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Abstract: To investigate the combined compression-shear performance of self-compacting concrete
(SCC), eight groups of concrete specimens under different axial compression ratios were designed, and
the composite performance under different axial stresses was carried out by hydraulic servo machine.
The uniaxial and tensile splitting strength of SCC were also included in the study. The failure modes
of SCC were presented, discussed, and compared with normal concrete (NC). The characteristic
points of stress-strain curves of SCC specimens from the experiments were extracted and analyzed
under different axial compression stress. Based on the experimental results, the shear strength of
compression-shear load was divided into cohesive stress and residual friction stress. The variation of
residual stress and cohesive stress under the combined compression-shear stress was analyzed, and
the relationship was obtained by numerical regression. Research results indicated that the residual
stress increases linearly with the compression stress while the cohesive stress increased at first and
then decreased. The research found that the friction coefficient of SCC was much smaller than NC
due to the lack of interlocking effect. Utilizing the compression-shear strength of SCC, the material
failure criteria of SCC were proposed from the view of shear failure strength and octahedral stress
space, which could fit the experimental results confidently following the mathematical regression
analysis. The comparison with data from other literature shows favorable consistence with the
obtained criteria. The results of the study could be beneficial complement in engineering practices
where SCC was applicable.

Keywords: self-compacting concrete; compression-shear stress; failure criterion; mechanical
performance; mechanical experiments; numerical regression

1. Introduction

Self-compacting concrete (SCC) is a kind of fresh concrete which has an ability to flow under its
own weight, fill the required space or formwork completely, and produce a dense and adequately
homogeneous material without a need for mechanical compaction [1]. In 1988, the concept of SCC was
first proposed by Okumara et al. [2,3] in Japan, and then Ozawa et al. [4] conducted the research on the
working performance of different mix proportions, and determined the method to obtain high fluidity
with less aggregate content, lower water-powder ratio, and super plasticizer. In recent years, SCC has
attracted extensive attention and application because it can achieve better filling and wrapping ability
for steel bars, which also has better concrete appearance and can reduce labor demand. Scholars world
widely have conducted comprehensive research on SCC, mainly including the mixture ratio, working
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performance, mechanical properties, and durability of SCC. H. Upadhyay et al. [5] summarized the
test and design methods of SCC. Su et al. [6] proposed a new SCC mixture ratio design method,
which is simpler than the method proposed by Japan instant concrete association and can meet the
performance requirements of different test methods. Shi et al. [7] analyzed the mix proportion and
basic performance of self-compacting lightweight aggregate concrete containing glass powder. In order
to ensure the working performance of SCC, its testing methods include filling property, segregation
resistance and gap passing property. In Chinese national code [8], the characteristic items, such as
slump, expansion time, J-ring, and jumping table are used to evaluate the working performance of
SCC. The British standard [9] adopts more different methods to test the performance of SCC, such
as L-box, U-box, and GTM wet sieve stability. Holschmacher [10] created a database to analysis the
performance of SCC with different mix proportions. Domone [11] collected more than 71 studies of
the hardened mechanical properties of SCC. The properties, including uniaxial compressive strength,
tensile strength, and the elastic modulus, as well as the bond of SCC to reinforcing steel bars were
discussed. Khayat et al. [12] gave the comprehensive review of state-of-art mechanical properties of
SCC. In the recent 20 years, SCC has been used and will have more potential usage in civil engineering,
such as the retrofit of existing buildings [13] or used as main load-bearing elements in structures [14].
However, due to the lack of experimental data, the biaxial or multiaxial results were rarely explored
and discussed.

The stress of concrete in structures are often complex. Concrete structures in actual projects are
not only subjected to uniaxial stress, but often subjected to composite stresses [7,15,16]. In bridge
engineering practices, the structural elements, such as deep beams, corbels, bearing padding stones,
and other components where SCC has potential usages are subjected to typical compression-shear
composite stress, so it is of great importance to study the performance of SCC in multi-stress states.
However, reports on multi-axial stress performance of SCC, including composite compression-shear
stress, are relatively bare. Yu et al. [16] discussed the self-compacting lightweight aggregate concrete
under combined compression-shear stress and proposed the damage criteria based on the experimental
data. Yu et al. [17] conducted experimental study of plain concrete under combined compression-shear
stress. The shear failure stages were identified, and failure characteristics were discussed. Two types
of failure criteria which modelled the strength law of plain concrete under the combined stresses
were proposed. Hussein and Marzouk [18] carried out four different types of high-strength plate
specimens under different biaxial load combinations. The research claimed that the failure modes had
no fundamental difference between the high strength concrete and normal concrete. Song et al. [19]
analyzed the compression-shear performance of roller compacted concrete and proposed the twin-shear
failure criteria based on the test results. Due to the lack of standard of test method for concrete under
compression-shear, the specimens from different literature were fabricated variously, which might lead
to different conclusions [19–21].

