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Abstract: In this study, simple electrospinning combined with pyrolysis were used to fabricate
transition-metal-based-nanoparticle-incorporated carbon nanofiber (CNF) electrocatalysts for a
high-efficiency hydrogen evolution reaction (HER) and overall water splitting. Co-CeO2

nanoparticle-incorporated carbon nanofibers (Co-CeO2@CNF) exhibit an outstanding electrocatalytic
HER performance with an overpotential and Tafel slope of 92 mV and 54 mV/dec, respectively. For the
counterpart, electrolysis, we incorporate the widely used Ni2Fe catalyst with a high oxygen evolution
reaction (OER) activity into the carbon nanofiber (Ni2Fe@CNF). To evaluate their electrochemical
properties for the overall water splitting, Co-CeO2@CNF and Ni2Fe@CNF were used as the HER and
OER electrocatalysts in an alkaline electrolyzer. With the paired Co-CeO2@CNF and Ni2Fe@CNF
electrodes, an overall water splitting current density of 10 mA/cm2 was achieved by applying 1.587 V
across the electrodes with a remarkably lower overpotential of 257 mV compared to that of an
electrolyzer comprised of Pt/C and IrO2 electrodes (400 mV). Owing to the conformal incorporation
of nanoparticles into the CNF, the electrocatalysts exhibit significant long-term durability over 70 h of
overall water splitting. This study provides rational designs of catalysts with high electrochemical
catalytic activity and durability to achieve overall water splitting.

Keywords: electrospinning; carbon nanofiber support; overall water splitting;
transition-metal-based electrocatalysts

1. Introduction

The fabrication of high-efficiency catalysts with long-term durability through a cost-effective
process is essential for the sustainable production of hydrogen (H2) [1,2]. Electro-chemical water
splitting has been considered as a promising eco-friendly process that avoids the emission of greenhouse
gases or harmful components (i.e., CO2 or NOx) [2,3]. In recent decades, several studies have been
performed to replace noble-metal-based electrocatalysts with earth-abundant nonnoble metals and
highly active materials such as transition-metal alloys, oxides, carbides, nitrides, and phosphides [4–15].
However, various issues need to be addressed to achieve high-efficiency overall water electrolysis.
Such issues include the poor electrochemical catalytic kinetics with very high overpotentials on both
electrocatalysts for the simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction
(OER) [4,16]. Moreover, several durability issues exist regarding electrocatalysts during electrolysis.
Even commercialized Pt/C and Pt alloys suffer from degradation in the electrolyte [17]. To improve the
long-term stabilities of the catalysts, highly conductive carbon-based nanomaterials such as carbon
nanotubes, reduced graphene oxide, and carbon nanofibers (CNFs) have been utilized as support
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or binding materials [18–20]. However, conformal incorporations of nanostructured catalysts into
nanocarbon-based supports with a systemic formation should be realized to simultaneously ensure the
sufficient electrochemical activity and high conductance of the carriers [20,21]. Therefore, the rational
design of electrocatalysts, considering the process cost, catalytic activity, and long-term durability,
is required to achieve high-efficiency overall water splitting for the production of clean H2. Recently,
cost-effective electrospun nanofibers with a high conductivity and a large specific surface area have
attracted considerable attention for electrochemical HER [22–24]. The highly conductive nanofibers
obtained by electrospinning can be an excellent support for electrocatalysts owing to their outstanding
mechanical strength, flexibility, and charge-transport properties [24–26].

In this study, simple electrospinning combined with pyrolysis were utilized to fabricate
transition-metal-incorporated CNF electrocatalysts for efficient HER and overall water splitting.
Cobalt-incorporated ceria (CeO2) nanoparticles on a conductive carbon nanofiber (Co-CeO2@CNF)
were fabricated for HER. Owing to the abundant defect sites originating from oxygen vacancies and the
favorable conversion of oxidation states between Ce3+ and Ce4+, CeO2 can be considered as an excellent
support for cobalt to achieve increased electrochemical activity and good stability [21,27–30]. Co-CeO2

