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Abstract: A bottom-up material modeling based on a nonlocal crystal plasticity model requires
information of a large set of physical and phenomenological parameters. Because of the many
material parameters, it is inherently difficult to determine the nonlocal crystal plasticity parameters.
Therefore, a robust method is proposed to parameterize the nonlocal crystal plasticity model of
a body-centered cubic (BCC) material by combining a nanoindentation test and inverse analysis.
Nanoindentation tests returned the load–displacement curve and surface imprint of the considered
sample. The inverse analysis is developed based on trust-region-reflective algorithm, which is
the most robust optimization algorithm for the considered non-convex problem. The discrepancy
function is defined to minimize both the load–displacement curves and the surface topologies of the
considered material under applying varied indentation forces obtained from numerical models and
experimental output. The numerical model results based on the identified material properties show
good agreement with the experimental output. Finally, a sensitivity analysis performed changing the
nonlocal crystal plasticity parameters in a predefined range emphasized that the geometrical factor
has the most significant influence on the load–displacement curve and surface imprint parameters.

Keywords: nanoindentation test; inverse analysis; trust-region-reflective algorithm; nonlocal crystal
plasticity; geometry necessary dislocation; BCC material

1. Introduction

Nanoindentation is a technique for testing the mechanical properties of materials in the nanometer
scale utilizing instruments with high precision. In the region underneath the indenter, nanoindentation
results in complex stress distributions that produce non-uniform strain [1,2]. Nanoindentation can
be used for various applications including mineral analysis, thin films testing, scratch testing, and
structural characterization of weld materials [3–6].

To distinguish the main principle of the mechanical properties of materials, it is essential to
investigate their deformation mechanism. However, describing the detailed deformation mechanism
occurring in a material is inherently difficult [7–9]. To understand the deformation mechanism at the
grain scale, the micromechanical modeling approach is applied [10]. The micromechanical model uses
microstructural features in combination with a material model to reflect the behavior of crystalline
materials. Among existing material models, the crystal plasticity finite element (CPFE) simulation can
give a rather comprehensive understanding of the nanoindentation process.

Because of an advancement in computational power, accurate simulation of the plastic deformation
process of different crystalline materials has been carried out by the CPFE method successfully in
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recent decades [11–14]. Several researchers have studied the plastic anisotropy behavior of various
materials during nanoindentation by numerical simulation [15–19], in which the CPFE models were
usually adopted.

Although, in some of the proposed crystal plasticity theories, the effect of deformation gradients
was neglected, size effects are crucial in some applications based on experimental results, such as in
bending of polycrystalline nickel [20], micro-bending experiments of single crystal copper and single
crystal aluminum [21,22], and twisting of polycrystalline copper [23]. To consider the influence of
the deformation gradient, advanced nonlocal constitutive models have been proposed. Most of these
constitutive models are derived based on the concept of the geometrically necessary dislocation (GND)
density tensor [24–26]. These nonlocal crystal plasticity models consist of numerous physical and
phenomenological parameters, and characterizing these parameters directly from experimental tests
is inherently difficult and therefore makes it necessary to use inverse analysis technique to obtain
these parameters.

Due to its efficiency compared to performing standard tests, the inverse analysis of nanoindentation
data for predicting and measuring mechanical properties has attracted increasing interest in the scientific
community for different material applications [27–35]. To precisely evaluate the contact area or for
inverse analysis purposes, imprint profiles from indentation tests have been considered for ceramics,
metals, and, recently, micro-electro-mechanical systems (MEMS) devices [36–40].

The goal of inverse indentation problem is to identify the unknown mechanical properties of
a material obtained from experimental indentation testing including the load–depth record and the
surface imprint. There are three main inverse analysis techniques that can be employed to extract
mechanical properties of materials from instrumented indentation experimental data: the representative
stress–strain method [41–48], the iterative finite element analysis [27–30,32,33], and artificial neural
networks [49–52]. By using the representative stress–strain method, one must define functions for
mapping load–displacement curves to stress–strain curves, which is rather complicated for the case
of nanoindentation tests. On the other hand, the inverse method using the iterative finite element
analysis resembles the nanoindentation test conditions and its complexity refers only to the material
behavior defined in the model.

