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Abstract: Dynamic observation of the microstructure evolution of Sn2.5Ag0.7Cu0.1RE/Cu solder
joints and the relationship between the interfacial intermetallic compound (IMC) and the mechanical
properties of the solder joints were investigated during isothermal aging. The results showed that the
original single scallop-type Cu6Sn5 IMC gradually evolved into a planar double-layer IMC consisting
of Cu6Sn5 and Cu3Sn IMCs with isothermal aging. In particular, the Cu3Sn IMC grew towards the
Cu substrate and the solder seam sides; growth toward the Cu substrate side was dominant during
the isothermal aging process. The growth of Cu3Sn IMC depended on the accumulated time at a
certain temperature, where the growth rate of Cu3Sn was higher than that of Cu6Sn5. Additionally,
the growth of the interfacial IMC was mainly controlled by bulk diffusion mechanism, where the
activation energies of Cu6Sn5 and Cu3Sn were 74.7 and 86.6 kJ/mol, respectively. The growth rate of
Cu3Sn was slightly faster than that of Cu6Sn5 during isothermal aging. With increasing isothermal
aging time, the shear strength of the solder joints decreased and showed a linear relationship with the
thickness of Cu3Sn. The fracture mechanism of the solder joints changed from ductile fracture to
brittle fracture, and the fracture pathway transferred from the solder seam to the interfacial IMC layer.

Keywords: Sn2.5Ag0.7Cu0.1RE/Cu soldering; dynamic observation; isothermal aging; intermetallic
compound; growth kinetics; fracture mechanism

1. Introduction

In an electronic packaging system, solder joints provide an electrical connection and mechanical
support to the electronic components. The need for function integration, high power, and density of
the electronic products has been a driving force for highly reliable inter-connection solder joints [1,2].
Because of the inherent toxicity of lead, the use of SnPb solder has been restricted. Various types of
environmental-friendly Sn-based lead-free alloys have been developed [3–7]. SnAgCu system lead-free
solder alloys have been regarded as one of the promising candidates for SnPb solder alloys because
of their good mechanical properties [8]. However, compared to the traditionally SnPd solders, the
wettability SnAgCu lead-free solders are relatively poor. Additionally, the high Ag content of SnAgCu
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lead-free solders will lead to the formation of the brittle Ag3Sn phase. Apart from issues associated
with properties and reliability, the cost is another issue to be considered. Rare earth (REs) also has a
high chemical activity, which can effectively decrease the surface energy of molten alloys and thus
improve the wettability of alloys. Xue and his team added Ce, Pr, and Nd in the SnAgCu solder
alloys [9–13]. They found that the appropriate addition of Pr and Nd enhanced the shear bond strength
of solder joints and refined the morphology of the interface layer. Yu et al. [14] found that with the
addition of trace Ce and La elements, the β-Sn grains and eutectic colony in Sn3.5Ag0.7Cu alloy are
refined. All these results indicated that adding trace rare earth elements was an efficient way to develop
new solders. Our team has attempted to lower the Ag content by adding RE elements, obtaining quite
promising results with the solder alloy of Sn2.5Ag0.7Cu0.1RE [15,16]. It is well known that the solder
joints are frequently exposed to various harsh environments, such as temperature, humidity, shock,
and vibration [17–19]. It was reported that approximately half the failure of the solder joints was
caused by isothermal aging [20]. One of the most important reliability issues is the microstructure
evolution of the solder joints, and understanding the growth behavior and kinetics of the interfacial
intermetallic compound (IMC) is regarded as essential. In the literature, investigating the reliability of
isothermal aging of Sn-based lead-free solder joints has become an area of interest. Many scholars
have studied the isothermal aging characteristics of SnAgCu/Cu [21–25], In-48Sn/Cu [26,27], and
Sn-Bi/Cu [28,29] solder joints. They have focused on the growth kinetics of the interfacial IMC and the
mechanical properties of solder joints during isothermal aging. Xu et al. [21] investigated the influence
of isothermal time and temperature on the interfacial IMC layer growth of Sn-3.5Ag-0.5Cu/Cu solder
joints. Their studies showed that the interfacial IMC layer not only became thicker but also transformed
from a scallop-like shape to planar shape with increasing isothermal aging time. Zhang et al. [22]
reported the growth kinetics of the interfacial IMC layer of Sn-3.8Ag-0.7Cu/Cu solder joints and
found that the IMC growth was controlled by the diffusion mechanism. Besides, they obtained the
activation energy of the interfacial IMC. Hu et al. [23,24] further studied the relationships between the
interfacial IMC and the fracture behavior of the Sn-3.0Ag-0.5Cu/Cu solder joints during isothermal
aging. Nishikawa and Iwata [25] compared the reflow soldering and laser soldering and found that the
growth of the interfacial IMC layer was slower by reflow soldering at the isothermal aging temperature
423 K. However, because of the slow reaction rate of the interfacial movement during isothermal aging,
it is difficult to precisely measure the interfacial movement. To date, most methods used to investigate
the growth kinetics and the interfacial movement during isothermal aging have used qualitative and
statistical analysis [21–25], which cannot accurately reveal the constituents and growth of the interfacial
IMC. Additionally, the relationship between the size and morphology of the interfacial IMC and the
fracture mechanism of the solder joints during isothermal aging is not well understood.

