

Development of Novel Magnetoliposomes Containing Nickel Ferrite Nanoparticles Covered with Gold for Applications in Thermotherapy

Irina S. R. Rio¹, Ana Rita O. Rodrigues¹, Carolina P. Rodrigues¹, Bernardo G. Almeida¹, A. Pires², A. M. Pereira², J. P. Araújo², Elisabete M. S. Castanheira¹ and Paulo J. G. Coutinho^{1,*}

Evidence of stability of NPs dispersions

Figure S1. UV-Visible maximum absorbance of nanoparticles dispersions in PBS buffer (pH = 7.0) as function of time (5 minutes intervals).

Fluorescence intensity dependence on temperature in irradiation assays

Assuming an Arrhenius behaviour for the rate constant, k_{nr} , of non-radiative processes, it is possible to determine the temperature in each irradiation assay,

$$k_{nr} = k_0 e^{-\frac{E_a}{RT}} \tag{S1}$$

where k_0 is the preexponential factor; E_a is the activation energy, R the gas constant and T the absolute temperature.

The fluorescence quantum yield, Φ_F , is given by

$$\Phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{nr}} \Rightarrow \frac{1}{\Phi_{\rm F}} - 1 = \frac{k_{nr}}{k_{\rm F}}$$
(S2)

where $k_{\rm F}$ is the fluorescence rate constant.

Taking as reference the fluorescence quantum yield at room temperature, Φ_F^0 , it is obtained

$$\frac{\Phi_{\rm F}^0}{\Phi_{\rm F}} - \Phi_{\rm F}^0 = \Phi_{\rm F}^0 \, \frac{k_{nr}}{k_{\rm F}} \tag{S3}$$

or, similarly,

$$\frac{I_{\rm F}^0}{I_{\rm F}} - \Phi_{\rm F}^0 = \Phi_{\rm F}^0 \, \frac{k_{nr}}{k_{\rm F}} \tag{S4}$$

where I_F represents the fluorescence intensity at a given wavelength.

Therefore, it can be obtained

$$\frac{I_{\rm F}^0}{I_{\rm F}} - \Phi_{\rm F}^0 = \Phi_{\rm F}^0 \frac{k_0}{k_{\rm F}} \ e^{-\frac{E_a}{RT}}$$
(S5)

Considering, as an approximation, that the fluorescence quantum yield of Rhodamine B near the nanoparticles is much lower than the quenching ratio, $\frac{I_F^0}{I_F}$, that is always above unity, it is obtained:

$$\frac{I_{\rm F}^0}{I_{\rm F}} \approx \Phi_{\rm F}^0 \frac{k_0}{k_{\rm F}} e^{-\frac{E_a}{RT}}$$
(S6)

Or

$$\frac{I_{\rm F}^0}{I_{\rm F}} \propto A \ e^{-\frac{E_a}{RT}} \tag{S7}$$

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).