nanoparticles with an atomic Co:Ce ratio of 1:1 were homogeneously dispersed on the CNF supports,
which provided outstanding electrocatalytic performance. For the counterpart, water electrolysis, the
widely used Ni2Fe catalyst for OER was incorporated into the CNF. To evaluate their electrochemical
properties for the overall water splitting, Co-CeO2@CNF and Ni2Fe@CNF were used as the HER and
OER electrocatalysts in an alkaline electrolyzer, respectively. Their performances were compared with
those of an electrolyzer fabricated by pairing Pt/C and IrO2 electrodes. With the paired Co-CeO2@CNF
and Ni2Fe@CNF electrodes, an overall water splitting current density of 10 mA/cm2 was achieved by
applying 1.587 V across the electrodes with lower overpotential of 257 mV. Owing to the conformal
incorporation of nanoparticles into the CNF supports, the electrocatalysts exhibited significant long-term
durability over 70 h of operation.

2. Materials and Methods

2.1. Synthesis of Electrocatalysts

For the typical electrospinning synthesis, 1.0 g of polyacrylonitrile (PAN, average Mw = 150,000,
Sigma-Aldrich, Missouri, USA) was initially dissolved in N,N-dimethylformamide (Deajung) solvent
(10 mL) under vigorous stirring for 6 h. To fabricate Co-CeO2@CNF for the HER, 4 mmol of
Co(acac)2·4H2O and 4 mmol of Ce(NO3)3·6H2O were introduced into the PNA solution under rapid
stirring for another 12 h. The resultant solution was loaded into a syringe with a 22-gauge needle
which was electrically connected to a high-voltage power supply. The applied potential between
the needle and fiber collector (aluminum foil) was 27 kV. Then, the electrospinning was conducted
with a flow rate of 1.5 mL/h. For the fabrication of the OER catalyst, 2 mmol of Ni(NO3)2·4H2O and
1 mmol of Fe(acac)3·6H2O were dissolved into the PAN solution under stirring at 500 rpm for another
12 h. The metal-precursor-dissolved solution was loaded into a syringe with a 27-gauge needle and
electrospun with the flow rate of 0.8 mL/h and applied voltage of 15 kV. The distance between the
needle tip and fiber collector was 20 cm. After the electrospinning, the collected fiber films were
stabilized in air at 280 ◦C for 3 h, then post thermal treatment was conducted at 900 ◦C for 5 h under a
N2 atmosphere to obtain Co-CeO2@CNF.

2.2. Material Characterization

To investigate the morphological properties of the as-fabricated electrocatalysts, scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) images were acquired using a
JSM-7600F (Jeol Ltd., Tokyo, Japan) at the MEMS·Sensor Platform Center of Sungkyunkwan University
(SKKU) and a JEM-2100F microscope (Jeol Ltd., Tokyo, Japan) operated at 200 kV, respectively.
The crystalline properties of the sample powders were characterized by powder X-ray diffraction
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(XRD). The obtained patterns were further investigated by using Joint Committee on Powder Diffraction
Standards (JCPDS, v2.1, ICDD, Pennsylvania, USA) Card No. For XRD characterization, a D8-Advances
(Bruker AXS, Karlsruhe, Germany) diffractometer with a Cu Kα radiation source (λ = 0.15418 nm) was
used. X-ray photo-electron spectroscopy (XPS) was performed using an ESCA2000 (VG Microtech,
East Grinstead, UK).

2.3. Electrochemical Measurements

For the fabrication of the electrodes, we prepared Ketjen black as a conductive agent, polyvinylidene
fluoride as a binder and a mixture of a catalyst in a weight ratio of 20:10:70. These components
were dissolved in N-methyl-2-pyrrolidone. Then, the sample slurry was coated onto a carbon paper
substrate (1 × 1 cm2) and a vacuum dry was conducted overnight at 80 ◦C. Polarization and cyclic
voltammetry (CV) curves were obtained using a CHI600D electrochemical analyzer (CH instrument) in
a 1-M KOH solution. For the three-electrode configuration, Hg/HgO and Pt wire were used as reference
and counter electrodes, respectively. Chrono-potentiometric curves were obtained using a WBCS-3000
(Xeno Co.) in a 1-M KOH solution. Electrochemical impedance spectroscopy (EIS) measurements
were performed at −1.1 V versus a reversible hydrogen electrode (RHE) (alternating-current excitation
signal) in a frequency range of 100 kHz to 0.1 Hz. All potential values were converted to the RHE scale
by using ERHE = ESCE + E0

SCE + 0.059 × pH, where ESCE is the potential measured using a saturated
calomel electrode (SCE) reference, and E0

SCE is the standard potential of the SCE at 25 ◦C (0.078 V),
unless otherwise stated.