Inverse analysis by iterative finite element simulations requires two main prerequisites: precision
and uniqueness. The former means that the model is sufficiently accurate and representative of the
real experiment. The latter assumes that there is only one set of material parameters for which the
simulation produces a load–depth curve that replicates the experimental load–depth curve. If this
were not the case, it would be possible for materials with two different properties to generate the
same load–depth trace. As a result, if this were true, it would not be possible to uniquely identify the
behavior of the indented material through inverse analysis. The issue of uniqueness has proved to be
a non-trivial subject and it has been studied by several authors [53–58]. This study focused on the
inverse analysis technique by iterative finite element simulations because of its simplicity for modeling
of the nanoindentation test.

The solution of inverse problems relies upon classical optimization techniques. The proper
technique depends on the type of function to be optimized and constraints between parameters. Trust
region algorithms are a class of relatively new algorithms [59,60]. The trust region approach is strongly
associated with an approximation. In fact, most line search algorithms can find the approximate models
using search directions. However, in a trust region algorithm, the discrepancy function is approximated
from a nearby region of the current iteration. This seems reasonable because, for general nonlinear
functions, local approximate models (such as linear approximation and quadratic approximation) can
only fit the original function locally [61]. Since the trust-region-reflective method is a derivative-based
algorithm, the converged solution is obtained with fewer iterations compared to other nonlinear
optimization methods. For example, in Bayesian optimization using Gaussian process regression, the
objective function is unknown and it does not need to calculate the derivatives and these two features
increase number of required iterations in optimization process for reaching the converged solution [62].
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CPFE contains several material parameters and uniqueness is an issue for calibration of these
parameters. Apart from the uniqueness, robustness of the inverse method is another critical feature for
actual applications. To achieve a converged solution, these two criteria are considered when defining
discrepancy function and choosing the optimization algorithm. Therefore, in this work, we propose
the robust optimization scheme for parameterizing nonlocal crystal plasticity model by fitting both
load–displacement curves and surface imprints obtained from nanoindentation tests. In the next
section, to approximately solve the inverse problem for a given material, finite element models of the
experimental set-up are analyzed. Section 3 contains the parameterization of the material and describes
the developed discrepancy function and selected algorithm for solving the inverse problem. Then, for
the identification purpose, different sets of relevant material properties are used in the simulations
until the simulated load–depth curves as well as the surface imprints match the experimentally
measured load–depth curves and surface topologies. The combination of material properties used in
the finite element model that results in the simulated load–depth curve and in the surface imprint
matching the experimental output is assumed to represent the nonlocal crystal plasticity properties
being investigated. Section 4 discusses the influence of some of preselected nonlocal crystal plasticity
parameters and the effect of their combination on both load–displacement curve and surface imprint
parameters. Section 5 summarizes the knowledge gained from this study.

2. Nanoindentation Simulation

For the identification purpose, a finite element model is developed to simulate the performed
nanoindentation tests using a finite element commercial code [63] that implements both material and
geometrical nonlinearity.

2.1. Numerical Model of Nanoindentation

The nanoindentation model simulating the experimental test conditions [64] is represented in
Figure 1a. The indented single grain has 25 µm length, 25 µm width, and 10 µm thickness, which
is sufficiently large to cover the occurred plastic zone of the indentation region [64]. Due to the
non-symmetric behavior of the material, this numerical model excludes the symmetry and considers
the entire experimental set-up.
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Figure 1. The numerical model of the nanoindentation test: (a) with indented solid mesh 
discretization; and (b) with an outer cube to enclose the indented grain. 

2.2. Nonlocal Crystal Plasticity Model 

The considered material behavior is described by the nonlocal crystal plasticity model as 
proposed by Ma and Hartmaier [26]. It has been implemented in Abaqus by a user-defined material 
subroutine (UMAT), which is coupled to the finite element model to simulate the nanoindentation 
test. Since the described crystal plasticity model in this study follows concepts of fundamental work 
[65–67], we focused only on the details of the non-local formulation and the relevant material 
parameters.  

With the assumption of the kinematics of deformation, the total deformation gradient tensor, F, 
is multiplicatively decomposed to  

F = FeFp (1)

where Fe and Fp are the elastic and the plastic part of the deformation gradient tensor, respectively. 
The plastic deformation, Fp, which consists of an irreversible permanent deformation, evolves as 
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where Lp is the plastic part of the gradient velocity tensor, and, since in this study dislocation slip is 
considered as the only deformation process, results in 
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where γሶ α is the slip rate and M෪α = dα⨂ nα defines the Schmid tensor for the slip system α, which is 
defined by the slip direction dα and the slip plane normal nα. The symbol ⨂ denotes the dyadic 
product of two vectors resulting in a second rank tensor. N counts the total number of slip systems. 