The motivation of this research was to study the compression-shear performance of SCC, to
compare the performance with normal concrete (NC) and find the characteristics under combines
stress, to support future academic research or engineering use of SCC. To achieve the research goal,
firstly, in this paper, the combined compression-shear performance experiments as well as the uniaxial
compression, uniaxial splitting tensile tests of SCC specimens were carried out by using hydraulic
servo machine and material compression-shear testing machine. Then, the shear failure modes of SCC
under various compression stress were presented and the stress-strain curve analysis under combined
compressive and shear forces are carried out. The characteristics of SCC under combined compressive
and shear stresses were extensively analyzed. Finally, based on the experimental data and combing
with the results of relevant documents, the corresponding SCC material failure criteria were proposed
from the perspective of shear failure strength and octahedral stress space. Comparisons between the
experimental and proposed criteria were fully presented.
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2. Experimental Program

2.1. Concrete Mix Proportion

The compressive and shear composite mechanical properties of self-compacting concrete (SCC)
are experimentally studied in this paper. The design concrete strength is 35MPa (SCC35) and the
self-compacting grade is two. The mix proportion is determined according to China’s Technical
Specification for Application of Self-Compacting Concrete (JGJ/T283-2012) [8], as shown in Table 1.
The cement used for the concrete material is ordinary Portland cement P.O. 42.5 (P.O. 42.5, Longtan
Cement Company, Nanjing, China), and the coarse aggregate is natural stone with particle size ranging
from 5 mm to 20 mm, where the parameters are shown in Table 2. Fine aggregate is natural river sand
with the maximum particle size of 5mm with the fineness module 2.45. Naphthalene sulfonic acid
formaldehyde condensate water reducing agent is adopted, and the dosage of the water reducing
agent is 1.0% of the cement mass.

Table 1. Concrete mix proportion of self-compacting concrete (SCC) (kg/m3).

Concrete
Grade Cement Water Coarse

Aggregate
Fine

Aggregate
Mineral
Powder

Water
Reducer

SCC35 385 166 310 720 197 3.85

Table 2. Basic physical properties of coarse aggregate.

Coarse
Aggregate

Types

Apparent
Density

(/kg·m−3)

Bulk
Density

(/kg·m−3)

Crushing
Index
(/%)

Water
Absorption Rate

(/%)

Particle Size
Ranges
(/mm)

Nature 2700 1465 9.1 1.2 5–20

2.2. Loading Cases

In order to study the stress state of SCC under combined compression and shear, three different
loading modes are designed, which are uniaxial compression, uniaxial splitting tension, and combined
compression-shear state. The combined compression-shear experiments include six different axial
pressures, namely, 0 MPa, 2 MPa, 4 MPa, 6 MPa, 8 MPa, and 10 MPa, respectively, and the maximum
designing axial compression ratio is about 0.30 considering the compression strength of SCC. The
loading cases are shown in Table 3. Considering the randomness of concrete materials, three test
pieces are adopted for each group of experiments, and the average value of each group is taken for
further analysis.

Table 3. Loading cases of self-compacting concrete.

Index Loading Cases Axial Pressure Index Loading Condition Axial Pressure

SCC-C uniaxial compression / SCC-CS-4 composite compression-shear 4 MPa
SCC-T uniaxial splitting tensile / SCC-CS-6 compression-shear composite 6 MPa

SCC-CS-0 composite compression-shear 0 MPa SCC-CS-8 composite compression-shear 8 MPa
SCC-CS-2 composite compression-shear 2 MPa SCC-CS-10 composite compression-shear 10 MPa

Considering the size limitation of the material compression-shear equipment, and referring some
other results in previous literature, the design dimensions of all specimens used in this study are
100 mm × 100 mm × 100 mm, and the size of compression-shear failure surface is 100 mm × 100 mm,
correspondingly.