3. Results

The Co-CeO2@CNF catalyst was fabricated by electrospinning and pyrolysis. A PAN solution
containing metal precursors was electrospun on an aluminum current collector under an applied
bias. The obtained polymer mat was transformed into a black Co-CeO2@CNF catalyst upon thermal
treatment at 900 ◦C for 5 h in a tubular furnace under a N2 atmosphere. Figure 1a shows a typical
SEM image of the synthesized Co-CeO2@CNF. A SEM image of a pristine CNF is shown in Figure S1
(Supplementary Information). The obtained nanofiber exhibited a one-dimensional structure with a
diameter of approximately 840 nm. The higher-magnification SEM image shows that the surface of
Co-CeO2@CNF was coarse, with numerous Co-CeO2 nanoparticles homogeneously dispersed in the
nanofiber support (Figure 1b). The TEM image demonstrates the successful formation of Co-CeO2

nanoparticles on the surface of the CNF (Figure 1c). Co, Ce, C, N, and O elements were uniformly
distributed in the CNF. An energy-dispersive X-ray spectroscopy (EDS) analysis shows an atomic ratio
of Co:Ce of approximately 1:1 (Figure 1d,e, and Figure S2 in Supplementary Information). The XRD
pattern of Co-CeO2@CNF shows three high peaks at 44.2◦, 51.5◦, and 75.8◦ corresponding to the
(111), (200), and (220) planes of Co metal with a face-centered cubic (FCC) structure (JCPDS# 15-0806)
respectively (Figure 1f). The formation of the FCC CeO2 (JCPDS# 81-0792) was confirmed by the
diffraction peaks at 28.4, 32.9, 47.4, 56.3, 59.0, 69.4, 76.6, and 79.0◦ corresponding to the (111), (200),
(220), (311), (222), (400), (331), and (420) planes, respectively. These results indicate that metal and oxide
nanoparticles were formed in the CNF by electrospinning and pyrolysis. To understand the roles of
the metal cations in the synthesis of Co-CeO2@CNF, bare Co@CNF and CeO2@CNF were synthesized
by the same processes used for the synthesis of Co-CeO2@CNF but without the Co or Ce precursors.
When the synthesis was performed without Ce(NO3)3 (the other conditions were identical to those
for the sample in Figure S3a (Supplementary Information)), Co nanocrystals with a cubic structure
were formed; this was confirmed by XRD (JCPDS Card No. 81-0792, Figure S3b in Supplementary
Information). Without the Co(acac)2 precursor, CeO2 microparticles with a low-crystallinity cubic
phase were obtained as the product (Figure S3c,d in Supplementary Information). These results indicate
that both Co and Ce cations favored the formation of Co-CeO2 nanoparticles. Figure 1g–i depicts the
XP spectra of Co 2p, Ce 3d, and O 1s respectively. The Co 2p core-level spectrum exhibited peaks at
780.5, 782.8, 785.0, and 787.0 eV, which were assigned as Co 2p3/2 Co3+, Co 2p3/2 Co2+, and satellite
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peaks, respectively. The peaks centered at 796.1 and 798.5 eV correspond to Co 2p1/2 Co3+ and Co 2p1/2

Co2+ respectively [31]. The Ce 3d core-level spectrum contained peaks associated with both Ce3+ and
Ce4+ [32]. The electrons in the 4f 1 orbital of Ce3+ could considerably influence the interaction between
the ceria and the surrounding Co nanoparticles. Moreover, oxygen vacancies can be induced by the
charge compensation of Ce3+ ions on the surface of CeO2 [1,31]. This can enhance the electrochemical
water-splitting catalytic kinetics of the Co-CeO2-incorporated CNF.
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Figure 1. Characterization of Co-CeO2@CNF. (a,b) SEM and (c) TEM images, (d) scanning TEM image
and EDS elemental maps, (e) EDS data, (f) XRD pattern, and (g–i) XPS analysis of Co-CeO2@CNF.

