materials

## Supplementary Material

# Development of Novel Magnetoliposomes Containing Nickel Ferrite Nanoparticles Covered with Gold for Applications in Thermotherapy 

Irina S. R. Rio ${ }^{1}$, Ana Rita O. Rodrigues ${ }^{1}$, Carolina P. Rodrigues ${ }^{1}$, Bernardo G. Almeida ${ }^{1}$, A. Pires ${ }^{2}$, A. M. Pereira ${ }^{2}$, J. P. Araújo ${ }^{2}$, Elisabete M. S. Castanheira ${ }^{1}$ and Paulo J. G. Coutinho ${ }^{1, *}$

Evidence of stability of NPs dispersions


Figure S1. UV-Visible maximum absorbance of nanoparticles dispersions in PBS buffer ( $\mathrm{pH}=7.0$ ) as function of time ( 5 minutes intervals).

## Fluorescence intensity dependence on temperature in irradiation assays

Assuming an Arrhenius behaviour for the rate constant, $k_{n r}$, of non-radiative processes, it is possible to determine the temperature in each irradiation assay,

$$
\begin{equation*}
k_{n r}=k_{0} e^{-\frac{E_{a}}{R T}} \tag{S1}
\end{equation*}
$$

where $k_{0}$ is the preexponential factor; $E_{a}$ is the activation energy, $R$ the gas constant and $T$ the absolute temperature.

The fluorescence quantum yield, $\Phi_{\mathrm{F}}$, is given by

$$
\begin{equation*}
\Phi_{\mathrm{F}}=\frac{k_{\mathrm{F}}}{k_{\mathrm{F}}+k_{n r}} \Rightarrow \frac{1}{\Phi_{\mathrm{F}}}-1=\frac{k_{n r}}{k_{\mathrm{F}}} \tag{S2}
\end{equation*}
$$

where $k_{\mathrm{F}}$ is the fluorescence rate constant.
Taking as reference the fluorescence quantum yield at room temperature, $\Phi_{\mathrm{F}}^{0}$, it is obtained

$$
\begin{equation*}
\frac{\Phi_{\mathrm{F}}^{0}}{\Phi_{\mathrm{F}}}-\Phi_{\mathrm{F}}^{0}=\Phi_{\mathrm{F}}^{0} \frac{k_{n r}}{k_{\mathrm{F}}} \tag{S3}
\end{equation*}
$$

or, similarly,

$$
\begin{equation*}
\frac{I_{\mathrm{F}}^{0}}{I_{\mathrm{F}}}-\Phi_{\mathrm{F}}^{0}=\Phi_{\mathrm{F}}^{0} \frac{k_{n r}}{k_{\mathrm{F}}} \tag{S4}
\end{equation*}
$$

where $I_{F}$ represents the fluorescence intensity at a given wavelength.
Therefore, it can be obtained

$$
\begin{equation*}
\frac{I_{\mathrm{F}}^{0}}{I_{\mathrm{F}}}-\Phi_{\mathrm{F}}^{0}=\Phi_{\mathrm{F}}^{0} \frac{k_{0}}{k_{\mathrm{F}}} e^{-\frac{E_{a}}{R T}} \tag{S5}
\end{equation*}
$$

Considering, as an approximation, that the fluorescence quantum yield of Rhodamine B near the nanoparticles is much lower than the quenching ratio, $\frac{I_{\mathrm{F}}^{0}}{I_{\mathrm{F}}}$, that is always above unity, it is obtained:

$$
\begin{equation*}
\frac{I_{\mathrm{F}}^{0}}{I_{\mathrm{F}}} \approx \Phi_{\mathrm{F}}^{0} \frac{k_{0}}{k_{\mathrm{F}}} e^{-\frac{E_{a}}{R T}} \tag{S6}
\end{equation*}
$$

Or

$$
\begin{equation*}
\frac{I_{\mathrm{F}}^{0}}{I_{\mathrm{F}}} \propto A e^{-\frac{E_{a}}{R T}} \tag{S7}
\end{equation*}
$$

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

