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Abstract: Antimicrobial coatings are a promising strategy to counteract the spreading of multi-drug-
resistant pathogens through cross-contamination of surfaces. Coatings with nanostructured 
characteristics can exploit the different antimicrobial mechanisms of nanomaterials provided the 
composition, the morphology and the mechanical properties of the film can be tuned by the specific 
synthesis methods. This review addresses the synthesis of antibacterial nanostructured coatings 
with a focus on physical synthesis methods. After a short description of the bacteria–NP interaction 
mechanism, leading to the killing of cells, paradigmatic examples of coatings, obtained by 
magnetron sputtering and supersonic cluster beam deposition, are discussed, with an emphasis on 
the possibility of combining different elements into the coating to widen the bactericidal spectrum. 
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1. Introduction 

Nanostructured materials (NMs) [1–5] represent an active area of research and a techno-
economic sector in continuous expansion in many application domains, as shown by the more than 
1400 review papers describing NMs applications that have appeared in the last three years. The 
technological importance of NMs is due to their tunable physicochemical characteristics, such as 
optical absorption [6–8], electrical conductivity [9,10], photothermal characteristics [11], optical 
[12,13] and photoacoustic sensing [14,15], surface enhanced Raman scattering effects [16,17], chemical 
state [18], and bactericidal functionalities [19–21]. In particular, the latter research sector has been 
driven by the interest in understanding the interactions and effects of nanoparticles (NPs) on living 
organisms [20–27], with prominent attention towards the wet synthesis of NMs and NPs and the 
study of their effect on cells and bacteria in solution. More recently, the effort of the scientific 
community in developing NMs-based antimicrobial agents has been stimulated by the emergence of 
multi-drug-resistant pathogens, posing a world-wide challenge with a large socio-economic impact 
[28,29]. In particular, a major issue is due to microbe spreading by 1) cross-contamination through 
infected surfaces in nosocomial environments [30,31] 2) biofilm formation on the surfaces of medical 
implants, such as dental or bone repair devices [32–36]. Infectious diseases caused by fungi, viruses, 
bacteria, and particularly by multidrug resistant bacteria has an estimated annual cost (direct and 



Materials 2020, 13, 784 2 of 23 

 

indirect) ranging from 6 to 60 billion US$ [37] in the US only. This is in addition to the limited number 
of new antibiotics successfully developed in the last few decades [38], due to the difficulty to find 
new antibacterial compounds with good pharmacological profiles and low toxicity and, from an 
economic point of view, to the higher interest of pharmaceutical companies in developing drugs for 
chronic conditions than for short-term treatments [39].  

Where succesfull, the use of NMs could in principle avoid the problem of the antibiotic resistance 
mechanisms. As a matter of fact, because of the their mode of action, NMs should be less prone in 
promoting resistance in bacteria as compared to antibiotics [40]. Therefore a major goal is finding 
appropriate materials that are able to kill bacteria, such as metal-based NPs [40–43], but also obtaining 
functional nanostructured surfaces and thin film coatings [44,45] that can limit the spread of bacteria 
through surfaces. These former aspects increase the level of challenge, since the nanomaterial is 
required to have (1) microbicidal activity against a wide number of multi-drug-resistant Gram 
negative (GN) and Gram positive (GP) pathogens; (2) tunable mechanical properties and adhesion, to 
tailor the NPs release and the film durability in different conditions; and (3) cost-effective, 
environmental friendly production methods with high throughput.  

Furthermore, very recently, attention has also been focused on the problems that surfaces, with 
active-attack functions against bacteria, might suffer due to the accumulation of dead bacteria and 
organic debris [21]. Accumulation of organic debris on the surface might lead to shielding of the 
active killing material (in particular for chemically functionalized surfaces), thereby reducing the 
bactericidal efficacy. Some attempts have hence been made to combine passive-defense antibacterial 
surfaces, which reduce the rate of bacteria sticking, with the bactericidal functionality [46,47]. 

Such goals are strictly related to the ability of synthesizing NPs with the desired properties and 
also of assembling them at the nanoscale in such a way as to tailor the desired coating properties. The 
sought properties, however, might be very different, depending on he application target, i.e., on the 
type of surface where the antimicrobial agent has to be located, since topological and chemical 
characteristics of a surface determine the rate of microorganism adhesion [19,21,46,48]. In this respect, 
a large number of works have been devoted to understanding the interaction mechanism of the NP 
with living organisms. Although there are still important issues to be clarified, in particular with 
respect to the nanostructured coatings, there is an emergent consensus on the major processes 
underlying the antibacterial effects of NPs, as detailed in reference [40]. In a nutshell, these include 
NP penetration of the bacterial cell membrane, induction of intracellular antibacterial effects (e.g., 
interactions with DNA and proteins), and disruption of the bacterial cell membrane or generation of 
reactive oxygen species (ROS) [40]. All these processes are directly related to NPs’ size, composition 
and availability at the interaction interface between the coating and the bacteria. 

Many different routes have been explored to synthesize NMs and NPs, from deposition of 
polymeric films [19,21,45,49–51] with incorporated bactericidal agents [21,52–55], or metallic or oxide 
films [2,21,56,57], to metal decoration of nanostructures [58–60]. The strategies are based on wet 
synthesis (spin-coating [61], sol–gel [57,61,62]), photochemical [52], biological [63–65], 
biotechnological [24] and physical methods (laser ablation [66], magnetron sputtering (MS) [2,44,67–
69], gas phase beams [70,71]). Surprisingly, the literature available on nanostructured coatings 
obtained by physical methods is scarce. 

This review is hence devoted to pointing out some aspects of antibacterial coatings, briefly 
describing what kind of materials can produce antibacterial effects, and then the issues related to the 
composition, mechanical properties and antimicrobial properties of coatings, focusing on some recent 
examples of coatings obtained with physical deposition techniques. 