Therefore, in this work, we conduct a dynamic observation of the interfacial IMC evaluation
and the relationship between the growth behavior of interfacial IMC and the mechanical properties
of the solder joints. There is important theoretical and practical value in predicting the reliability of
solder joints.

2. Materials and Methods

2.1. Materials and Soldering

A Sn2.5Ag0.7Cu0.1RE solder alloy; pure metals of Sn, Ag, and Cu (purity 99.9%); and a RE
mixture (with approximately 40% La and 60% Ce) were used as the raw materials. The solder alloy
and Cu substrate were prepared according to the procedures described in reference [30]. After that,
the soldering specimens were placed into the electric chamber furnace at 270 ◦C for 4 min.

2.2. Isothermal Aging

To illustrate the interfacial movement quantitatively, marks were carved on the Cu substrate and
used as reference points. The indentation was carried out by the MHV-2000 Micro-Vickers (Laizhou



Materials 2020, 13, 831 3 of 13

Huayin Testing Instrument Co., Ltd., Laizhou, China). After the indentation test, a rectangular pyramid
mark could be found on the Cu substrate. The marks made by micro-Vickers are assumed to be
fixed during isothermal aging. The specimens were aged at 100, 125, 150, and 175 ◦C for 72, 192, 288,
and 360 h and the morphology of the solder joints was observed for each aging time. Additionally, to
reduce the oxidation of the surface, the specimens were placed in a vacuum electric chamber furnace
with the argon gas atmosphere (purity > 99.99%).

2.3. Characterization Methods

The microstructure of the solder joints was obtained by a scanning electron microscope
(SEM, JMS-5610LV, Tokyo, Japan), and the chemical composition was determined by energy dispersive
spectroscopy (EDS, Inca X-sight, Oxford Instruments, Oxford, England), X-ray diffraction (XRD, Bruker
D8-Advance, Billerica, MA, USA) patterns of the soldering samples were recorded on a Bruker D8
Advance X-ray diffractometer in 2θ ranging from 25◦ to 80◦. The shear strength tests were carried
out in a UTM2503 universal testing machine (Shenzhen SUNS technology stock Co., Ltd., Shenzhen,
China) at room temperature with a rate of 1 mm/min.

To describe the growth behavior of the interfacial IMC layer and interfacial movement, the
distances between the mark (“P”) and the interface of Cu/Cu3Sn, Cu3Sn/Cu6Sn5, and Cu6Sn5/solder
were measured with increasing isothermal aging time, as illustrated in Figure 1. The distance
between the interface and the marked point (“P”) was measured by the Image–Pro Plus 6.0 software
(Media Cybernetics, Rockville, MD, USA). The average thickness of the interfacial IMC (d) was
calculated by the Equation (1) [31]:

d = A/L, (1)

where A is the area of interfacial IMC layers and L represents the length of the coverage.
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Figure 1. Schematic diagram of interfacial intermetallic compound.