Th elastic response can be obtained by calculating the second Piola–Kirchhoff stress tensor, 𝐒෨, 
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Figure 1. The numerical model of the nanoindentation test: (a) with indented solid mesh discretization;
and (b) with an outer cube to enclose the indented grain.
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To accurately calculate of strain gradients and to accommodate a strong deformation field at
the contact region, the mesh was refined. Therefore, the indented grain is discretized regularly with
eight-node linear brick (C3D8) elements, of which the element size is approximately 0.6 µm and which
totally includes 25,600 elements.

A larger cube visualized in Figure 1b was modeled to enclose the indented single grain to support
it under applying load by the indenter. The size of the outer cube is 100 × 100 × 40 µm3 and discretized
with a 20-node quadratic brick element (C3D20), and its behavior is described only in the elastic regime.

Based on the indenter used in the experiment [64], the sphero-conical indenter was modeled as an
analytical rigid body because of its high stiffness compared to the specimen with a radius of 5 µm and
an angle of 90 degrees. However, because only the spherical part of the indenter was in contact with
the indented single grain, we modeled only this part of the indenter. It is assumed that the contact
between indenter and grain is frictionless.

2.2. Nonlocal Crystal Plasticity Model

The considered material behavior is described by the nonlocal crystal plasticity model as proposed
by Ma and Hartmaier [26]. It has been implemented in Abaqus by a user-defined material subroutine
(UMAT), which is coupled to the finite element model to simulate the nanoindentation test. Since
the described crystal plasticity model in this study follows concepts of fundamental work [65–67],
we focused only on the details of the non-local formulation and the relevant material parameters.

With the assumption of the kinematics of deformation, the total deformation gradient tensor, F,
is multiplicatively decomposed to

F = FeFp (1)

where Fe and Fp are the elastic and the plastic part of the deformation gradient tensor, respectively.
The plastic deformation, Fp, which consists of an irreversible permanent deformation, evolves as

.
F = LpFp (2)

where Lp is the plastic part of the gradient velocity tensor, and, since in this study dislocation slip is
considered as the only deformation process, results in

Lp =
N∑
α=1

.
γα
∼

Mα (3)

where
.
γα is the slip rate and

∼

Mα = dα ⊗ nα defines the Schmid tensor for the slip system α, which
is defined by the slip direction dα and the slip plane normal nα. The symbol ⊗ denotes the dyadic
product of two vectors resulting in a second rank tensor. N counts the total number of slip systems.

Th elastic response can be obtained by calculating the second Piola–Kirchhoff stress tensor,
~
S, as

S̃ =
1
2

C̃
(
FeT

Fe
− I

)
(4)

where C̃ is the stiffness tensor. Then, the Cauchy stress is defined as

σ =
1

detFe FeS̃FeT (5)

The plastic deformation mechanism here is governed by the slip mechanism where dislocations
slip in well-designed slip systems.

In the plastic regime, the flow rule and the strain hardening law, are defined as below:
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.
γα =

.
γ0

∣∣∣∣∣∣τα + τGNDk
α

τ̂α + τ̂GNDi
α

∣∣∣∣∣∣p1 sign(τα + τGNDk
α )

(6)

.
τ̂α =

NS∑
β=1

h0χαβ

(
1−

τ̂α
τ̂sat

)p2 ∣∣∣∣ .
γβ

∣∣∣∣ (7)

where
.
γ0 is the reference shear rate, p1 is the inverse value of the strain rate sensitivity, h0 is the initial

hardening rate, τ̂sat is the saturation slip resistance and p2 is a fitting parameter. The initial value of
the slip resistance τ̂α is defined as τ0, and χαβ is the cross-hardening matrix between crystallographic
mobile dislocations and super GNDs.

The flow rule described in Equation (6) includes two back stresses, τ̂GNDk
α and τGNDk

α , which define
the additional hardening caused by GNDs due to strain gradients [26]. This additional hardening can
be separated into isotropic (τ̂GNDk

α ) and kinematic (τGNDk
α ) hardening contributions.