2. Interaction Mechanisms between Bacteria and NMs 

The chemical elements composing the NPs determine the mode and the efficacy of bactericidal 
action. Hence, to devise antibacterial nanostructured coatings, it is important to briefly review some 
of the possible nanostructured coating interaction mechanisms with bacteria, which are summarized 
in Figure 1. The scheme is based on the current knowledge of the interaction of NPs with the cell 
barrier and with the cytoplasmic components. Most of the results reported below, if not all, were 
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obtained for NPs dispersed in the solution containing the bacteria, so some care should be taken to 
directly explain the bactericidal effect of a nanostructured coating by applying the same processes.  

 
Figure 1. Schematic representation of a bacterium on a surface of a nanostructured coating. The major 
coating/bacterium interaction mechanisms are listed. 

2.1. Cell–NMs Interaction  

2.1.1. Membrane Damage 

Due to the different composition of the cell barriers of GP and GN bacteria, the interaction 
pathways with NMs vary from strain to strain, and therefore the antimicrobial action will depend on 
the specific composition, shape and chemical state of the NPs forming the NMs. As a general trend, 
the outer membrane of GN bacteria possess lipoproteins and phospholipids that form a penetration 
barrier allowing the entrance of macromolecules only, resulting in a greater NPs activity against GP 
bacteria than against GN bacteria [25,70,72]. Table 1 summarizes the interaction mechanism 
described below. 

Mechanical Adhesion. In the bacteria–NPs interaction, one fundamental issue is the proximity or 
contact of the NPs with the outer bacteria membrane. If the NPs are dispersed in a solution, the 
efficacy of the antibacterial activity could be limited by the lipopolysaccharides present in the GN 
bacteria wall. Such molecules may prevent the adhesion of NPs to the cell barrier, and even regulate 
the exchange flow of ions through the bacterial cell membrane, thus reducing the killing effect of the 
NPs [40,73]. However, NPs are able to interact with the bacterial cell membrane, since the NP surface 
atoms can also bind with the negatively charged carboxyl and phosphate groups present in the 
bacterial cell membrane [25,40,74]. 

Lipid peroxidation. It has been found that ZnO NPs generate strong lipid oxidative decomposition 
through the yield of H2O2, causing the leakage of intracellular contents and bacteria death [73]. A 
different reaction pathway is provided by Al2O3 NPs. Attenuated total reflection data showed that 
such NPs interact with lipopolysaccharide through hydrogen binding and ligand exchange. 
Structural changes in the phospholipid lead to the destruction of the cell membrane and cytoplasmic 
leakage [75]. 

Alteration of bacterial metabolism. In the case of nanodiamonds with different oxygen-containing 
surface groups, it is the formation of covalent bonds with proteins and molecules on cell walls to 
induce a disorder of the bacterial metabolism and, finally, cell death [76], while the exposure to Fe 
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and Cu NPs of two GP and GN bacteria species results in the hindering of the normal metabolic 
pathways [77]. 

Reactive ion species (ROS) generation. Apart from direct interaction through the chemical bond 
formation related to the surface composition of the NPs, other pathways are provided through the 
NPs’ physical properties. Since the outer membrane of the bacteria is charged, the interaction with 
oxidizing species has been recognized as an important antibacterial mechanism of NPs. The 
interaction of atoms with a strong positive redox potential with the bacteria wall induces an oxidative 
stress, leading to bacteria killing [73,78–80]. Depending on the material, shape and size of the NPs, 
different ROS can be produced by reducing oxygen molecules. CaO and MgO can produce 
superoxide radicals (O2−), ZnO might generate hydrogen peroxide (H2O2) and OH, while CuO NPs 
can also give rise to oxygen [40]. The generation of ROS can be obtained by photon absorption, 
employing the availability of surface states and defects to uptake the photogenerated electron hole 
pair to the surface of the NPs [81,82]. The absorbed photon generates and electron-hole pair that, once 
it has reached the surface of the NP, can interact with molecules adsorbed on the NP surface [83]. For 
instance, on ZnO the holes on the surface can produce hydroxyl radical OH by interaction with OH−, 
and the superoxide radical (O2−) by employing the photogenerated electron interaction with O2.  

Pit formation. TiO2 NPs adhered to the surface of bacterial cells produces ROS due to the 
photocatalytic action of the surface Ti atoms, which makes electrons available at the surface of the 
NP. The composition and structure of the cell membrane is damaged by the negatively charged 
Oxygen atoms, causing pit formation, leakage of cellular contents and subsequent bacterial death 
[84]. Cytoplasmic leakage also results from the increase in bacterial cell volume and oxidative 
decomposition of the bacterial membrane induced by the photocatalytic activation of TiO2 NP 
adhered to cell membrane [85]. Ag NPs have also been shown to be incorporated into the bacteria 
membrane, thus inducing a formation of pits and therefore the bacterial death [86]. 

Although TiO2 has been used most extensively because of its catalytic properties, economic 
feasibility, and enhanced stability, a lot of research has been pursued to overcome the major 
limitations of this material, i.e., the large bandgap (3.2 eV), which does not allow the use of visible 
light to produce electron hole pairs [6,7,87–90] and the high recombination rate of the e-h pairs 
[80,88,91]. Even if repeated experiments have shown that TiO2-based materials are more efficient in 
generating ROS species than ZnO-based materials [92], the application of doped TiO2 with increased 
light absorption in the visible range to antibacterial coatings is basically unexplored. 

2.1.2. Ion Release 

NPs are able to release metal ions into the media surrounding the bacteria, hence giving rise to 
different effects depending on the interaction pathways of the ions. 

