



## Article Structural, Electronic and Vibrational Properties of YAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>

Aleksandr S. Oreshonkov <sup>1,2,\*</sup>, Evgenii M. Roginskii <sup>3</sup>, Nikolai P. Shestakov <sup>1</sup>, Irina A. Gudim <sup>4</sup>, Vladislav L. Temerov <sup>4</sup>, Ivan V. Nemtsev <sup>5</sup>, Maxim S. Molokeev <sup>6,7</sup>, Sergey V. Adichtchev <sup>8</sup>, Alexey M. Pugachev <sup>8</sup> and Yuriy G. Denisenko <sup>9,10</sup>

- <sup>1</sup> Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; nico@iph.krasn.ru
- <sup>2</sup> School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia;
- <sup>3</sup> Laboratory of Spectroscopy of Solid State, Ioffe Institute, St. Petersburg 194021, Russia; e.roginskii@mail.ioffe.ru
- <sup>4</sup> Laboratory of Radiospectroscopy and Spintronics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; irinagudim@mail.ru (I.A.G.); bezm@iph.krasn.ru (V.L.T.)
- <sup>5</sup> Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; ivan\_nemtsev@mail.ru
- <sup>6</sup> Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; msmolokeev@mail.ru
- <sup>7</sup> School of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk 660041, Russia;
- <sup>8</sup> Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia; adish2@ngs.ru (S.V.A.); apg@iae.nsk.su (A.M.P.)
- <sup>9</sup> Department of Inorganic and Physical Chemistry, Tyumen State University, Tyumen 625003, Russia; apg@iae.nsk.su
- <sup>10</sup> Department of General and Special Chemistry, Industrial University of Tyumen, Tyumen 625000, Russia
- \* Correspondence: oreshonkov@iph.krasn.ru

Received: 19 December 2019; Accepted: 21 January 2020; Published: 23 January 2020

**Table S1.** Fractional atomic coordinates and isotropic or equivalent isotropic displacementparameters ( $Å^2$ ) of YAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> single crystal.

|      |              |            |            | /                          |
|------|--------------|------------|------------|----------------------------|
| Atom | x            | У          | z          | $U_{\rm iso}^*/U_{\rm eq}$ |
| Y    | 1.0000       | 1.0000     | 1.0000     | 0.0053 (3)                 |
| Al   | 0.44422 (18) | 1.0000     | 1.0000     | 0.0060 (4)                 |
| B1   | 1.0000       | 1.0000     | 0.5000     | 0.0060 (13)*               |
| B2   | 0.5570 (6)   | 1.0000     | 0.5000     | 0.0068 (10)*               |
| O1   | 0.1494 (4)   | 1.0000     | 0.5000     | 0.0069(7)                  |
| O2   | 0.4083 (4)   | 1.0000     | 0.5000     | 0.0086 (8)                 |
| O3   | 0.5506 (3)   | 0.8503 (3) | 0.4794 (4) | 0.0084 (5)                 |

**Table S2.** The main bond lengths (Å) of YAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> single crystal.

| Y—O3 <sup>i</sup>    | 2.318 (2) | B1-O1 <sup>xiv</sup>  | 1.387 (3) |
|----------------------|-----------|-----------------------|-----------|
| Y—O3 <sup>ii</sup>   | 2.318 (2) | B1—O1 <sup>xv</sup>   | 1.387 (3) |
| Y—O3 <sup>iii</sup>  | 2.318 (2) | B1-O1 <sup>xvi</sup>  | 1.387 (3) |
| Y—O3 <sup>iv</sup>   | 2.318 (2) | B2—O3                 | 1.369 (4) |
| Y—O3 <sup>v</sup>    | 2.318 (2) | B2—O3 <sup>xvii</sup> | 1.369 (4) |
| Y—O3 <sup>vi</sup>   | 2.318 (2) | B2—O2                 | 1.381 (7) |
| Al—O3 <sup>x</sup>   | 1.861 (3) | Al—O1 <sup>xii</sup>  | 1.916 (2) |
| Al—O3 <sup>vii</sup> | 1.861 (3) | Al—O2 <sup>xi</sup>   | 1.927 (3) |
| Al—O1 <sup>xi</sup>  | 1.916 (2) | Al—O2 <sup>xii</sup>  | 1.927 (3) |