3. Results and Discussion

3.1. Interfacial IMC Evolution of the Sn2.5Ag0.7Cu0.1RE/Cu Solder Joints during Isothermal Aging

Figure 2 shows the dynamic observation interfacial microstructure evolution during isothermal
aging. The solder joints consisted of a soldering seam, interfacial IMC, and Cu substrate. The soldered
seam included the primary β-Sn phase and eutectic phases which were presented at the boundary
of the primary β-Sn region. The eutectic phases included the fine acicular β-Sn+Ag3Sn, granular
β-Sn+Cu6Sn5 binary eutectics, and the β-Sn+Ag3Sn+Cu6Sn5 ternary eutectic [32,33]. A continuous
Cu6Sn5 interfacial IMC layer with a scallop-like morphology was formed between the Cu substrate and
solder seam after soldering. In theory, the Cu3Sn IMC should exist between Cu and Cu6Sn5; however,
Cu3Sn is often too thin after soldering to be detected by SEM [34]. With increasing isothermal aging
time and temperature, the thickness of interfacial IMC layers clearly increased (Figure 2), and the
morphology gradually evolved from scallop-type to planar because of the growth and the combination
of adjacent scallop-like Cu6Sn5. In addition, the composition of the interfacial IMC also changed.
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After isothermal aging for 72 h at 175 ◦C, the scallop-like Cu6Sn5 covered a newly generated layer
(marked “A”), which was determined to be the Cu6Sn5 phase by EDS analysis (Figure 3a). Additionally,
a distinct dark grey region below the Cu6Sn5 layer appeared (marked “B”), which was confirmed to be
the Cu3Sn phase by EDS analysis (Figure 3b). Figure 4 shows the distribution of Cu and Sn atoms
of “line 1” in Figure 2 after isothermal aging at 175 ◦C for 360 h. It was obvious that the interfacial
IMC layer consisted of two IMCs layers which were Cu6Sn5 and Cu3Sn IMC by the above analysis.
This indicated that the double-layer IMC comprising Cu6Sn5 and Cu3Sn IMC gradually evolved from
the original single Cu6Sn5 IMC. As can be seen from Figure 2, the growth rate of interfacial Cu3Sn
IMC is not obvious as the isothermal aging temperature is less than 150 ◦C, while the Cu3Sn IMC is
observed with an isothermal aging temperature greater than or equal to 150 ◦C.
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To further analyze the growth behavior of interfacial Cu6Sn5 and Cu3Sn IMCs, we investigated
the interface migrations during isothermal aging at 175 ◦C. Based on the above analysis, the Cu3Sn
IMC was not detected after soldering. Thus, it was assumed that there were only solder seam/Cu6Sn5

and Cu6Sn5/Cu interfaces after soldering. To obtain the interfacial movement, the distances between
the point “P” and the Cu/Cu3Sn, Cu3Sn/Cu6Sn5, and Cu6Sn5/solder interface were measured with the
increase of isothermal aging time, as shown in Figure 5b. Compared with the original Cu6Sn5/Cu
interface in Figure 5a, when the isothermal aging time increased to 360 h (Figure 5c), the relative
distance from the Cu/Cu3Sn, Cu3Sn/Cu6Sn5, and Cu6Sn5/solder interfaces to the point “P” tended
to decrease, slightly increase, and substantially increase, respectively. This indicated that with
increasing isothermal aging time, the thickness of Cu6Sn5 increased, the Cu3Sn IMC formed at the
original Cu6Sn5/Cu interface, and the Cu3Sn IMC grew towards both the Cu substrate and Cu6Sn5

sides. During isothermal aging, the original Cu6Sn5/Cu interface disappeared and gradually formed
a Cu6Sn5/Cu3Sn and Cu/Cu3Sn interface. This may be ascribed to the growth of interfacial IMC
being dominated by the inter-diffusion of the Sn and Cu atoms during the isothermal aging process.
Cu atoms from the Cu substrate diffused to the Cu3Sn/Cu6Sn5 interface, and the following reaction
occurred: Cu6Sn5 + 15Cu = 5Cu3Sn (reaction 1) [35]. Additionally, some Sn atoms may diffuse
from the solder seam to the Cu3Sn/Cu interface, and the reaction of 3Cu + Sn = Cu3Sn (reaction 2)
occurred [35]. Therefore, the Cu3Sn layer grew to both sides, causing the Cu/Cu3Sn interface to move
to the Cu substrate side and the Cu6Sn5/Cu3Sn interface to move to the Cu6Sn5 side during isothermal
aging. Paul et al. [36] used ThO2 particles as markers at the Cu/Cu6Sn5 diffusion couple interface.
After isothermal aging at 215 ◦C for 225 h, they found that the ThO2 particles were located in the inner
Cu3Sn layer, indicating that Cu3Sn grew to both the Cu substrate and Cu6Sn5 side. Our observations
here are consistent with their results. In addition, it was found that the linear slope of the Cu3Sn/Cu
interface (line l3 (Figure 5b)) was higher than that of the Cu6Sn5/Cu3Sn interface (line l2). This indicated
that the growth rate of Cu3Sn on the Cu substrate side was higher than that on the side of Cu6Sn5