2.3. Test Equipment and Loading Schemes

The uniaxial compression and uniaxial splitting tensile tests adopt Reger RE-8060 hydraulic
servo machine (Reger instrument, Shenzhen, China). The uniaxial compression tests apply
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load-controlled method with the loading rate 0.3 MPa/s. The uniaxial splitting tensile tests adopted
displacement-controlled loading method with the loading rate 1 mm/min. The loading procedure
stopped when the specimen was damaged. SCC compression-shear composite stress test was carried
out via CSS-283 material testing machine produced by Changchun Testing Machine Research Institute
(Changchun, China), which obtained the ultimate shear load of concrete by direct shear. The machine
is equipped with independent load and displacement sensors in both vertical and transverse directions.
The equipment consisted of a two-directional loading device controlled by two external digital
controllers designed by the Germany company Doli. Each axis of the CSS loading machine has two
displacement sensors installed (CD375-5, Changchun Testing Machine Research Institute, Changchun,
China). In this study, only the horizontal sensors (CD375-5, Changchun Testing Machine Research
Institute, Changchun, China) were utilized. The maximum error of the load sensor is 0.5% of its range
(0.5% × 50 t), and the error of the displacement sensor is 5 × 10−3 mm whose maximum measuring
limit is ± 3 mm which can meet the experimental requirements.

The fixed vertical loading method was adopted in the SCC compression-shear composite
experiments, i.e., the vertical compression load stayed constant during the increasing of horizontal
shear load. The vertical axial loading and the preloading of horizontal direction were completed by
force-control method. The experimental procedure was designed as following: firstly, the axial loading
was set to the design value in the vertical compression direction and was applied by the vertical
pressure head with the rate of 0.5 MPa/min and secondly, in the horizontal direction (shear direction)
0.5 KN load was preloaded for 5 min to stabilize the system, and make sure that the specimen and
the horizontal pressure head were tightly attached. Thirdly, the horizontal shear load was applied
by displacement-control method, at the loading rate 0.2 mm/min until the failure of specimen. When
the lateral load was formally applied after preloading, the horizontal sensors started to collect data.
During the compression-shear test, the horizontal load and displacement were recorded simultaneously.
Figure 1 is a schematic diagram of compression-shear loading equipment (a) and sketchy loading
method (b).
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and compression-shear experiments are obtained by using hydraulic servo testing machine and 
material compression shear testing machine, as shown in Figure 2. Shear failure modes in this 
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Figure 1. A schematic diagram of compression-shear loading equipment and loading method:
(a) Loading equipment; (b) Sketchy picture of loading method.

3. Experimental Results and Analysis

3.1. Shear Failure Modes of SCC

The different shear failure modes of SCC under uniaxial compression, uniaxial splitting tensile and
compression-shear experiments are obtained by using hydraulic servo testing machine and material
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compression shear testing machine, as shown in Figure 2. Shear failure modes in this manuscript refer
to not only the pure shear modes, also the ones under different axial compression stress.
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Figure 2. The shear failure modes of different experiments: (a) Uniaxial SCC-C; (b) Uniaxial splitting
tensile SCC-T; (c) Shear failure surface SCC-CS-0; (d) Lateral shear failure surface SCC-CS-0; (e) Shear
failure surface SCC-CS-2; (f) Lateral shear failure surface SCC-CS-2; (g) Shear failure surface SCC-CS-6;
(h) Lateral shear failure surface SCC-CS-6; (i) Shear failure surface SCC-CS-10; (j) Lateral shear failure
surface SCC-CS-1.

The failure mechanism of SCC under uniaxial compression is the same as that of normal
concrete (NC). Under axial load and Poisson effect, tensile strain is formed in the horizontal direction
perpendicular to the axial direction. With the increase of axial load, when the horizontal strain of
the specimen exceeds the ultimate tensile strain, cracks appear inside the specimen and the concrete
gradually breaks down, as shown in Figure 2a. The failure mode of SCC under uniaxial compression is
oblique shear failure, which is different from that of NC. The uniaxial compression failure mode of
NC usually forms an "octagonal" quadrangular pyramid form with connections on both sides. The
most serious failure part is located at the middle of the test piece. The upper and lower loading ends
are seldom damaged due to the constraint of steel plates, while SCC presents inclined cracks from
top to bottom, and the upper and lower ends of the test piece are also damaged. This is due to the
fact the SCC has less coarse aggregate and higher material compactness. The test results in this paper
are consistent with the failure mode of self-compacting lightweight aggregate concrete reported by
Z. Yu et al. [20,22]. The splitting tensile failure mode of SCC is shown in Figure 2b. Under splitting
tensile load, the specimen is damaged when the tensile strain reaches the ultimate tensile strain of the
material, causing the failure of cement gel layer and aggregates on the splitting surface. This is different
from the failure mode of NC, because NC often uses coarse aggregate with higher strength, which
is not easy to damage. However, SCC has more fine aggregate and cementing material with higher
proportion of bonding stress, which will make the aggregates break at the time of splitting failure.

