

Supplementary Materials: Preparation and Modification of Biomass-based Functional Rubbers for Removing Mercury(II) from Aqueous Solution

Yurong Chen, Akram Yasin, Yagang Zhang, Xingjie Zan, Yanxia Liu and Letao Zhang

Samples	Commonweater	Mass Ratio of	Temperature (Time of Gelation ¹	
	Components	Reactants	°C)	(min)	
SCO	S:CO	1:1	150	30	
SCO2V1	S:CO:2-VP	1:1:0.025	150	20	
SCO2V2	S:CO:2-VP	1:1:0.05	150	25	
SCO2V3	S:CO:2-VP	1:1:0.075	150	28	
SCO2V4	S:CO:2-VP	1:1:0.1	150	30	
SCO2V5	S:CO:2-VP	1:1:0.2	150	38	
SCO4V1	S:CO:4-VP	1:1:0.025	150	15	
SCO4V2	S:CO:4-VP	1:1:0.05	150	19	
SCO4V3	S:CO:4-VP	1:1:0.075	150	22	
SCO4V4	S:CO:4-VP	1:1:0.1	150	28	
SCOA1	S:CO:AEMA	1:1:0.025	150	30	
SCOA2	S:CO:AEMA	1:1:0.05	150	25	
SCOA3	S:CO:AEMA	1:1:0.075	150	20	
SCOA4	S:CO:AEMA	1:1:0.1	150	18	
SCOA5	S:CO:AEMA	1:1:0.2	150	18	
SCOA6	S:CO:AEMA	1:1:0.3	150	15	
SCOA7	S:CO:AEMA	1:1:0.4	150	15	
SCOE1	S:CO:EMAB	1:1:0.025	150	20	
SCOE2	S:CO:EMAB	1:1:0.05	150	25	
SCOE3	S:CO:EMAB	1:1:0.075	150	28	
SCOE4	S:CO:EMAB	1:1:0.1	150	30	
SCOE5	S:CO:EMAB	1:1:0.2	150	32	
SCOE6	S:CO:EMAB	1:1:0.3	150	35	
SCOE7	S:CO:EMAB	1:1:0.4	150	38	
SCODM1	S:CO:DMAEMA	1:1:0.025	150	18	
SCODM2	S:CO:DMAEMA	1:1:0.05	150	25	
SCODM3	S:CO:DMAEMA	1:1:0.075	150	30	
SCODM4	S:CO:DMAEMA	1:1:0.1	150	36	
SCODM5	S:CO:DMAEMA	1:1:0.2	150	40	

 Table S1. Synthesis conditions of biomass-based functional rubbers.

Time of gelation¹ was the period from the moment that elemental sulfur and cottonseed oil were mixed fully under stirring vigorously at 150 $^{\circ}$ C to the moment that the mixture (including the mixture after adding modifiers) got gelation completely.

Table S2. The adsorption kinetic fitting parameters of SCOA2 for Hg^{2+} .

Model	Qe (mg g ⁻¹)	k (h-1)	R ²
Preudo-first-order	118.4	0.9227	0.9848
Preudo-second-order	124.4	0.01454	0.9998

Table S3. The fitting parameters of adsorption isotherm of SCOA2 for Hg^{2+} .

Langmuir Model			Freundlich Model			Lang	Langmuir- Freundlich Model			
Qm (mg g ⁻¹)	Եւ	R ²	K	n	R ²	Qm (mg g ⁻¹)	blf	n lf	R ²	
370.4	0.0364	0.9704	67.53	3.637	0.7956	343.3	0.0091	0.6711	0.9914	
(A)		(B)	(C)		(D)	(E)		(F)		
(a)		(b)	(c)		(d)	(e)		(f)		

Figure S1. Digital photos of real sample particles before and after mercury adsorption: (A) SCO , (B) SCO2V, (C) SCO4V, (D) SCOA, (E) SCOE, (F) SCODM, (a) SCO-Hg²⁺, (b) SCO2V-Hg²⁺, (c) SCO4V-Hg²⁺, (d) SCOA-Hg²⁺, (e) SCOE-Hg²⁺, (f) SCODM-Hg²⁺ (when mass of modifiers was 5% of sulfur mass, corresponding samples were chosen for taking SEM images).

Figure S2. (**a**) N₂ adsorption-desorption isotherm of SCOA2, (**b**) pore diameter distribution curve of SCOA2.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).