during isothermal aging. It was reported that the diffusion rate of Sn atoms from the solder seam to the
Cu substrate was faster than that of the Cu atoms from the Cu substrate to the Cu6Sn5/Cu3Sn interface
at the higher temperature (≥170 ◦C) in the Sn-Cu couple experiment [37]. Therefore, the growth rate of
Cu3Sn on the Cu substrate side was higher than that on the side of Cu6Sn5 during isothermal aging.
Figure 5d shows a schematic illustration of the interfacial movement of Sn2.5Ag0.7Cu0.1RE/Cu solder
joints during isothermal aging. The arrow markers A-A, B-B, and C-C represent the movement direction
of the solder seam/Cu6Sn5, Cu6Sn5/Cu3Sn, and Cu3Sn/Cu interfaces, respectively. We can conclude
that the interface IMC becomes a double-layer consisting of Cu3Sn and Cu6Sn5 IMC, and the Cu3Sn
IMC grows towards both the solder seam and Cu substrate simultaneously during the isothermal
aging as illustrated in Figure 6.
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3.2. Interfacial IMC Growth Kinetics of the Sn2.5Ag0.7Cu0.1RE/Cu Solder Joints during Isothermal Aging

Figure 7 displays the thickness of the interfacial IMC layer isothermal aged for different times and
temperatures. The interfacial IMC evolved from a single Cu6Sn5 layer after soldering to a Cu6Sn5 and
Cu3Sn IMC double layers during the isothermal aging process. At the isothermal aging temperatures
of 100, 125, 150, and 175 ◦C, the thickness of Cu6Sn5 and Cu3Sn IMC increased with prolonged aging
time. In addition, with increasing isothermal aging temperature, the thickness of Cu6Sn5 and Cu3Sn
IMC also increased.
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To further study the growth kinetics of Cu6Sn5 and Cu3Sn IMC, we investigated the growth
behavior of Cu6Sn5 and Cu3Sn IMC during isothermal aging at 175 ◦C. During isothermal aging,
the growth of the interfacial IMC layer had a diffusion-controlled mechanism, and the growth kinetics
parameter was calculated by measuring the interfacial thickness as a function of the isothermal aging
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time. The relationship between the interfacial IMC layer thickness and the aging time can be expressed
as follows [38]:

dx = Ktn + d0. (2)

In Equation (2), dx presented the thickness of the interface IMC layer at a time (t), d0 is the initial
thickness of the interfacial IMC layer after soldering, K is the growth constant (mm2/s) that is related to
the diffusion coefficient of the atoms, and n is the time exponent. The value of n can be determined by
a multivariable linear regression analysis of Equation (2) when placed in the following format:

ln(dx − d0) = lnK + nlnt. (3)

The time exponent n was obtained from the slope of the ln(dx − d0) versus lnt plot in Figure 8.
In this study, the values of the time exponent n of Cu6Sn5 + Cu3Sn, Cu6Sn5, and Cu3Sn were 0.49,
0.53, and 0.51, respectively, which are close to 0.5. It has been reported that if the value of the time
exponent is 0.33, the growth of the interfacial IMC had a grain-boundary diffusion mechanism, whereas
if the time exponent is 0.5, the growth of the interfacial IMC had a bulk diffusion mechanism [39].
This indicated that the growth of Cu6Sn5 and Cu3Sn IMC layer during the isothermal aging process
was controlled by the bulk diffusion mechanism. Then, Equation (3) can be expressed as follows:

dx = Kt1/2 + d0. (4)

From Equation (4), the thickness of the interfacial IMC was plotted against the root of the isothermal
aging time (t). Figure 9 shows the thickness of (Cu6Sn5 + Cu3Sn), Cu6Sn5, and Cu3Sn against the square
root of the isothermal aging time. The thickness of the interfacial IMC showed a linear relationship.
The value of the growth constant (K) was obtained by the slope of the linear regression. The growth
constants of the interface (Cu6Sn5 + Cu3Sn), Cu6Sn5, and Cu3Sn were KCu6Sn5+Cu3Sn = 2.34 × 10−17 m2/s,
KCu6Sn5 = 6.25 × 10−18 m2/s, and KCu3Sn = 7.11 × 10−18 m2/s, respectively. The growth constant of Cu3Sn
was slightly higher than that of Cu6Sn5, which indicated that the growth rate of Cu3Sn was higher than
that of Cu6Sn5 with aging time. This result was consistent with the dynamic observation of interfacial
IMC growth.
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During the isothermal aging process, the growth of interfacial Cu6Sn5 and Cu3Sn IMC was
controlled by the interdiffusion of Cu and Sn atoms. The activation energies for Cu6Sn5 and Cu3Sn can
be calculated by the Arrhenius relationship [40]:

K = K0 ∗ exp(−Q/RT), (5)

where K is the growth constant (mm2/s), K0 is the frequency factor, Q is the activation energy, R is
the gas constant (8.314 J/mol/K), and T is the aging temperature. The activation energies can be
obtained from the slope of the ln(K) versus ln(1/T) plot. Figure 10 shows the Arrhenius plots of
the interfacial IMC growth, and the activation energies values of Cu6Sn5 and Cu3Sn were 74.7 and
86.6 kJ/mol, respectively. This result is close to the values of 69.42 and 91.88 kJ/mol for Cu6Sn5 and
Cu3Sn, respectively, in Sn3.0Ag0.5Cu/Cu solder joints during isothermal aging [41]. It was obvious
that the activation energy of Cu3Sn was higher than that of Cu6Sn5, which indicated that the growth of
Cu3Sn IMC was difficult.
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The growth of interfacial Cu3Sn IMC depends on the temperature increase and the prolonged
time. During the soldering process, the soldering time was so short that it could not provide the
growth condition for Cu3Sn IMC with high activation energy. However, during the isothermal aging
process, the heat preservation and long period satisfied the growth conditions of Cu3Sn. Therefore,
the isothermal aging process provided growth conditions for Cu3Sn. This is in accordance with
the formation of the Cu3Sn phase requiring an extended reaction time during the isothermal aging
process [42]. It was reported that the growth rate of interfacial IMC is dependent on the activation
energy when the supply of both the Sn and Cu atoms is sufficient [43]. During the soldering process,
there was a liquid-state reaction, where the liquid phase Sn atoms of the soldering seam and solid-phase
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Cu atoms of the substrate were in full and direct contact with each other. The growth rate of interfacial
Cu6Sn5 and Cu3Sn IMC mainly depends on the activation energy. However, during the isothermal
aging process, the formation of Cu6Sn5 IMC after soldering may be a barrier for the diffusion of Cu
and Sn atoms. In particular, the Sn atoms require long-range diffusion across the Cu6Sn5 IMC layer to
react with the substrate Cu atoms to form a Cu3Sn IMC, which makes it more difficult for Cu3Sn IMC
to grow. However, the growth rate of the Cu3Sn IMC was slightly faster than that of the Cu6Sn5 IMC
during isothermal aging. This may be attributed to the Cu3Sn growth towards both the Cu substrate
and solder seam sides. On the Cu6Sn5/Cu3Sn interface, the Cu3Sn grows at the expense of Cu6Sn5

according to reaction 1, while on the Cu3Sn/Cu interface, the growth of Cu3Sn can be expressed by
reaction 2. The growth of Cu6Sn5 mainly depended on the reaction 6Cu + 5Sn = Cu6Sn5. The Cu
atoms on the solder seam were in the form of a eutectic structure. A very small amount of free Cu
atoms can diffuse to the Cu6Sn5/solder seam interface. At the same time, at the Cu6Sn5/Cu3Sn interface,
the growth of Cu3Sn IMC consumed a certain amount of Cu atoms diffused from the Cu substrate,
which may lead to a reduction in the amount of diffusion Cu atoms from the Cu substrate to the
Cu6Sn5/solder seam interface, resulting in a limited growth rate of Cu6Sn5.