In the case of treating Fp as additional degree of freedom (DOF) to consider the nonlocal
effect [68,69], it is possible to calculate the dislocation density tensor in the reference configuration as
follows:

G = −(F p
× ∇

)
(8)

The net Burgers vector b can be determined with the help of the dislocation density tensor, for an
arbitrary unit area with a normal vector n [70], as

b = Gn (9)

According to the continuum mechanical point of view, it is not possible to uniquely define
crystallographic GND or even to consider individual dislocation segments; therefore, the approach of
super dislocations is followed here to describe the dislocation Burgers vectors and the line directions in
average correctly and, hence, to produce a valid approximation to their far reaching stress fields.

Here, the dislocation density tensor is projected to the global Cartesian coordinates of the system,
and the geometrically necessary super dislocations are defined uniquely. Then, the far field stress of
the crystallographic GND population can be described with good accuracy [26]. In this way, the GND
density tensor is separated into nine independent parts

9∑
α=1

ραdα ⊗ tα =
G
b

(10)

where dα and tα are permutations of the Cartesian unit vectors and b is the norm of the Burgers vector.
ρα is named as super GND density, in which the three first densities belong to screw super GND
densities and the last six ones represent the edge super GND densities.

It has been found that the forest GNDs can produce strong cross hardening for crystallographic
mobile dislocations [71,72]. Under the condition that it is not possible to find a unique solution for
the crystallographic GNDs caused by gradients of Fp, it is then needed to investigate the additional
passing stress [73] for mobile dislocations caused by super GNDs

τ̂GNDi
α c1µb

√√√√ 9∑
β=1

χGND
αβ |ρβ| (11)

where c1 is a geometrical factor or the Taylor hardening coefficient [26] and µ is the shear modulus.
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With the assumption of small elastic strains, the resolved shear stress, τα, and the back stress,
τGND
α , within the intermediate configuration, are written as

τα =
∼

S
∼

Mα (12)

τGNDk
α =

∼

S
GND ∼

Mα (13)

where
∼

S
GND

is the internal stress in the intermediate configurations [26].
The described constitutive law is implemented into Abaqus as material behavior of ARMCO iron,

and the dislocation slip is considered on the common crystallographic <111> {110} slip systems.

3. Parameterization of the Nonlocal Crystal Plasticity Model

The considered material behavior is described by the nonlocal crystal plasticity model formerly
defined and by a user-defined material subroutine (UMAT), which is coupled to the finite element
model to simulate the nanoindentation test. The indentation model is only simulated for a single grain
with a crystal orientation close to <100> and with Bunge Euler angles of (ϕ1, ϕ2, ϕ3) = (33.26, 11.48,
328.99). Although indentation occurs only along a single axis, the resulting stress state underneath the
indenter is always multiaxial in nature. Thus, all possible slip systems of BCC crystal are activated
and, hence, the plastic anisotropy of the BCC crystal is fully considered in the parameterization of the
non-local crystal plasticity model by nanoindentation testing.

In terms of parameterization of the nonlocal crystal plasticity model by an inverse analysis, an
optimization algorithm is implemented. In this study, two sets of material parameters were chosen
as the initial parameter sets. The first set listed in Table 1 was taken from [74] and yielded a good
agreement with experimental results. In this context, the purpose of parameterization is to obtain a
parameter set, which is in a better agreement with the experiment. In addition, another parameter
set is defined arbitrarily to investigate the feasibility of the optimization algorithm. Because of their
pronounced effect on the load–displacement curve and the residual imprint, c1, p2, τ̂sat, and τ0 were
adapted in the optimization process to reflect the behavior of the material under nanoindentation tests.

Table 1. Crystal plasticity parameters of ARMCO iron.

Parameter Notation Value

Elastic constant C11 (GPa) 231
Elastic constant C12 (GPa) 134.7
Elastic constant C44 (GPa) 116.4

Initial slip resistance τ0 (MPa) 50
Saturation slip resistance τ̂sat (MPa) 290

Inverse of strain rate sensitivity p1 (–) 26.7
Exponent of strain hardening p2 (–) 5.0

Initial hardening rate h0 (MPa) 961
Geometrical factor C1 (–) 0.025

Average dislocation pile-up size L (nm) 1
Cross hardening coefficient χGND

αβ (–) 1

3.1. Objective Function and Optimization Algorithm

The inverse analysis is used to identify material parameters of ARMCO iron based on the
experimental results obtained from the nanoindentation tests [64]. The nonlocal crystal plasticity
parameters of the specimen will be recovered by minimizing the discrepancy between the performed
experiments and the results obtained from the finite element model of the real sample, which depends
on the input material properties.