Protein denaturation. A double effect of Ag+ ions interacting with the bacteria was proposed, 
namely: a) the ions denature the proteins of the bacteria, inducing the condensation of DNA 
molecules and hence their replication ability; b) Ag ions interact with the thiol groups in protein 
inducing their inactivation [93]. Ag protein interaction has also been proposed as a general way to 
alter the bacteria functionality since it is interacting with many different proteins [94]. 

Cytoplasm leakage. TiO2 NPs were found to induce a strong reduction of the membrane potential, 
resulting in the diffusion of the NP-generated hydroxyl radicals into the bacteria and in the leakage 
of cytoplasm [95], while a similar effect resulting from exposure of E. coli cells to ZnO NPs was 
attributed mainly to the ion/membrane interaction [96]. 

Enzyme function alteration. A recent work highlighted the effect of CuO NPs on the nitrogen 
metabolism and on the electron transfer on bacterial denitrification, by causing a significant alteration 
of the expression of key proteins. The exposure to CuO NPs affected the bacterial membrane integrity 
resulting in membrane damage, but also resulted in the inhibition of the glucose transport, thus 
affecting the bacterial intracellular metabolism [97]. 

Table 1. Summary of the cell/NPs interaction mechanisms for which the NPs’ effects have been 
described. 
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Mechanism 
leading to 
membrane 

damage  

Mechanical 
Adhesion 

Lipid 
peroxidation 

Alteration of 
bacterial 

metabolism 
ROS generation Pit formation 

NP material 
Ag [25]; MgO 
[72]; TiO2 [74]; 

ZnO [73] 
Al2O3 [75] 

Nanodiamonds 
[76]; Fe, Cu [77] 

CaO, MgO [40]; ZnO 
[78,92]; CuO [78]; SiO 
[98]; TiO2 [80,92]; GO 

[79] 

TiO2 [85]; 
TiO2/Ag, 

TiO2/CuO [84] 

Mechanism related 
to ion release 

Protein 
denaturation 

Cytoplasm 
leakage 

Enzyme function 
alteration 

  

NP material Ag [93,94] 
TiO2 [95]; 
ZNO [96] 

CuO [97]   

2.2. Antibiofilm Activity 

The surfaces of artificially implanted devices are conducive to the proliferation of eukaryotic 
pathogens, showing up as biofilm formation, hence becoming resistant to antimicrobial agents. From 
the point of view of NM design, one of the key steps is the adhesion of pathogen cells to the substrate. 
It has been suggested that this process starts with the action of adhesins, which act as specific surface 
recognition molecules [36], and calls for a specific understanding of the NMs’ surface properties in 
order to prevent biofilm formation. In human implantable devices (heart valves or dental implants) 
with antimicrobial coatings, TiO2 coatings loaded with NP of Ag, Ca and Si have been shown not 
only to favor osseointegration [34], but also to prevent thrombosis and the occurrence of 
inflammation through the reduction of biofilm formation [33,34]. In the case of partially implantable 
devices, such as catheters, the reduction of infection risk has been investigated by coating the catheter 
surface with Zn-doped CuO NPs to retard the growth of biofilms [35] and reduce the risk of bacterial 
infection and complications [99]. The coated catheters present promising antibiofilm activity, 
biocompatibility, and absence of detectable irritation [35]. In dental implants, and particularly in root 
canal therapy, embedding nanodiamonds functionalized with amoxicillin, a broad-spectrum 
antibiotic, leads to improved mechanical properties of the filler and functionality of the drug [100]. 
In maxillofacial prostheses, the reduction of the incidence of tissue inflammation surrounding the 
prostheses has been explored by coating the surface with nanostructured TiO2. As a result, the 
introduction of nano-TiO2 coatings has been shown to inhibit a rather large range of bacteria strains 
[101]. These few examples suggest that the combination of different elements into the coating is likely 
needed to provide a wide spectrum of anti-biofilm activity, though the role of the coating roughness 
has not been explored in detail. On the other hand, investigations into the effect of individual NPs on 
the biofilm disruption has been obtained for Au [36,102], Ag [103], Mg [104], ZnO [42,102,105], CuO 
[102,106], CeO [102], Fe3O4 [107], YF [108] and TiO2 [101], indicating that smaller NPs with high 
surface to volume ratio have a remarkable effect on biofilm destruction [98]. 

These works led to the development of various approaches with direct applications to the 
biomedical field, such as tailored surfaces with antimicrobial effect, wound dressings and modified 
textiles [5]. The use of linens impregnated with CuO NPs has been shown to reduce the occurrence 
of hospital-acquired infections in health care facilities. Bed sheets containing CuO NPs are considered 
one of the most interesting innovations in medical care, since they reduce microbial attachment and 
thus microbial infections within hospitals [109].  

Since the possible interaction mechanisms between a coating and bacteria are manifold, this 
overview suggests that there is still a wide potential for tailoring the coatings properties by modifying 
the composition, the surface morphology, the structure and crystallinity of the surface of the coating 
and of the NPs composing the film. In the next section we will review some of the most recent works 
on nanostructured coatings obtained by two industrially scalable physical methods, MS and SCBD, 
to provide hints on the pathway to use a combination of different elements to widen the bactericidal 
spectrum. Considering that a coating should also provide durability against usage, some aspect of 
the mechanical properties of coatings will also be considered.  
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3. Nanostructured Coatings 

The strategies developed to control the incidence of infections should depend on the applications 
which they are devised for, i.e., on the type of surface where the antimicrobial agent has to be located, 
since the topological and chemical characteristics of a surface determine the rate of microorganism 
adhesion [19,21,46,48]. In the framework of synthesis of nanostructured coatings with antimicrobial 
properties, the main explored strategies range from modification of surfaces through deposition of 
polymeric films [19,21,45,49–51] with incorporated bactericidal agents [21,52–55], or deposition of 
metallic or oxide films [2,21,56]. For instance, Ag can broaden the bactericidal activity of TiO2-based 
photocatalyst composite materials and can also act against silver-resistant microorganisms due to 
their photooxidative mechanism [57]. Such work highlights just one of the many critical issues to be 
faced in the design of a functional coating, and in the following we will bring few examples related 
to nanostructured coatings, namely the adhesion (related to film composition), the substrate 
temperature during deposition (some substrates cannot withstand deposition temperatures above a 
few tens of °C), the coating porosity and surface to volume ratio, the duration of the coating or of the 
antimicrobial effect and /or toxicity, related to the mechanism of bactericidal action. 