As one can see from the external shape of the shear failure surface, the SCC compression-shear
failure modes are similar under different axial loads, as shown in Figure 2c–j. An obvious failure
surface appears after the composite stress experiment is completed, but the failure modes on two sides
of the shear surface are different: the failure surficial line at the loading side is relatively flat, while the
one on the supporting side is rather tortuous, accompanied by oblique shear cracks. In general, with
the increase of axial load, the width of the cracks gradually decreases.

Meanwhile, as one can see from the internal situation of shear failure surface, when the axial
pressure is low (0–4 MPa), under the shear load shown in Figure 3a,b, the failure surface is rough,



Materials 2020, 13, 713 6 of 16

and more visible irregular cracks are generated inside the concrete, and small pieces of concrete flake
off. However, with the increase of axial pressure (6–10 MPa), as shown in Figure 3c,d, the spalling of
the failure surface decreases, at the same time, there are no visible cracks inside the specimen, while
the concrete gradually presents obvious semicircular and splayed compression failure characteristics.
The compression-shear failure feature of SCC is similar with the report of Song et al. [19]. When the
axial pressure increases, the shear surface becomes coarser and the compressive failure feature is
more significant.
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3.2. Uniaxial Compression and Tensile Strength of SCC

According to the Chinese provisions of Standard for Test Method of Mechanical Properties On
Ordinary Concrete (GB50081-2002) [23], the typical curves of uniaxial compression and uniaxial
splitting tensile experiments of SCC are obtained, as shown in Figures 4 and 5.

ft =
2F
πA

(1)

where ft is the splitting tensile strength of concrete, F the splitting failure load, and A the splitting
surface area of concrete specimens (in this paper 100 mm × 100 mm).

As can be seen from Figure 4, the development trend of stress-strain curve of SCC under uniaxial
compression can be divided into two parts: elastic ascending section, and descending section. The
stress-strain curve is smoothing and continuous, and the descending rate is significantly higher than
the ascending section, showing obvious brittle failure characteristics and has little plastic deformation.
The uniaxial splitting tensile stress strain curve of SCC is shown in Figure 5. Compared with the
stress-strain curve under compression, the brittle failure characteristic of SCC under uniaxial splitting
tension is more obvious.

By analyzing the test results of uniaxial compression and uniaxial splitting tensile specimens, the
axial compressive strength fcu = 36.15MPa and uniaxial splitting tensile strength ftu = 3.21MPa of
SCC are obtained.
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Figure 4. Uniaxial compression stress-strain curve of SCC.

Materials 2020, 13, 713 7 of 17 

 
 

 
Figure 4. Uniaxial compression stress-strain curve of SCC. 

 
Figure 5. Uniaxial split tensile stress-strain curve of SCC. 

3.3. Stress-Strain Curve under Combined Stress of Compression and Shear 

Figure 6 is the part of stress-strain curves from SCC composite compression-shear tests. From 
the shape of the curves, it can be seen that the stress-strain curve under the combined action of SCC 
compression and shear can be divided into three parts: rising stage I, falling stage II, and stationary 
stage III, as shown in Figure 7, which is completely different from the curve of SCC under uniaxial 
compression or uniaxial splitting tensile test as shown in Figures 4 and 5. Meanwhile both the rising 
section I and the falling section II have obvious nonlinear characteristics. The resistance of the 
stationary section III is nearly constant, and the slope of the curve tends to be zero, which is similar 
with the concrete spalling stage reported in literature [17] when the concrete specimen shows almost 
constant resistance. 