To optimize the nonlocal crystal plasticity parameters, the development of a proper discrepancy
function is a main factor. The discrepancy function, f(z), is a function of the material parameters (z),
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and, since it consists of nonlocal crystal plasticity parameters, vector z has a nonlinear relationship
with the material response, which makes the problem become multivariable nonlinear. Therefore, the
current optimization process is a nonlinear multivariable unconstrained one.

The dependence of the computed quantities at the parameter vector z is implicitly described by
using the constitutive relationships adopted inside the finite element model. This dependence makes
the goal function f, a non-explicit and typically non-convex function of z. Therefore, optimization of
nonlocal crystal plasticity parameters is a non-convex problem.

To solve a non-convex problem, the trust region approach is the most suitable one because of its
boundedness. Furthermore, trust region algorithms are reliable and robust, since they can be applied
to ill-conditioned problems, and they also have very strong convergence properties [56]. In this study,
the trust-region-reflective algorithm was hence chosen. For a better understanding of the algorithm,
we provide a short description as follows.

Assume that there is an initial guess of the solution of the optimization problem, an approximate
model can be constructed near the current point. A solution of the approximate model can be taken
as the next iterate point. The region that the approximate model is trusted is called the trust region.
The trust region is adjusted from iteration to iteration. If the computations indicate the approximate
model fits the original problem well, the trust region can be enlarged. Otherwise, when the approximate
model does not match, the trust region should be reduced.

The key contents of a trust region algorithm are how to compute the trust region trial step and
how to decide whether a trial step should be accepted. An iteration of a trust region algorithm has
the following form. A trust region is available at the beginning. Then, an approximate model is
constructed, and it is solved within the trust region, giving a solution s, which is called the trial step.
A merit function is chosen (merit function is first two terms of the Taylor approximation of discrepancy
function), which is used for updating the next trust region and for choosing the new iterate point.

To use the optimization algorithm available in MATLAB environment [75], we linked MATLAB
to the finite element commercial software (Abaqus). Numerical analyses return the counterparts of
the quantities measured in the experiment as a function of the parameters, here collected in vector
z, representing the material properties. Their optimum value is identified by the minimization of a
discrepancy function, f(z), defined as follows for the present application.

f(z) =
M∑

k=1

Ddiag
mk −Ddiag

ck (z)

Ddiag
m max


2

+
N∑

j=1

Dtop
mj−Dtop

cj (z)

Dtop
m min


2

(14)

In the above relationship, superscripts diag and top indicate the displacements from
load–displacement diagrams and from the surface topologies, while subscripts m and c refer to
measured and computed quantities, respectively. In particular, Ddiag

ck and Ddiag
mk in the left side

parentheses indicate the displacements on the load–displacement curve from the experimental and the
numerical results for the number of M points on the load–displacement graph, and their subtraction
is normalized by Ddiag

m max, which is the maximum measured displacement from the experimental test.
In the right side parentheses, Dtop

cj and Dtop
mj represent the surface imprints from the experimental

and the numerical output for the number of N points on the surface topology diagram, while Dtop
m min

indicates a normalization term, here assumed to coincide with the minimum measured displacement
from the surface imprint experienced at the applied load.

The identification procedure designed for the present application consists of different steps,
as visualized in Figure 2. First, the initial guess of unknown parameters must be made, either from
reference data or by arbitrary selection. However, since the trust-region-reflective algorithm must be
supplied with upper and lower bounds for each parameter, the initial guess must be prescribed in
the range of the predefined bounds. The selected ranges of nonlocal crystal plasticity parameters are
τ0 ∈ [10, 100] MPa, τ̂sat ∈ [100, 800] MPa, c1 ∈ [0.01, 0.08], and p2 ∈ [2, 10].
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Figure 2. The designed algorithm for the identification procedure.

Based on the initial guess of nonlocal crystal plasticity parameters, the primary numerical results
developed by the finite element method will be obtained (Ddiag

ck and Dtop
cj in Equation (14)), and after

processing the collected data acquired from the nanoindentation test Ddiag
mk and Ddiag

ck in Equation (14)),
the discrepancy function f(z) can be computed, which is a scalar.