3.1. Magnetron Sputtering 

The numerous synthesis techniques available for the production of NMs can be broadly divided 
into wet and non-wet routes. As previously described in the introductory paragraph, a vast literature 
covers wet synthesis approaches, in particular for NPs synthesis and antimicrobial behavior. On the 
other hand, the studies on nanostructured coatings are far from being complete, likely due to the fact 
that the technological application and industrial scalability of physical deposition techniques are still 
an open issue. In this sense, MS is becoming a rather mature technique, and is now applied at the 
industrial level to produce hard coatings on tools or decorative treatment of surfaces. 

 
Figure 2. (a) Scheme of the magnetron sputtering process.; (b) scheme of the beam synthesis from 
pulsed gas sources. 

Recently, the MS route [110] has been used also to deposit coatings on textiles and catheters 
[111], implants [112] and on food packaging [2,113]. At the laboratory level, this technique allows the 
synthesis of thin films up to the micron scale, together with the possibility of mixing materials to 
obtain the desired functionality [44,111,114]. In short, the sputtering process is obtained by applying 
an electric field between two electrodes within a medium vacuum chamber (see the scheme in Figure 
2a). The gas (typically Ar) injected into the chamber is ionized by the electric field and bombards the 
target cathode, causing the ejection of atoms/molecules toward the substrates. The electric field may 
be applied in direct current mode, at radio or microwave frequency, or in pulsed mode, depending 
on the target conductivity and desired film control [115]. However, MS presents some limitations in 
depositing NPs with a controlled surface-to-volume ratio, and even more when core shell or Janus-
like NPs might be needed to expose the active material in a controlled way. In particular, substrate 
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temperature during deposition and resulting morphology of the film are two critical issues impacting 
the behavior of the film. 

Goderecci et al. [67] synthesized 150 nm thick AgO/Ag2O films on sapphire reporting on Ag ion 
dissolution/elution rate, and bactericidal efficacy. The coatings obtained are polycrystalline films 
with an average grain size of around 100 nm, and can be grown with a single AgO phase or mixed 
AgO/Ag2O phases, as evidenced in Figure 3.  

 
Figure 3. (A) Plot of the X-ray diffraction intensity versus 2θ showing single phase cubic AgO and 
mixed phase AgO and Ag2O deposited at lower oxygen partial pressure; (B) scanning electron 
micrograph showing the typical surface microstructure of the silver oxide deposited at room 
temperature. The microstructure can be impacted by deposition pressure, deposition power, oxygen 
partial pressure, and coating thickness. Reprinted from [67] under the Creative Commons Attribution 
License 4.0. 

The Ag ions elution under dynamic fluid flow ranges between 0.003 and 0.07 ppm/min, with a 
lower rate for complex cell culture media [67]. This rate is probably the cause of the good bactericidal 
activity obtained by these films that are composed of pure AgO. In this respect, the purity of the 
material and its concentration at the surface determine the bactericidal activity through the 
continuous release of Ag ions from the oxidized AgO phase. This suggest including the mechanism 
of action of this coating obtained by MS within the “ion release” group (see Figure 1), although there 
are no data to discriminate within the subset of different effects related to the metal ion interaction 
with the bacteria. Moreover, one cannot exclude a contribution to the antibacterial activity resulting 
from the membrane damage. Finally, the continuous release of Ag ions results in an increasing 
concentration of the element into the media in contact with the film, eventually inducing toxicity 
effects against mammalian cells. This points out the critical problem of dosing the amount of the 
bactericidal element to obtain a balance between antimicrobial action and toxicity side effects. This 
fact also impacts the applicability of this peculiar coating. The data reported by Goderecci et al. 
suggest that in a closed system, the accumulation of Ag ions will lead to toxicity, while this is likely 
to be avoided in an open system, where released Ag ions can be transported away. Hence, this kind 
of coating on a permanent implant that remains surrounded by living cells could not be applicable. 
On the other hand, one could envisage the use of such films in a wastewater purification system 
where the liquid flow is continuous. 

It is interesting to note that such films composed of a single element present good adhesion, as 
shown by the ASTM D3359 cellophane tape test on hard and flexible substrates. On the other hand, 
the mixing into the coating of elements needed to obtain killing activity against both GP and GN 
strains has raised the issue of the coating mechanical stability [44,56,116–118]. Musil et al. [44,118] 
suggested that in this kind of thin film, the relative content of the most efficient antibacterial metals, 
Ag and Cu, needs to be between 10% and 30%, and this almost always results in a strong reduction 
of its hardness and in a poor mechanical stability, in particular if the film thickness is on the order of 
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hundreds of nm. This is a major drawback, since many practical applications of antibacterial coatings 
on contact surfaces of rigid or flexible substrates require a long lifetime, and therefore hardness and 
resistance to wear [56,116,117]. Moreover, when such coatings are deposited on flexible substrates, 
they easily crack and/or delaminate due to the residual stress resulting from the growth mode (for 
some reviews on thin film growth modes and on the effect on surfaces, see for instance [119,120]). 

