%. Both the
qualitative and quantitative phase analyses were further confirmed by the XRD results. Unlike the
ceramic bulks, the pressure induced phase transformation in the ceramic powders shows no obvious
trigger point and is much gentler. This work suggests a different viewpoint to study the pressure
induced phase transformation, both qualitatively and quantitatively, which can be used for more
phase analyses.
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