0 5 10 15 20 25 30
0

10

20

30

40
 SCC-C-1 39.38MPa
 SCC-C-2 36.72MPa

St
re

ss
 /

M
Pa

Strain /με

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 SCC-T-1 3.85MPa
 SCC-T-2 3.70MPa

Strain /με

St
re

ss
 /

M
Pa

Figure 5. Uniaxial split tensile stress-strain curve of SCC.

3.3. Stress-Strain Curve under Combined Stress of Compression and Shear

Figure 6 is the part of stress-strain curves from SCC composite compression-shear tests. From
the shape of the curves, it can be seen that the stress-strain curve under the combined action of SCC
compression and shear can be divided into three parts: rising stage I, falling stage II, and stationary
stage III, as shown in Figure 7, which is completely different from the curve of SCC under uniaxial
compression or uniaxial splitting tensile test as shown in Figures 4 and 5. Meanwhile both the
rising section I and the falling section II have obvious nonlinear characteristics. The resistance of the
stationary section III is nearly constant, and the slope of the curve tends to be zero, which is similar
with the concrete spalling stage reported in literature [17] when the concrete specimen shows almost
constant resistance.
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According to recent researches [24,25], the shear strength of concrete τpeak under combined
compression and shear can be divided into three parts, i.e., aggregate interlocking force τui, interfacial
friction force τu f , and cohesive stress τuc, which have the following relationship:

τpeak = τui + τu f + τuc (2)

However, it is difficult to separate aggregate interlocking stress τui and interfacial friction stress
τu f completely because they are tangled with each other and change with compressive load. After
SCC specimens enter stage III, the rate of the stress-strain curve will tend towards zero. At this time,
the relative deformation of the shear surface of concrete is relatively large. This study assumes that τuc

and τui have disappeared at this time, and the residual stress is provided by τu f only. Similar to the
method in [19], the former two effects are added together, and the peak shear strength is written into
the sum of two terms:

τpeak = τcoh + τu f = τcoh + τres (3)

where τcoh = τui + τuc is the generalized cohesive stress and τres is the residual friction stress at stage
III. Then the generalized cohesive stress can be subtracted from the peak shear stress after the residual
stress is obtained from the test curve. Columns 2 to 7 in Table 4 show the test results of different
strengths obtained through compression-shear tests.
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Table 4. SCC compression-shear test results under different axial stress.

Axial Pressure
σ/MPa

Shear Strength τpeak/MPa Cohesive Strength τcoh/MPa Residual Strength τres/MPa

Item (1) Test data
(2)

Average
(3)

STD
(4)

Test data
(5)

Average
(6)

STD
(7)

Test data
(8)

Average
(9)

STD
(10)

0 5.40/5.01/8.07 6.16 1.67 5.27/5.29/8.87 6.48 1.66 0.12/0.06/0.09 0.09 0.03
−2 13.59/11.03/13.43 12.68 1.43 9.32/7.99/9.79 9.03 0.93 4.27/3.04/3.64 3.65 0.62
−4 15.71/15.10/14.79 15.20 0.47 10.09/10.16/9.76 10.00 0.21 5.62/4.94/5.03 5.20 0.37
−6 12.50/16.90/15.07 14.82 2.21 6.43/8.61/7.90 7.65 1.06 5.90/8.29/6.88 7.02 1.20
−8 18.93/17.21/15.37 17.17 1.78 9.22/6.61/5.33 7.05 1.83 9.71/9.90/9.80 9.80 0.10
−10 22.03/18.32/16.02 18.79 3.03 10.66/7.11/7.21 8.33 1.92 11.37/10.83/8.81 10.34 0.38

Through SCC compression-shear tests, the shear strength of the material under different axial
forces can be obtained, the tested and average values are shown in columns 2 and 3 of Table 4. Then,
the relationship between shear strength and residual stress, namely Equation (3), can be applied to
calculate the cohesive stress, as shown in columns 4 and 5 of Table 4.

3.4. Shear Strength under Different Axial Loading

The relationship between shear strength and axial pressure of concrete under compressive shear
load can be described by Mohr–Coulomb model [17,26,27], i.e.,:

τpeak = µσ+ c (4)

where µ, c are the coefficient of frictional and cohesive stress, and τpeak, σ are shear strength and axial
pressure, respectively. According to the test results in Table 4, the peak stress and axial pressure
of SCC are fitted linearly, and the results are shown in the first row of Table 5. Figure 8 shows the
relationship between axial pressure and shear strength in SCC compression-shear tests. To figure out
the characteristics properties of SCC more clearly, the compression-shear results of normal concrete by
Yu et al. (2018) are also included in the figure for comparing purpose.