This issue has recently been investigated for antibacterial films prepared by reactive magnetron 
sputtering for Cr-Cu-O [44,118], Al-Cu-N [44,114] and Zr-Cu-N [121], where the influence of Cu 
content on the mechanical and bactericidal properties of the film have been measured. The 
mechanical characteristics measured through Vickers tests were the film hardness H, defined as its 
resistance to local plastic deformation [122], the elastic recovery We, defined as the fraction of a given 
deformation of a solid which behaves elastically [123], the Young’s modulus E and the effective 
Young’s modulus E* = E(1 −  ν2), where ν = Poisson ratio has been obtained by mechanical indentation. 
The results obtained on the Zr–Cu–N coatings are summarized in Figure 4a) and 4b), where the 
mechanical properties are plotted as a function of Cu content in the Zr–Cu–N coating. 

 
Figure 4. (a) Hardness H (gray squares), effective Young’s modulus E* (black circles); and (b) elastic 
recovery We (gray squares) and H/E* ratio (black circles) of Zr–Cu–N coatings sputtered on Si (100) 
substrates as a function of Cu content. Reprinted from [121], Copyright 2015, with permission from 
AIP Publishing LLC. 

The hardness H and the effective Young’s modulus E* decrease with increasing Cu content, 
while the elastic recovery We is ≥ 60%. The Zr–Cu–N coatings exhibit a ratio H/E* ≥ 0.1, a value 
indicating an enhanced resistance to cracking for all Cu contents ranging from 0 to 19 at.% Cu. [121] 
Moreover, the hardness H ranging from ~25 to ~17 GPa is quite high and it makes it possible to 
prevent the coating from being removed from the surface of a substrate by fretting (wear). The region 
of Cu content in which the coatings exhibit a killing of the E. coli bacteria of 100% is marked by dashed 
lines and in light gray, setting the limit for the minimum Cu concentration in such films [121]. The 
good mechanical properties obtained for such films have been obtained thanks to a deposition 
substrate temperature of 450 °C, and this might be a major drawback when the same behavior is 
needed to form films on flexible substrates that would melt at that temperature. Moreover, in the 
investigated films, the active surface is limited to the top plane, resulting in a very small surface-to-
volume ratio as compared to those of film nanostructures at the 10 nm scale. Finally, the use of 
precious metals like Ag to widen the bactericidal spectrum could result in an increase of the 
production costs, considering the total amount of the bactericidal metal needed to obtain a micron 
thick material over cm2 areas. Unfortunately, the reported results do not indicate the mechanism of 
action of the synthesized coating and concentrate on the physical properties of the film, so at this 
stage one may hypothesize that the antibacterial activity might come from both ion release and 
membrane damage. 
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3.2. Gas Phase Deposition 

A feasible alternative to tackle the different issues discussed above is to employ a different 
physical method, namely Supersonic Cluster Beam Deposition (SCBD) [6,70,71,124–127]. The peculiar 
characteristics of this method are related to the working principle described in detail elsewhere 
[19,90,126,127] and schematized in Figure 2b. Briefly, an inert gas (He or Ar) is injected into an 
ablation chamber at pressures in the 20 to 45 bar range towards a target rod of the desired material. 
The carrier gas allows the triggering of a synchronized high voltage discharge, thus forming a plasma 
that ablates the Ag rod. The ablated material condenses into NPS that are extracted through a nozzle 
to reach supersonic speed in the expansion chamber, thus forming a collimated beam directed on the 
substrate surface. Considering the fact that the NPs are produced in gas phase under controlled 
pressure conditions and deposited in medium vacuum, the setup allows the deposition of 
nanostructured film on virtually any substrate, either rigid or flexible [12], without the presence of 
solvents or other contaminants. The average kinetic energy of the NPs (about 0.2 eV/atom)[3,127] 
allows a soft landing of the NPs that maintains their original structure, hence NPs are assembling on 
the substrate forming a film of desired thickness. It is also worth noting that the coating is assembled 
from NPs landing and the deposition takes places at room temperature, hence avoiding the risk of 
substrate damage. 

SCBD has been used to synthesize antibacterial coatings only in recent years [70,71]. The 
pioneering work of Cavaliere et al. [70] investigated the nanostructured Ag films obtained by SCBD 
and their bactericidal activity. The films are deposited at room temperature on soda lime glass 
substrates. The average NPs size was 7.8 ± 0.6 nm, and the correspondent film thickness was 
measured to 8 nm, i.e., a single layer, with a NP density of 1.15 ± 0.04 × 1011 NPs/cm2 [70]. The film is 
stable against ageing up to 15 days, as can be deduced from Figure 5, where the X-ray photoemission 
spectra of the O1s core level are plotted as a function of time. Very small changes are observed in the 
oxygen line shape as a function of time, as evidenced by the difference lines on the bottom of the 
panel. A least square fitting procedure decomposes the O1s peak in a main component at 531,6 eV 
binding energy, related to the Si-O bond in the substrate [128], and to the AgO feature at 530.2 binding 
energy [128,129] present in the film. The relative intensity of the two components as a function of 
time shown in Figure 5c show a maximum change of 10% with respect to the initial value, indicating 
major stability of the film against variation of the oxidation state. 
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Figure 5. (a) Normalized O1s core level spectra obtained from the as-deposited Ag NPs film (curve 
0d) and from the same film two days (curve 2d), seven days (curve 7d) and fifteen days (curve 15d) 
after the deposition. In the bottom panel the difference spectra show that the variation of the peak 
observed after 2 days (curve 2d-0d) remains mostly unchanged up to 15 days. (b) O1s core level 
obtained from the Ag NPs film two days after deposition, with the peaks resulting from the least 
square fitting procedure. The AgO related peak (dark gray) is at 530.2 eV binding energy while the 
SiO2 related peak (light gray) is at 531.6 eV binding energy. (c) intensity dependence of the relative 
area of the two peaks as a function of time. 