We investigated the effects of the electrochemical catalytic properties of Co-CeO2@CNF on the
HER and compared them with those of Co@CNF, CeO2@CNF, CNF, commercial Pt/C, and carbon
paper electrodes. Figure 2a shows polarization curves for the HERs, including the bare carbon paper.
The Co-CeO2@CNF electrode exhibited a significant overpotential of 92 mV at a current density of -10
mA/cm2 with the iR compensation; the corresponding values for the Co@CNF, CeO2@CNF, and bare
CNF electrodes were 270, 381, and 506 mV, respectively, while that for the Pt/C electrode was 54 mV
(Figure 2b). This value was also lower than previously reported Co and CeO2 based catalysts (Table
S1). The Tafel slope of the Co-CeO2@CNF electrode was 54 mV/dec, considerably smaller than those of
the Co@CNF (118 mV/dec), CeO2@CNF (154 mV/dec), and CNF (146 mV/dec) electrodes (Figure 2c).
It was slightly larger than that of the Pt/C electrode (31 mV/dec) [33]. Figure 2d shows Nyquist
plots obtained from an EIS measurement. Consistently with the HER activities, the charge-transfer
resistance (Rct) of the Co-CeO2@CNF electrode was considerably smaller than those of the Co@CNF
and CeO2@CNF electrodes. This is consistent with the low overpotential and high HER activity of
Co-CeO2@CNF. Furthermore, the electrochemical active surface area was characterized by investigating
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the electrochemical double-layer capacitance (Cdl) via CV (Figure S4 in Supplementary Information).
The estimated Cdl of the Co-CeO2@CNF electrode was 154.3 mF/cm2, whereas those of the Co@CNF
and CeO2@CNF electrodes were 58.7 and 85.6 mF/cm2, respectively (Figure 2e). The higher capacitance
of Co-CeO2@CNF than that of Co@CNF and CeO2@CNF indicates that its unique porous structure and
effective active sites contributed to its high HER performance. To investigate the long-term durability
of Co-CeO2@CNF, its overpotential at the current density of −10 mA/cm2 was monitored over time
without iR compensation (Figure 2f). Notably, no significant change in overpotential (159.3–166.1 mV)
was observed over the 70 h of operation.
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Figure 2. Electrochemical performances of the electrocatalysts for the HER in 1-M KOH. (a) HER
polarization curves of the Co-CeO2@CNF, Co@CNF, CeO2@CNF, CNF, commercial Pt/C, and bare carbon
paper electrodes recorded in the 1-M KOH solution at a scan rate of 1 mV/s from negative to positive
potentials at room temperature. (b) Comparison of the HER overpotentials of the Co-CeO2@CNF,
Co@CNF, CeO2@CNF, CNF, and commercial Pt/C electrodes in the 1-M KOH. (c) Tafel plots of the
Co-CeO2@CNF, Co@CNF, CeO2@CNF, CNF, and commercial Pt/C electrodes for the HER. (d) EIS plots
of the Co-CeO2@CNF, Co@CNF, and CeO2@CNF electrodes at an applied potential of −0.2 V vs. RHE.
(e) Electrochemical active surface areas of the Co-CeO2@CNF, Co@CNF, and CeO2@CNF electrodes
obtained by using the double-layer capacitances. (f) iR-uncorrected chronopotentiometry curve of the
Co-CeO2@CNF electrode at a constant current density of −10 mA/cm2 over a period of 70 h.