Table 5. Relationship between shear strength, residual strength, and axial force.

Item
(1)

Friction Coefficient µ
(2)

Cohesive Stress c
(3)

R2

(4)

SCC Shear strength 1.1065 8.4566 0.932
SCC Residual strength 1.0866 0.5447 0.989
NC Shear strength [17] 1.96 3.27 0.972Materials 2020, 13, 713 11 of 17 
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Figure 8 shows the experimental fitting results of the pressure and shear strength of NC in [17].
As can be seen from the first and third rows in Table 5 and Figure 8, the friction coefficient µ of SCC is
obviously smaller (about 44% smaller) and the bond stress is much larger (about 158% bigger) than
those of NC. The phenomenon should be caused by the instinct properties of SCC for the content of
fine aggregate in SCC leads to denser internal cement stone structure compared with NC. At the same
time, the coarse aggregates in NC would cause larger friction stress for the interlocking effect was
more obvious than in SCC. These two factors contributed to the difference of friction coefficient and
cohesive stress. In the design of structures or structural members, in the shear failure stage, the results
of this research indicated that SCC could not provide the same friction resistance as NC. It is unsafe
to design SCC member following the instructions of NC in shear failure mode. It should be pointed
out that the axial compression ratio in this paper was different from those in references [16,17], and
the mechanical properties of SCC under the condition of large axial compression ratio need further
experimental verification.

3.5. Residual and Cohesive Stress under Different Axial Loading

Based on the data obtained from SCC compression-shear tests, the relationship between residual
stress and axial pressure was mathematically fitted, shown in Figure 9. There exists a good
linear relationship between residual stress and axial pressure, which can also be described by the
Mohr–Coulomb relation of Equation (4). The friction coefficient and cohesive stress of the fitting curve
are shown in second row of Table 5.
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Comparing the shear strength and the fitting results of residual strength and axial stress in Table 5,
it can be found that the friction coefficient µ changes little while the cohesive stress c decreases greatly,
which indicates that the proportion of bonding stress in residual stress is very small which verifies
the rationality in Equation (3) that we put cohesive stress τuc away from residual stress τres, and that
the SCC compressive shear strength divided by Equation (3) in this paper is reasonable. Figure 9 also
shows the ratio of residual stress to shear strength under different axial pressures. With the increase
of axial pressure, the proportion of residual stress in shear strength gradually increases, with the
maximum proportion of 58.6% at 8 MPa and a slight decrease at 10 MPa.

The cohesive stresses of SCC concrete under different axial pressures are plotted in Figure 10. It can
be found that the cohesive stress increases first and then decreases with the increase of axial pressure
in a limited boundary, i.e., between 6 MPa and 10 MPa, which was also observed by Bresler et al. [28]
and Deng et al. [25]. The cohesive stress obtained by the linear relationship between shear strength
and axial pressure in Table 5 is the average value.
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Figure 10 also shows the ratio of cohesive stress to shear strength. It can be observed that the
proportion of cohesive stress in shear strength gradually decreases and tends to be stable with the
increase of axial pressure. When the axial compression stress is 8 MPa, the minimum proportion is
41.4%, and the average value of cohesive stress is 8.46 MPa. Deng et al. [25] calculated the ratio of bond
stress of ordinary concrete and roller compacted recycled concrete to shear strength. The results show
that the cohesive strength between ordinary concrete and recycled concrete accounts for 10%–30% of
the shear strength, while this study found that the ratio of SCC cohesive strength to shear strength is
about 41.3%–98.4%, which is significantly higher than that of ordinary concrete or roller compacted
recycled concrete. This depends on the fact that SCC has less coarse aggregate and the cohesive stress
is mainly caused by the interaction between fine aggregate and binder, which determines that the
cohesive strength of SCC takes a significantly higher proportion of shear strength.