As for the mechanical properties, coating thicknesses below 10 nm , as that obtained in the work 
of Cavaliere et al., hamper the possibility to obtain information on the mechanical characteristics of 
the system with standard indentation techniques, although recent attempts to unveil the hardness, 
elastic modulus, adhesion and friction of single NPs have been reviewed [130]. Modelling of atomic 
force microscopy interaction with a single nanoobject is actually well established, although 
experimentally very little data on the NPs/substrate interaction obtained by this technique is available 
[130]. The same technique, however, might not be applicable when the grown film is granular or 
porous, i.e., the NPs are assembled into a film while conserving their structural individuality, thus 
making the film subject to initial plastic modifications under the load of the AFM tip, hampering a 
reliable extrapolation of the elastic constant from force distance curves. 

To overcome this problem, a recent study on nanoporous granular film was carried out using 
the picosecond photoacoustic technique [131,132], an optical technique that probes the mechanical 
behavior of granular materials maintaining their original morphology and properties. The 
picosecond photoacoustic technique is based on the excitation of the mechanical breathing 
automodes of the film by a 150 fs laser pulse. The excited elastic eigenmodes are then sampled 
measuring the variation in the reflectivity or transmissivity of a time-delayed probe pulse. The laser 
spot size is around 100 microns against a film thickness in the order of tens of nm, hence, the only 
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eigenmodes that are excited/sampled, are those with a displacement field perpendicular to the film 
surface. The film may be considered as a homogenous effective medium. Its elastic properties are thus 
described by two elastic coefficients, namely c11 and c44. The data provide the elastic eigenmodes 
period and decay time. With these at hand a simple continuum mechanical model makes it possible 
to determine the film elastic constant c11 and yield information on the film adhesion to the substrate 
[131]. For the case of pure Ag NPs films, the density, longitudinal sound velocity, and perpendicular 
elastic stiffness (c11) are 80% and 50% of the respective values for bulk polycrystalline Ag, that is 
rather lower than typical values obtained for coatings deposited by magnetron sputtering. 

 
Figure 6. (a) The NPs virtual thin film (dimensions LX × LY × LZ = 35 nm × 20 nm × 30 nm) obtained by 
MD simulations. The NPs are divided into blue (large, diameter ∼ 6 nm) and green (small, diameter 
∼ 1 nm). (b) Experimental AFM image of the 30 nm-thick Ag NPs film. (c) Computed AFM images 
obtained from the simulated cell and taking into account tip convolution effects. The computed 
images are obtained from intermediate deposition steps of the MD simulations, i.e., subsequent shots 
of the simulation resulting in films of average thickness ⟨tF⟩ = 9, 14, 23, 27, and 31 nm for shots one 
through five, respectively. Adapted from [132] (https://pubs.acs.org/doi/10.1021/acs.jpcc.7b05795), 
with permission from ACS (further permissions related to the material excerpted should be directed 
to the ACS). 

Such results are consistent with the porous nanostructure of the film obtained by molecular 
dynamics (MD) simulations [132]. In particular, the intrinsic porosity of the coatings obtained by 
SCBD can be appreciated from the virtual film reported in Figure 6a. The calculated structure 
provides elastic properties and surface morphology well in agreement with the experimental data 
[132], and suggests that the low residual stress of the film and the estimated adhesion to a sapphire 
substrate are directly related to the granularity of the film. 

The Ag NP films investigated in the work of Cavaliere et al. [70] were found to exert a broad-
spectrum bactericidal activity, quantified by depositing a 10 µL of microorganism suspension (i.e., 
range 5.4–7.3 log Colony Forming Units—CFU) both in a glass slide covered with the Ag NPs film 
and in a control slide. After 24 hours of incubation at 25 °C in protected damp environment, 
microorganisms were suspended in 10 mL of PBS, and 240 µL of each dilution was plated for viable 
cell count. The microbicidal effect (ME) was defined as ME = logNC − logNE, where NC and NE are 
the CFU obtained with control slides and NP film slides, respectively. The ME was demonstrated 
both with reference strains and with a collection of clinical strains that exhibited extensively drug-
resistant phenotypes and/or belonged to high-risk hyperepidemic clones, in particular clinical strains 
producing two of the most worrisome resistance mechanisms recently emerged in enterobacteria and 
capable of pandemic dissemination [133]. The obtained results are summarized in Figure 7. Some of 
the sterilized microorganisms are major opportunistic pathogens in the hospital setting, with a high 
propensity to survive for long periods on surfaces of hospital environments, evidencing the need for 
a strategy to reduce the cross-contamination epidemics. The results obtained in the work of Cavaliere 
et al. [70] indicate that the film, being composed of Ag and AgO, has a limited efficacy on the film on 
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some GP bacteria. It has been hypothesized that such behavior could be due to the overall reduction 
of anionic surface charge, associated with daptomycin resistance in S. aureus [134]. 

 
Figure 7. Quantification of the ME for different extensively drug-resistant phenotypes. All 
microorganisms were tested in three independent experiments and results were averaged. To 
calculate standard deviations (SD), when no viable cells were counted, the result was arbitrarily 
assumed as 4.2 x 101 CFU, representing the detection limit value. 

This would suggest a bactericidal mechanism similar to the ion release observed in [67], 
although the film morphology and thickness are very different, in particular the average size of the 
NPs differs at least by an order of magnitude.  