For the counterpart, water electrolysis, Ni2Fe@CNF was used for the fabrication of the OER
electrode by the same synthesis process as was used for Co-CeO2@CNF. The surface morphology of
Ni2Fe@CNF was observed using SEM, as shown in Figure 3a. The resulting nanofibers had an average
diameter of approximately 610 nm and an average particle size below 100 nm. The nanoparticles were
encapsulated and well-embedded in the CNF. The EDS elemental maps in Figure 3b and Figure S5
in Supplementary Information show that Ni, Fe, C, N, and O elements were uniformly distributed
in the CNFs. The XRD pattern of Ni2Fe@CNF shows diffraction peaks centered at 2θ values of
43.8◦, 51.2◦, and 75.3◦, corresponding to (111), (200), and (220) reflections, respectively (Figure 3c).
These results indicate that Ni2Fe metal nanoparticles were successfully formed in the CNF through
electrospinning and pyrolysis. The Ni 2p core-level XP spectrum contained peaks associated with both
Ni2+ (854.3 and 871.3 eV) and Ni3+ (856.0 and 873.2 eV). The Fe 2p core-level XP spectrum exhibited
peaks corresponding to both Fe (707.1 eV) and Fe3+ (710.4 eV) (Figure 3d). Further, we evaluated the
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electrocatalytic performance of Ni2Fe@CNF for the OER and compared its performance with those of
commercially utilized IrO2 nanoparticles with sizes of 30–150 nm and the control catalysts Ni@CNF,
Fe@CNF, and bare CNF [33]. Figure 3e shows the OER polarization curves of five catalysts, including
the commercial IrO2. With the iR compensation, the overpotential of the Ni2Fe@CNF electrode was
242 mV at a current density of 10 mA/cm2. The overpotentials of the Ni@CNF, Fe@CNF, CNF, and
commercialized IrO2 catalysts were 478, 355, 561, and 284 mV, respectively. This OER performance was
also similar or lower than that for previously reported Ni and Fe based catalysts (Table S2). The Tafel
plot in Figure 3f shows the kinetics of the electrochemical OER on each catalyst. The Tafel slope of the
Ni2Fe@CNF electrode was 81 mV/dec, considerably smaller than that of the Ni@CNF (248 mV/dec),
Fe@CNF (109 mV/dec), and IrO2/NF (121 mV/dec) electrodes. The significantly low overpotential and
small Tafel slope of Ni2Fe@CNF indicate its high OER efficiency. The Nyquist plots obtained from
the EIS measurement reveal the charge-transfer resistances (Rct) during the electrochemical catalytic
reactions of the Ni2Fe@CNF, Ni@CNF, and Fe@CNF electrodes. As shown in Figure 3g, the Ni2Fe@CNF
electrode exhibited a considerably smaller Rct of 36.5 Ω than the Ni@CNF (475.4 Ω) and Fe@CNF
(77.0 Ω) electrodes did. The small Rct reflects the favorable charge migration and desirable catalytic
kinetics which led to the small Tafel slope. Moreover, the conformally embedded Ni2Fe nanoparticles
in the CNF provided efficient electrical contacts and chemical stability of the composite, which also
contributed to the superior stability [34]. To evaluate the long-term stabilities of the Ni2Fe@CNF
electrode at large current densities, the overpotential for the OER was monitored at a constant current
density of 50 mA/cm2 for 70 h. As shown in Figure 3h, no significant change in the potential required
to maintain the current density of 50 mA/cm2 was observed in the period of 70 h. This demonstrates
the excellent catalytic stability of the Ni2Fe@CNF electrode for the OER.
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Figure 3. Ni2Fe@CNF for the OER electrode. (a) SEM images, (b) EDS elemental maps, (c) XRD
pattern, and (d) XPS analysis of Ni2Fe@CNF. (e) Polarization curves of the Ni2Fe@CNF, Ni@CNF,
Fe@CNF, CNF, commercial IrO2, and bare carbon paper electrodes recorded in a 1-M KOH solution
at a scan rate of 1 mV/s from negative to positive potentials at room temperature. (f) Tafel plots of
the Ni2Fe@CNF, Ni@CNF, Fe@CNF, CNF, and commercial IrO2 electrodes for the OER. (g) EIS plots
of the Ni2Fe@CNF, Co@CNF, and CeO2@CNF electrodes at an applied potential of 1.53 V vs. RHE.
(h) Chrono-potentiometry curve of the Ni2Fe@CNF electrode at a constant current density of 50 mA/cm2

over a period of 70 h.