4. Failure Criteria of SCC

4.1. Failure Criteria of Octahedral Space Stress

Under the combined action of compression and shear, the principal stress of SCC specimens can
be written in the following form: 

σ1 = σ
2 +

√

σ2+4τ2

2
σ2 = 0

σ3 = σ
2 −

√

σ2+4τ2

2

(5)

where σ1, σ2, σ3 are the first, second, and third principal stresses, σ, τ are axial stress and shear stress,
respectively, then the corresponding eight-flour stress can be written as:

σoct =
1
3 (σ1 + σ2 + σ3) =

σ
3

τoct =
1
3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 = 1
3

√
2(σ2 + 3τ2)

(6)

where σoct, τoct are normal and shear stress of octagonal element.
According to the relevant research on concrete strength criteria under composite load, the

strength criteria of different concrete can be expressed in three basic forms [29,30], among which the
multi-parameter strength criteria proposed by Willam et al. [31] and Kang [32] can be expressed in the
form of the following Equation (7):

τoct

fc
= A + B

σoct

fc
+ C

(
σoct

fc

)2

(7)
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where fc is the uniaxial compressive strength of concrete, A, B, C are the coefficients related to material,
which can be determined by mathematical regression.

Similarly, using the measured data in this paper and the relevant data in literature [17,33], the
strength criterion of spatial stress of the octahedral bodies was set up, and the results were shown in
Equation (8) and Figure 11. The difference between the fitted value and the measured value was small,
which indicated that the SCC compression-shear composite stress state was well fitted by using the
failure criterion of octahedral stress space as shown in Equation (8):

τoct

fc
= 0.0154− 0.1044

σoct

fc
− 0.2992

(
σoct

fc

)2

R2 = 0.914 (8)
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Although the data in references [17,33] were not obtained from SCC but from recycled concrete
and plain normal concrete, they were collected from the same kind of experiments under similar
loading conditions. Furthermore, the criteria of octahedral stress space were independent with the
compressive strength of concrete and within the scope of principle stress scope, it was reasonable to
derive the failure criteria from different kinds of concrete. The degree of coincidence of the fitting
curve showed clear agreement with the experimental results.

4.2. Failure Criteria Based on Unified Twin Shear Strength Theory

Due to the large difference in tensile and compressive strength of concrete materials, different
researchers have proposed many yield criteria. The classical Mohr–Coulomb theory considers the
influence of shear stress and normal stress, improves the maximum shear stress theory, but cannot
consider the influence of the second principal stress. Yu [29] proposed a unified twin shear strength
theory based on principal stress space, which can better consider the influence of intermediate principal
stress and is suitable for brittle materials such as concrete. From Equation (5) of the principal stress,
the unified shear stress criterion can be obtained as follows:

f = σ1 −
1

1 + b
(bσ2 + σ3) = σs when σ2 ≤

1
2
(σ1 + σ3) (9)

f ′ = −σ1 +
1

1 + b
(σ1 + bσ2) = σs when σ2 ≥

1
2
(σ1 + σ3) (10)
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Substituting the principal stress Equation (5) into Equations (9) and (10), one obtains:

f =
2 + b
2 + 2b

√
σ2+4τ2 +

b
2 + 2b

σ = σs when σ ≥ 0 (11)

f =
2 + b

2 + 2b

√
σ2+4τ2 −

b
2 + 2b

σ = σs when σ ≤ 0 (12)

Yu [5] pointed out that different values of b in Equations (11) and (12) will lead to different yield
criteria. If b = 0, the yield criterion of single shear stress can be obtained, and if b = 1, the yield criterion
of double shear stress can be obtained. When b =∞ the maximum strength criterion can be obtained.
If the influence of intermediate principal stress is taken into account, Equations (11) and (12) can be
rewritten as follows:

f = (1 + 3β)σ+(3+β)
√
σ2+4τ2 = 4C when σ+ β

√
σ2+4τ2 ≥ 0 (13)

f = (−1 + 3β)σ+(3−β)
√
σ2+4τ2 = 4C when σ+ β

√
σ2+4τ2 ≤ 0 (14)

where β is the coefficient of influence of concrete intermediate principal stress and C is the concrete
strength parameter.