To increase the accuracy of the optimization procedure, the first derivative of the discrepancy
function is computed by a typical central finite difference scheme, for which the increment has been set
equal to 5% of the primary value of the corresponding nonlocal crystal plasticity parameter. Then,
based on the selected algorithm, a new set of parameters and a new value of the discrepancy function
will be found and utilized for the next iteration until achieving a minimum discrepancy function and
finally the corresponding parameters by meeting one of the defined tolerances in the optimization.
There are two tolerances that are considered as stopping criteria for the optimization algorithm: step
tolerance and function tolerance. Step and function tolerances mean the difference between new sets
of parameters and new discrepancy function at iteration (i + 1) and iteration (i), respectively. In this
study, these tolerances were defined as 1 × 10−4.

3.2. Results and Model Verification

The optimization procedure was started with two different sets of initial nonlocal crystal plasticity
parameters (using test data from the literature [74] and a set of arbitrary data to examine the robustness
and convergence problems of the selected algorithm). Note that a set of arbitrary data in this study
was randomly chosen. Due to the computational effort for the analysis of the numerical models, the
identification problem was done only based on the results under 15 mN force, and then the uniqueness
of the obtained optimized parameters was examined by applying other predefined forces (12.5, 17.5,
and 20 mN).

Table 2 reports the initialization and the converged values of the nonlocal crystal plasticity
parameters considered for ARMCO iron as well as the initial and final quantities of the discrepancy
function, F. The final converged value of the discrepancy function verifies the selected algorithm since
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discrepancy functions from different initial sets approximately reached to the same quantity at the end
of procedure. Obviously, the identified parameters based on the different initial data are close to each
other, which justifies the uniqueness of the obtained nonlocal crystal plasticity parameters.

Table 2. Optimized nonlocal crystal plasticity parameters using nanoindentation test.

Parameter Initialization Value (Literature) Optimized Value Parameter Initialization Value (Arbitrary) Optimized Value

c1 (–) 0.025 0.0244 c1 (–) 0.015 0.0245
p2 (–) 5 4.86 p2 (–) 4 4.92

τ̂sat (MPa) 290 298.5 τ̂sat (MPa) 400 302.8
τ0 (MPa) 50 52.3 τ0 (MPa) 40 53.8
f(z) (–) 0.57 0.05312 f(z) (–) 1.321 0.05468

In addition, the uniqueness of the identified parameters was also examined on load–displacement
curves and on surface imprints by analyzing the numerical model based on the obtained parameters
for different applied forces, as depicted in Figures 3 and 4, in which the numerical model results for
various applied forces are comparable with experimental output. Although, in Figure 4, there are small
differences between experimental output and numerical results from maximum pile up to the edge
of the surface, numerical results could follow the trend of the experimental output and capture the
material behavior with a good agreement.
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The trend of changes in the considered parameters during the optimization procedure using
different initial data (literature and arbitrary data) is shown in Figure 5. It is worth noting that the
parameters visualized in Figure 5 were normalized by dividing them with their initial value.

The trend of change in the discrepancy functions at each iteration when using different initial
sets is also shown in Figure 6. The same final values of the discrepancy function at the end of the
inverse analysis under use of different sets of data justify that the identified parameters could reach
the absolute minimum value of the discrepancy function in the optimization problem and not to the
relative minimum, which is the reason of the uniqueness of the identified nonlocal crystal plasticity
parameters shown for different applied loads.
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4. Influence of Nonlocal Crystal Plasticity Parameters on the Nanoindentation Simulations

To evaluate the effect of different components on both the load–displacement curve and the surface
imprint, the quantities of the preselected nonlocal crystal plasticity parameters (c1, p2, τ̂sat, and τ0) are
changed in a range. The obtained results in the following are for the applied force equal to 15 mN.