3.3. Mechanical Properties of the Sn2.5Ag0.7Cu0.1RE/Cu Solder Joints during Isothermal Aging

Figure 11 displays the shear strength of the Sn2.5Ag0.7Cu0.1RE/Cu solder joints for different
isothermal aging times and temperatures. With the increase of isothermal aging time and temperature,
the shear strength of the solder joints decreased, and the thickness of the interfacial IMC increased
(Figure 7). Because of the brittleness of the Cu3Sn and Cu6Sn5 IMC, the increase in interfacial IMC
thickness may deteriorate the mechanical properties of the solder joints. Additionally, during the
isothermal aging process, the Kirkendall voids appeared in the Cu3Sn IMC, which is also harmful to
the shear strength of the solder joint. To determine the relationship between the shear strength of the
solder joints and interfacial IMC thickness, Figure 12 shows the multivariable regression analysis of
the shear strength and thickness of the interfacial IMC. The shear strength of the solder joints was
linearly correlated with the thickness of Cu6Sn5, which indicated that the thickness of Cu3Sn has a
direct relation with the shear strength of the joints.
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Figure 13 presents the shear fracture surface of the solder joints aged at 175 ◦C for a different
time. The fracture surface displayed typical parabolic-shaped dimples after soldering, as shown in
Figure 13a. These parabolic-shaped dimples indicated ductile fracture. With increasing aging time,
the number of parabolic dimples decreased, and the cleavage planes appeared in the fracture surface
after isothermal aging for 192 h as illustrated in Figure 13b. After aging for 360 h (Figure 13c), the
fracture surface was dominated by the cleavage planes, and micro-cracks occurred, which indicated
the brittle fracture manner. The composition of “A”, “B”, and “C” areas are listed in Table 1. The area
“A” contained mainly Sn, whereas the areas “B” and “C” consisted of Sn and Cu, and the mole ratio of
Cu to Sn was approximately 3:1 and 6:5, respectively. Thus, the cleavage plane may be the Cu6Sn5

and Cu3Sn IMC. We can deduce that with increasing isothermal aging time, the fracture mechanism
transformed from the ductile-type fracture mechanism with the dominant parabolic-shaped dimples in
the solder seam to brittle fracture with the cleavage of the interfacial Cu6Sn5 and Cu3Sn IMC. Figure 14
shows the XRD pattern of the fracture surface of the solder joints aged at various times. Compared with
the sample after soldering, the intensity of the Cu6Sn5 peak is higher, and the ratio of the Cu6Sn5 to
β-Sn peak becomes gradually higher with increasing isothermal aging time. Additionally, the intensity
of the Cu3Sn peak increased with prolonged aging time. This indicated that the fracture pathway
transferred from the solder seam to the interfacial IMC, which was near the side of the Cu3Sn IMC
layer. This result is consistent with the above shear fracture morphology analysis. The change in
the fracture pathway was mainly attributed to the increase of interfacial IMC thickness during the
isothermal aging process. In general, the coefficient of thermal expansion (CTE) between the interfacial
IMC layer (1.84 × 10−5 m/K) and Cu substrate (1.67 × 10−6 m/K) was mismatched, leading to a stress
concentration during long isothermal aging [44]. Hence, the micro-cracks occurred and propagated
along with the interface. In addition, we also found that with increasing isothermal aging temperature,
the fracture pathway shifted from the solder seam to the direction of the interfacial IMC layer.
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Table 1. EDS analysis results of the “A”, “B”, and “C” areas in Figure 13.

Area
Mole Fraction/%

Sn Cu Ag

A 93.49 5.34 1.18
B 24.72 75.28 -
C 46.64 53.36 -
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4. Conclusions

In this study, the microstructure evolution of the interfacial IMC and the mechanical properties
of Sn2.5Ag0.7Cu0.1RE/Cu solder joints during the isothermal aging process were investigated by
dynamic observation. The conclusions can be summarized as follows.

1. During the isothermal aging process of Sn2.5Ag0.7Cu0.1RE/Cu lead-free solder joints, interfacial
IMC evolved from single Cu6Sn5 to Cu6Sn5 and Cu3Sn double layers. The Cu3Sn grew towards the Cu
substrate and the solder seam sides; growth toward the Cu substrate side was dominant. The growth
of the Cu3Sn IMC was depended on prolonged time at a certain temperature. Additionally, the growth
of the interfacial IMC was mainly controlled by the bulk diffusion mechanism, and the activation
energy values of Cu6Sn5 and Cu3Sn were 74.7 and 86.6 kJ/mol, respectively. The growth rate of Cu3Sn
was slightly faster than that of Cu6Sn5 during the isothermal aging process.

2. With increasing isothermal aging time and temperature, the shear strength of the solder joints
decreased, which was linearly related to the thickness of the interfacial Cu3Sn IMC. Additionally,
the fracture mechanism of the solder joints changed from ductile fracture, which contained dimples,
to brittle fracture, which contained cleavage planes; the fracture pathway also moved from the solder
seam to the interfacial IMC layer, which was close to the Cu3Sn IMC.
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