Despite the indication that the pure Ag nanogranular film presents a rather good adhesion to a 
sapphire substrate, further work has been carried on with the goals of reducing the amount of 
precious metal, widening the bactericidal spectrum and further increase the film adhesion. This route 
was pursued again using SCBD, since this technique has been employed to grow NPs films of 
different materials (Ti [3,90], C [135], Pd [136]) but has also been used to dope TiO2 NPs with Cr and 
N at atomic concentrations of 3% to 7 % [6–8,71,124], suggesting that the method could in principle 
be able to deposit NPs and granular films with tunable element concentrations. The flexibility of the 
methods to directly synthesize and deposit coatings with multi-elemental NPs has been 
demonstrated in the work of Benetti et al., showing the possibility to synthesize bi-element NPs of 
Ag and Ti with variable elemental concentrations [71,125]. Two different rods for the SCBD setup 
have been used; the first (AgTi8020) has nominal weight contents of 80% Ag and 20% Ti, and the 
second (AgTi5050) has nominal weight contents of 50% Ag and 50% Ti [71,125]. The synthesized NPs, 
characterized by high-resolution scanning transmission electron microscope (HR-STEM), can be 
observed in Figure 8. The intense spot partly surrounded by a lighter gray zone (Figure 8a,d) find an 
explanation in the corresponding elemental maps (Figure 8b,c): the contrast difference is because Ag 
(shown in red) and Ti (shown in green) are phase-separated into the NPs. The detailed investigation 
of the structural and chemical composition of the NPs [71] indicate that such bi-NPs are composed of 
Ag nanocrystals intermixed and embedded into amorphous Ti. This NPs structure [137,138] is 
remarkably different from the simple Ag decoration of TiO2 nanostructures obtained by sol–gel [57], 
solvothermal [58], hydrothermal [59], and hydrolyzed solution [139] methods. Moreover, the work 
clearly indicates that the compositional changes in the pristine rod (i.e., pure Ag, AgTi8020, 
AgTi5050) correspond to an analogous variation in the synthesized bi-NPs stoichiometry [71,125], 
proving that SCBD is a powerful tool for tailoring the NPs’ chemical composition by simply adjusting 
the Ag/Ti relative concentration in the initial rod. 
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Figure 8. (a,d) TEM images of AgTi8020 and AgTi5050 scattered NPs, respectively, with the relative 
elemental map plotted in panels (b,c), respectively. The data show that Ag and Ti are phase-separated 
into the NPs. (e,f) HR-STEM images of the NPs, with the inset showing the FFT analysis of Ag 
crystalline structure of the zone in the purple rectangle. Red arrows indicate small Ag NPs, and green 
arrows point to the Ti part of the NPs. The data indicate that Ag is crystalline and Ti is amorphous. 
(g,h) Schematic representation of the elemental weight in the initial rod and in the NPS, showing the 
good correspondence of the material concentration. Adapted from Ref. [71] under the Creative 
Commons Attribution License 4.0. 

Finally, the nanostructured Ag-Ti coating shows good adhesion to the substrate and exhibits an 
exceptional bactericidal effect against major GN nosocomial pathogens, remarkably similar to a pure 
Ag NPs coating [70], but with an 85% lower Ag mass content. The latter consideration points toward 
a favorable strong reduction of the total Ag content in an antibacterial coating, but also reveals that a 
partial Ag inclusion in a protective matrix such as TiO2 would not hamper the efficacy of the active 
metal. In turn, such behavior would again suggest a bactericidal mechanism related to the ion release 
schematized in Figure 1. As a future development, it would be worth exploring the 
bacteria/nanogranular film interaction to determine the major killing mechanism of such systems.  

The remarkable activities against GN bacteria of Ag [70,140] and against GP bacteria and yeasts 
of Cu suggests that the combination of these two elements widens the microbicidal spectrum of a 
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coating [141,142]. However, one should keep in mind that the coatings should maintain good 
adhesion and stability against wear, and hence the presence of an adhesion promoter in the film is 
mandatory. Taking into account the negligible bactericidal activity of TiO2 in dark conditions, we 
opted to use Mg, an element with good microbicidal activity [143] and an oxygen chemical affinity 
higher than that of Ti [144]. Furthermore, the choice of using Mg as an adhesion mediator has been 
promoted by recent outcomes showing that its microbicidal activity is strongly enhanced by the 
presence of small quantities of Ag [145]. 

The material used as ablation target is a sintered rod composed of Mg, Ag and Cu at nominal 
concentrations 20/50/30% in weight. The first results of direct multi-element NP synthesis obtained 
by SCBD and deposited on TEM grids are exemplified in Figure 9 [146]. In the STEM image of Figure 
9a, the heavier Ag and Cu appear as bright zones whereas Mg is visible as less bright areas of the 
nanocomposite system. The energy dispersive X-ray spectroscopy (EDX) map (Figure 9b) shows that 
the NPs assume a cluster-in-cluster form, with a matrix of Mg (blue in Figure 9b) partially embedding 
Ag (green) and Cu (red) clusters. 

 
Figure 9. STEM (a) and corresponding EDX elemental maps (b) for the Mg/Ag/Cu NPs. Scale bar is 
20 nm. Adapted from Ref. [146] under the Creative Commons Attribution License 4.0. 

The EDX and X-ray photoemission spectroscopy elemental analysis suggests that Ag and Cu are 
metallic, while Mg is oxidized to MgO. Rutherford backscattering spectrometry shows that the 
relative weight content of the NPs (Mg/Ag/Cu = 24/47/29) is compatible with the nominal one of the 
starting rod (20/50/30), indicating a direct transfer of all the elements from the macroscopic rod to the 
nanostructured film. This direct correspondence demonstrates the possibility to finely tune the 
elemental composition of tri- and multi-element nanoparticles. 