Figure 7a compares the surface topology of the developed numerical model by variation in τ0, of
which the most significant effect is on the penetration depth. By increasing τ0 and keeping the other
parameters constant, the load–displacement curve shifts to the left side and tends to shift towards an
agreement with the experimental test, as shown in Figure 7b. According to the described flow rule in
Section 2.2, larger quantities of τ0 lead to a larger slip resistance and consequently to a reduction in
plastic deformation. This effect becomes more visible by increase in τ0, which results in smaller level
of displacement in load–displacement curve and lower level of penetration depth in surface topology.
It also leads to a small increase of the maximum pile-up height. However, comparing to a larger
influence of τ0 on the penetration depth, its influence on the maximum pile-up height is negligible.
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Figure 8 represents the influence of τ̂sat on the load–displacement curve and on the surface
imprints. By adopting different τ̂sat in numerical models, the maximum height (pile-up) reduces
when τ̂sat increases, in addition to the reduction in the penetration depth (see Figure 8a). As visible
in Figure 8b, similar to the effect of τ0, the load–displacement curves shift to the left side by increase
in τ̂sat, but the rate of change in displacement does not keep constant; the slope of the loading part
roughly remains unchanged, and the width of the holding part of the load decreases. Because of the
direct influence of the saturating critical resolved shear stress on the strain hardening law described
in Equation (7), an increase in τ̂sat results in a reduction in the shear rate, which causes a lower level
of stress and plastic deformations. This is also justifiable from the load–displacement curves and
surface imprints.
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By increasing the exponent of strain hardening, p2, as shown in Figure 9a, both the maximum
height and the penetration depth will increase. Unlike the effect of two former parameters (τ0 and τ̂sat),
the load–displacement curve moves to the right side and both the rate of change in displacement and
width of holding part of the force decrease (see Figure 9b). The material response due to the increase
in the exponent of strain hardening can also be explained by the flow rule. Since p2 typically has

quantities larger than 1, by its increase,
.
ˆ
τα decreases in Equation (7), and hence the shear rate in the

flow rule increases, which results in a higher level of stresses as well as in plastic deformations.
The effect of c1 on both the load–displacement curve and the surface topology is shown in

Figure 10. Compared to the other parameters, the influence of c1 on the material response is much
more apparent. As visualized in Figure 10a, by an increase in c1, both the maximum height and the
penetration depth reduce. On the other hand, as shown in Figure 10b, an increase in c1 leads to a shift
of the load–displacement curves to the left side, an increase in the slope of the loading part, and a
decrease in both the width of the holding part of the force and the corresponding displacement. The
influence of the geometrical factor is on the additional hardening caused by GNDs (τ̂GNDi

α ). Thus,
by increase in c1, τ̂GNDi

α also increases, which results in a reduction in the shear rate and, therefore,
a decrease in plastic deformations in the slip system due to a lower level of stress.
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Due to the complicated relationship between nonlocal crystal plasticity parameters and their
complex influence on the material response under the nanoindentation test, a parametric study
considering the simultaneous influence of a different combination of nonlocal crystal plasticity was
conducted, in which the effect of only three pairs was described. In the following, the influence of three
different combinations of nonlocal crystal plasticity parameters are studied on the load–displacement
curve, penetration depth, and maximum depth.

As depicted in Figure 11a, by increase in both τ0 and τ̂sat values, the load–displacement curve
shifts from the right to the left side, and the width of the holding part of the force will continuously
decrease. Increasing τ0 leads to a decrease in displacement. At the same time, by increase in τ̂sat, the
rate of increase in displacement will also reduce. Furthermore, simultaneous increase in both τ0 and
τ̂sat will rise the slope of the loading part. Overall, the range of changes in the load–displacement
curves by variation in both τ0 and τ̂sat, is very small, which is due to the counteracting role of these
two parameters in the strain hardening law.
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A simultaneous change in τ0 and p2 results in the load–displacement curves shown in Figure 11b.
By an increase in τ0, the load–displacement curve shifts from the right to the left side, but the width
of the holding part of the force does not change. Furthermore, when p2 goes up, the displacement
increases, and the rate of this increase goes up for the higher τ0 quantities. Since the role of these two
parameters on the strain hardening law is the opposite, very large or small values for both τ0 and p2

will not significantly change the load–displacement curve.
The load–displacement curve by simultaneous change in p2 and c1 is shown in Figure 11c.

By increase in both p2 and c1 quantities, the load–displacement curve generally shifts from the right to
the left side. As is visible, an increase in p2 leads to an increase in displacement, but at the same time,
by an increase in c1, the displacement will reduce. Furthermore, by an increase in the c1 quantities,
the slope of the loading part will increase. It is worth noting that the trend of changes in the holding
part, by increase or decrease in both p2 and c1, is not clear.