Using shear strength values and unified strength theoretical Equations (13) and (14) obtained from
different axial force tests, the comparison between unified failure criteria and test data under combined
compression and shear of SCC concrete is shown in Figure 12a. The two parameters of the unified
failure criterion obtained from fitting and inversion calculation of test data are β = 13.49, C = 43.10,
respectively. As can be seen from Figure 12a, the consistency between the strength criterion obtained
by the unified strength criterion and the test data agrees with each other quite well, which indicates
that the unified double shear strength criterion can effectively simulate the stress state of SCC concrete
under composite compression and shear. Furthermore, to validate the proposed failure criterion, the
experimental data of concrete under combined compression and shear status from other literatures,
such as Yu [17] and Wang [33], are also included in Figure 12b. It clearly can be seen that the proposed
failure criterion can also represent the ultimate stress conditions, indicating that the unified twin shear
failure criterion could be applied to the concrete under combined compression and shear.
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theory; (b) Comparison of the proposed failure criterion with multiple experimental data.
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5. Discussion

In this section, two critical key points are analyzed and discussed: (1) The failure mechanism and
failure modes of SCC under compression-shear stress; (2) the reason that different kinds of concrete are
included in the derivation of failure criteria.

The failure mechanism of SCC under combined compression-shear stresses is the same in different
concretes. The composite compression-shear strength failure mode of SCC under high axial compression
is similar with NC [17], which tends to be crashed by axial compressive load. When the compressive
stress is applied on the specimen, the shear strength of the concrete will increase for the friction stress
and the cohesive stress between cement and aggregate would both increases. The different failure
appearances of SCC and NC may be contributed to the following two facts. First, the shear failure
is due to the loss of cohesive stresses under compression-shear experiments and the percentage of
cohesive stress takes a much larger share than the one of NC. Second, the residual stress after shear
failure of SCC is mainly composed of the friction stress which depends on the axial comprehensive
stress. The friction factor of SCC is much smaller than NC for the lack of interlocking effect of coarse
aggregates. These two facts are contributed to the percentages of fine and coarse aggregates in SCC
which are totally different from NC. Although in current study, the shear strength of SCC increases
with axial compression, the shear performance under higher axial pressure needs further experiments
and attention.

Researches on failure criteria of concrete have been extensively carried out and led to unified
strength or failure laws despite of the types of concrete [30]. Firstly, SCC is a special kind of concrete
with different dosage of aggregates, thus the macro mechanical performance should agree with normal
concrete if the factor of compression strength is excluded, which had been verified by Khayat et al. [12].
On the other side, the experimental results of combined compression-shear stress of SCC are relatively
rare and considering the discreteness of concrete properties, it is sensible to choose more existing data
to propose or validate the failure criteria. Secondly, loading condition is critical to the performance of
shear strength of concrete specimen. So, all the data collected from literature have an identical loading
condition, that is, two axial stresses with one compression and one shear, although the types of concrete
containing recycled concrete and plain concrete. The regression results show favorable agreement
and the proposed criteria have simple mathematical expression which could be easily applied. Still, it
should be pointed out that the compression ratio (the compressive stress applied by the pressure head
to the compressive strength of SCC) was relatively small, the performance under high compression
ratio still needs to be investigated further.

6. Conclusions

In this paper, the mechanical performance of SCC under combined compression-shear stress is
tested and theoretically analyzed. Firstly, the shear failure modes and stress-strain curves of SCC
specimens under different axial pressures were obtained through experiments. Secondly, the shape
of the compression-shear test curve of SCC specimens was analyzed, and the characteristic values of
the curve were obtained. Thirdly, according to the test results, the characteristics and proportional
relationships of cohesive and friction stress (including interlocking stress) in shear strength of SCC were
analyzed. Finally, two kinds of failure criteria based on compression-shear strength and octahedral
stress space are studied. The following conclusions can be obtained:

1. The failure mode of SCC under uniaxial compression was different from that of NC, which
was the inclined shear failure mode. With the increase of axial compression stress, the internal
cracks of shear surface in SCC specimens gradually disappear, and the failure mode became the axial
compressive failure mode under the combined compressive-shear stress state accordingly.

2. The shear strength of SCC under combined compression-shear stress can be divided into
two parts: general cohesive stress and residual friction stress. The relationship between the residual
strength, shear strength and axial pressure can be predicted by Mohr-Coulomb relationship.
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3. The friction coefficient of shear strength in SCC was much smaller than that in NC, which
meant that in the shear failure state, SCC cannot afford enough shear resistance as NC. Meanwhile, the
proportion of cohesive stress and residual friction stress of SCC was totally different from NC. The
cohesive stress took a larger part in SCC than in NC.

4. Based on SCC’s combined compression-shear stress test data and the related test data in the
existing literature, the unified strength failure criterion as well as the failure criteria based on octahedral
stress space were proposed. The experimental and regression results demonstrate that the proposed
failure criteria can describe the failure laws of SCC properly.
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