For overall water splitting, we paired the Co-CeO2@CNF HER electrocatalyst with the
high-performance (Figure S6 in Supplementary Information) Ni2Fe@CNF OER electrocatalyst (Figure S7
in Supplementary Information) in a 1-M KOH, to obtain an alkaline electrolyzer (Figure 4a). For the
comparison, an electrolyzer was fabricated by pairing the Pt/C and IrO2 electrodes (Figure 4b). In the
electrolyzer based on the Co-CeO2@CNF and Ni2Fe@CNF electrodes, an overall-water-splitting current



Materials 2020, 13, 856 7 of 10

density of 10 mA/cm2 was achieved by applying only 1.587 V across the electrodes with iR compensation.
The lower overpotential of 257 mV was observed when that of the electrolyzer based on the Pt/C
and IrO2 electrodes was 400 mV. In Figure 4c, the stability of the Co-CeO2@CNF and Ni2Fe@CNF
electrodes was investigated by monitoring the applied potential values at a constant water-splitting
current density of 10 mA/cm2. As shown in Figure 4c, the performance of the Co-CeO2@CNF and
Ni2Fe@CNF electrodes was maintained over 70 h of chrono-potentiometry testing.
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overall water splitting. (a) Optical image of the Co-CeO2@//Ni2Fe@CNF electrolyzer. (b) Overall water
splitting characteristics of the Co-CeO2@CNF//Ni2Fe@CNF and IrO2//(Pt/C) electrolyzers measured in
a two-electrode configuration in the range of 1.8 to 1.2 V at a scan rate of 1 mV/s in a 1-M KOH solution.
(c) iR-uncorrected chrono-potentiometric curve of the Co-CeO2@CNF//Ni2Fe@CNF electrolyzer at a
steady-state current density of 10 mA/cm2 in a 1-M KOH solution.

4. Conclusions

Simple electrospinning combined with pyrolysis were utilized to fabricate
transition-metal-incorporated CNF electrocatalysts to achieve efficient overall water splitting.
For the HER, Co-CeO2 nanoparticles with an Co:Ce atomic ratio of approximately 1:1 were
homogeneously dispersed on CNF supports (Co-CeO2@CNF). Co-CeO2@CNF exhibited an
outstanding electrocatalytic performance for the HER. Its overpotential and Tafel slope were 92 mV at
a current density of −10 mA/cm2 and 54 mV/dec respectively. Ni2Fe@CNF was fabricated for the
counterpart, water electrolysis. With the iR compensation, the overpotential of the Ni2Fe@CNF
electrode was 242 mV at a current density of 10 mA/cm2. The Tafel slope of the Ni2Fe@CNF electrode
was 81 mV/dec, considerably smaller than that of the commercialized IrO2/NF electrode (121 mV/dec).
To evaluate their electrochemical properties for the overall water splitting, Co-CeO2@CNF and
Ni2Fe@CNF were used as the HER and OER electrocatalysts in an alkaline electrolyzer, respectively.
Their performances were compared with that of an electrolyzer fabricated by pairing Pt/C and IrO2

electrodes. With the paired Co-CeO2@CNF and Ni2Fe@CNF electrodes, an overall water splitting
current density of 10 mA/cm2 was achieved by applying 1.587 V across the electrodes. The significantly
lower overpotential of 257 mV was achieved when the overpotential of electrolyzer based on the Pt/C
and IrO2 electrodes was 400 mV. Owing to the conformal incorporation of nanoparticles into the
CNF supports, the electrocatalysts exhibited significant long-term durability. The performance of the
Co-CeO2@CNF and Ni2Fe@CNF electrodes was maintained over 70 h of operation.
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and XRD patterns of (a, b) Co@CNF and (c, d) CeO2@CNF, respectively, Figure S4: CV curves of (a)Co-CeO2@CNF,
(b)Co@CNF, and (c)CeO2@CNF at various scan rates, Figure S5: EDS elemental mapping TEM images of the
Ni2Fe@CNF representing as (a) O and (b) N, Figure S6: Polarization curves of Co-CeO2@CNF at various amount
of Co-CeO2, Figure S7: Polarization curves of Ni2Fe@CNF at various amount of Ni2Fe, Table S1: HER performance
compared to previously reported catalysts, Table S2: OER performance compared to previously reported catalysts.
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