The influence of both τ0 and τ̂sat on the penetration depth is studied in Figure 1a. In the case
of simultaneous contributions of these two parameters, the penetration depth increases as they both
increase and the minimum of it occurs when these two parameters have the lowest quantities. On the
other hand, the penetration depth for the lowest value of τ0 (τ0 = 40 MPa) and the highest value of
(τ̂sat(τ̂sat = 340 MPa) is almost equal to the penetration depth for the highest value of τ0 (τ0 = 60 MPa)
and the lowest value of (τ̂sat(τ̂sat = 240 MPa). Moreover, the penetration depth remains almost
unchanged in the linear variation between the two combinations of extreme values (τ0 = 40 MPa,
τ̂sat = 340 MPa) and (τ0 = 60 MPa, τ̂sat = 240 MPa).

Figure 12b illustrates the variation of the penetration depth by combination of different quantities
of τ0 and p2. The maximum penetration depth occurs when τ0 is high but p2 has a low value.
Furthermore, the penetration depth for the lowest values of τ0 and p2 (τ0 = 40 MPa and p2 = 4) is
almost equal to the penetration depth for their highest values (τ0 = 60 MPa and p2 = 6). Here, the
trend of change in the penetration depth with different τ0 is almost linear.

The effect of both p2 and c1 on the penetration depth is shown in Figure 12c. In the case of
simultaneous contributions of these two parameters, the penetration depth increases as p2 reduces and
c1 increases. It is worth noting that the penetration depth keeps approximately unchanged when only
p2 varies and it is more affected by variation in c1. As is visible, by increase in c1, the penetration depth
increases significantly.

Due to complex relationship between parameters in the hardening law defined in Equations
(6) and (7), it is difficult to estimate how these parameters interacts with each other during plastic
deformation. The results shown in Figure 12 highlight the effect of different parameters combinations on
the penetration depth and, where variation in c1 significantly changes the penetration depth compared
to the other parameters. It is also concluded that penetration depth increases by adopting higher level
of geometrical factor, initial and saturation slip resistance, and lower level of strain hardening power.

Figure 13 shows variation of the maximum height considering combination of different parameters.
As shown in Figure 13a, the maximum height has the maximum quantity when τ0 is high but τ̂sat has
low value. Variation in maximum height is approximately linear by change in τ0. Furthermore, the
maximum height for the lowest values of τ0 and τ̂sat (τ0 = 40 MPa and τ̂sat = 240 MPa) is almost equal
to the maximum height for their highest values (τ0 = 60 MPa and τ̂sat = 340 MPa).

As is clear in Figure 13b, with an increase in τ0, the maximum height increases roughly linearly
when p2 has low value. In the case of simultaneous contributions of these two parameters, the
maximum displacement increases as they both increase, and its minimum occurs when these two
parameters have the lowest quantities.

By a simultaneous change in both p2 and c1, Figure 13c visualizes that the maximum height has
the highest quantity when p2 is high but c1 has a low value. Furthermore, the maximum height changes
linearly with different p2 but it varies completely nonlinearly with different c1.

The results presented in Figure 13 reflect higher variation for maximum height by changing the
geometrical factor, as was also observed for the penetration depth. To increase the maximum height,
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it is needed to rise initial slip resistance and strain hardening power but reduce the saturation slip
resistance and geometrical factor.
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5. Conclusions

In the present study, a robust optimization scheme was developed and applied to experimental
data to investigate the influence of nonlocal crystal plasticity parameters on the load–displacement
and the surface topology of ARMCO iron under nanoindentation testing and to parameterize the
predefined nonlocal crystal plasticity parameters by inverse analysis.

The identification process started with different initial guesses for nonlocal crystal plasticity
parameters, which were chosen from the literature and arbitrarily. The results (load–displacement
curves and surface topologies) show a converged solution at the end of the optimization procedure
reaching the minimum discrepancy function. The identification algorithm was done by considering
the load–displacement curve and the surface topology for an applied force of 15 mN. Then, to examine
the uniqueness of the identified parameters, the load–displacement curve and the surface imprint
extracted from the experimental test were compared with the numerical analyses for various applied
forces (12.5, 17.5, and 20 mN).

The sensitivity analyses were done in the numerical model by varying the preselected nonlocal
crystal plasticity parameters (c1, p2, τ̂sat and τ0). In surface imprints, maximum height was mostly
unaffected by τ0 and p2 but reduced by increasing τ̂sat and c1. When c1, τ̂sat and τ0 increased, the
penetration depth reduced while p2 had an inverse effect such that its increase resulted in deeper
penetration depth. The results highlight that the geometrical factor, c1, has the most significant influence
on both load–displacement curves and surface imprints in comparison with the other parameters.
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