In view of the NP film deployment as a wide-spectrum antibacterial coating, knowledge of the 
actual Cu and Ag distribution within the NPs is indeed desirable. Exposure of both Cu and Ag is a 
matter of fact beneficial to attack both GP and GN strains. Inspection of Figure 9b does not make it 
possible to experimentally distinguish the distribution of Ag and Cu, except for the fact that they are 
both located in the metallic part of the NPs. By taking into account the immiscible nature of Ag and 
Cu [147], one could expect a the segregation of these two elements instead of an alloyed core. MD 
simulations reveals that the NP structure is characterized by a partial Ag core surrounded by phase-
segregated Cu at the interface with MGO [146], a chemical ordering opposed to the typical 
CucoreAgshell arrangement for AgCu NPs in the gas phase [148–150]. The antibacterial activity of such 
tri-element nanogranular film against drug-resistant GN and GP reference strains (Escherichia coli 
ATCC 25922 and Staphylococcus aureus ATCC 6538) has been quantified using the procedure 
employed for AgTi NPs [71] and is shown in Figure 10. The striking sterilization of the samples 
observed for both strains is likely related with the presence of exposed Cu and Ag, since it was not 
observed in the case of pure Mg NPs. Such behavior might be consistent with the hypothesis of ion 
release from the NPs as a mechanism of bacteria death, although one cannot exclude other pathways 
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as mechanical adhesion to the coating and enzyme function alteration, as reported for the NPs cases 
summarized in Table 1.  

 
Figure 10. Microbicidal tests on S. aureus (blue) and E. coli (red), comparing the count of viable 
bacteria (reported as CFU per milliliter) of the control before incubation (T0), control bare substrate 
after incubation (Control), pure Mg NPs (Mg NP), and tri-elemental AgCuMg503020 film. The dashed 
line at 102 CFU ml−1 is the limit of detection of the experiment. Reproduced from [146] by permission 
of the PCCP Owner Societies. 

The efficacy of antibacterial coatings obtained by SCBD and MS is summarized in Table 2. For 
the nanogranular film obtained by cluster beams it is possible to quantify the ME (indicated by the 
number of dots in the table). In the reported cases where MS has been employed, the ME is defined 
with a different methodology and hence the simple presence of the effect is indicated. The summary 
reveals that for the MS case many data on the ME for both GN and GP strains are missing, calling for 
a thorough investigation in the future. 

Table 2. Summary of the described coatings obtained by gas phase deposition and magnetron 
sputtering. For the SCBD films, the number of points represent an average of the microbicidal effect 
on the tested strains in the different works (1 dot corresponds to ME = 1). For the magnetron 
sputtering films, the ME is not defined in a consistent way, and therefore cannot be compared to the 
other sets of works and the E. coli strain tested is not specified, so the open square () indicates that 
the coating has some antibacterial properties. 

  Nanogranular films by SCBD  Films by Magnetron Sputtering 
  Ag  AgTi  AgCuMg   Ag, AgO Cr-Cu-O Al-Cu-N Zr-Cu-N 
 Ref. [70] [71] [146]  [67] [118] [114] [121] 

Effective against GN ••••• ••••• •••••       
GP •• •• •••••   NA NA NA 

It should be also noted that for the coatings discussed in the present review, there are no data 
directly reporting on the mechanism leading to bacteria death, except for the work of Goderecci et al. 
[67], where the Ag ions release by the coating has been suggested as the cause of the bacteria death. 
The fact that the NPs are assembled into a coating, which determines a collective behavior in term of 
physical properties (e.g., optical absorption, roughness, stability, wettability ion diffusion across the 
coating), might influence the killing mechanism. Revealing how these innovative coatings lead to the 
microbicidal effect will make it possible to design nanostructured coatings for each specific 
applications. 
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4. Summary and Perspectives 

Nanostructured coatings synthesized by physical methodsare emerging as a vaiable solution to  
limit the spread of bacteria in different environments, in particular in health-related settings where 
contamination of medical device surfaces is a major issue. The absence of solvents in the synthesis 
process allows for superior control over the material purity, film, thickness, relative concentration of 
the elements composing the coating, and, furthermore, the possibility of modifying the mechanical 
properties. The fabrication of coatings by techniques such as magnetron sputtering has already 
reached the industrial level, the same cannot yet be said for SCBD despite its advantages. SCBD 
allows direct deposition of the coatings in a nanostructured form and extreme flexibility in the choice 
of materials, allowing to tailor the coating for each specific application. The coatings can in some 
cases be fabricated with good hardness and resistance to wear, and the adhesion to the substrate can 
be increased by using materials such as TiO2 or MgO. A subject yet to be thoroughly investigated is 
the determination of the antimicrobial activity mechanism, which requires, however, a strong 
interdisciplinary effort. 

A few considerations can be made to address the future perspectives and challenges in the field. 
The first issue for antibacterial surfaces is its long-term stability and the capability of a surface to 
maintain its properties over a time scale of days, week, months, or even years. The life-time of an 
antibacterial surfaces is, of course, strongly dependent on the application. For instance, on medical 
implants the antibacterial activity duration could be restricted to the period required by the body to 
accept the implant, while on medical devices used in surgery, the antibacterial effect could be 
restricted to a few hours. Hence, despite the successful killing of initially surface adhered bacteria 
over short periods, the efficacy over a time longer than a few hours after usage is still an open issue. 
This also raises the question as to what is the most important bactericidal mechanism of the films: ion 
release, ROS generation or surface morphology? This should be thoroughly addressed in the future 
and this knowledge exploited to tailor the synthesis of nanostructured coatings.  

Another issue is related to antibiofouling activity of the coatings. A wealth of research has been 
performed, but mostly on paints. For this reason there is basically no information on the behavior of 
the described coatings with respect to biofilm formation. The third issue is related to the use of 
standard strains to test the bactericidal activity. This conduct does not take into account the 
emergence of antibiotic resistant strains, against which novel coatings should be tested.  

Finally, many of the reports to date are proofs of concept on some model surfaces, although both 
magnetron sputtering and SCBD are already simple, cost-effective, environmentally friendly, and 
reproducible fabrication methods. In this sense the industrial scale up should be envisaged in the 
near future. Tackling these important challenges will require collaborative efforts from researchers 
in the fields of surface chemistry, materials science, biomedical engineering, and biotechnology. The 
technological fall-out will also provide plenty of opportunities for innovation beyond antibacterial 
surfaces, like for instance in nonlinear optics materials, sensors or membranes. 
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