Symmetry codes: (i) y+1/3, x+2/3, -z+5/3; (ii) -x+y+2/3, -x+4/3, z+1/3; (iii) -y+5/3, x-y+4/3, z+1/3; (iv) x+2/3, y+1/3, z+1/3; (v) -x+4/3, -x+y+2/3, -z+5/3; (vi) x-y+4/3, -z+5/3; (vii) -x+y+1/3, -x+5/3, z+2/3; (viii) -y+7/3, x-y+5/3, z+2/3; (ix) x+1/3, y-1/3, z+2/3; (x) y-1/3, x+1/3, -z+4/3; (xi) -y+4/3, x-y+5/3, z+2/3; (xii) -x+y-1/3, -x+4/3, z+1/3; (xiii) -y+4/3, x-y+5/3, z-1/3; (xiv) -x+y, -x+1, z; (xv) x+1, y, z; (xvi) -y+2, x-y+2, z; (xvii) x-y+1, -y+2, -z+1

| Atom | x          | y          | z          | $B_{ m iso}$ |
|------|------------|------------|------------|--------------|
| Y    | 0          | 0          | 0          | 0.65 (7)     |
| Al   | 0.5571 (2) | 0          | 0          | 0.91 (9)     |
| B1   | 0          | 0          | 0.5        | 1.7 (2)      |
| B2   | 0.4432 (8) | 0          | 0.5        | 0.86 (18)    |
| O1   | 0.8497 (4) | 0          | 0.5        | 1.07 (13)    |
| O2   | 0.5928 (6) | 0          | 0.5        | 1.10 (13)    |
| O3   | 0.4490 (4) | 0.1509 (4) | 0.5196 (4) | 0.74 (11)    |

**Table S3.** Fractional atomic coordinates and isotropic displacement parameters (Å<sup>2</sup>) of YAl<sub>3</sub>(BO<sub>4</sub>)<sub>3</sub> powder.

**Table S4.** Main bond lengths (Å) of YAl3(BO4)3 powder.

| Y-03 <sup>i</sup>    | 2.312 (3) | B1—O1 <sup>iv</sup> | 1.396 (4) |
|----------------------|-----------|---------------------|-----------|
| Al—O1 <sup>ii</sup>  | 1.910 (3) | B2—O2               | 1.389 (9) |
| Al—O2 <sup>ii</sup>  | 1.912 (4) | B2—O3               | 1.382 (5) |
| Al—O3 <sup>iii</sup> | 1.862 (3) |                     |           |

Symmetry codes: (i) *y*-1/3, *x*-2/3, *-z*+1/3; (ii) *-y*+2/3, *x*-*y*-2/3, *z*-2/3; (iii) *-x*+*y*+2/3, *-x*+1/3, *z*-2/3

**Table S5.** Calculated optimized lattice parameters and atomic positions of YAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> in comparison with the experimental data.

|                  |         | DFT     |         |         | Exp.    |        |  |
|------------------|---------|---------|---------|---------|---------|--------|--|
| a, (Å)           |         | 9.0830  |         |         | 9.28485 |        |  |
| c, (Å)           |         | 6.9881  |         | 7.23005 |         |        |  |
| $V, (Å^3)$       |         | 499.28  |         |         | 539.79  |        |  |
| Y (3 <i>a</i> )  | 0       | 0       | 0       | 0       | 0       | 0      |  |
| Al (9 <i>d</i> ) | 0.55782 | 0       | 0       | 0.5571  | 0       | 0      |  |
| B1 (3b)          | 0       | 0       | 0.5     | 0       | 0       | 0.5    |  |
| B2 (9e)          | 0.44134 | 0       | 0.5     | 0.4432  | 0       | 0.5    |  |
| O1 (9e)          | 0.84888 | 0       | 0.5     | 0.8497  | 0       | 0.5    |  |
| O2 (9e)          | 0.59178 | 0       | 0.5     | 0.5928  | 0       | 0.5    |  |
| O3 (18f)         | 0.44639 | 0.14994 | 0.52520 | 0.4490  | 0.1509  | 0.5196 |  |

|            | Calculated |                                                       |               | Experi | imental  |                            |
|------------|------------|-------------------------------------------------------|---------------|--------|----------|----------------------------|
| <i>A</i> 1 | $A_2$      | <i>E</i> (TO)                                         | <i>E</i> (LO) | Raman  | Infrared | Assignment                 |
|            |            |                                                       |               | 1453   | 1202     |                            |
|            |            | 1381.59                                               | 1490.32       | 1335   | 1383     |                            |
| 1327.10    | 1368.07    | 1315.84                                               | 1344.37       | 1314   | 1348     | BO3 as                     |
|            |            | 1268.23                                               | 1292.78       | 1298   | 1201     |                            |
|            |            |                                                       |               | 1287   | 1254     |                            |
| 1020 74    |            |                                                       |               | 1023   |          |                            |
| 1039.74    |            | 1006.22                                               | 1008.16       | 1015   | 984      | BO3 ss                     |
| 959.24     |            |                                                       |               | 982    |          |                            |
|            |            |                                                       |               | 772    | 810      |                            |
|            | 755.87     | 769.20                                                | 781.90        | 773    | 788      |                            |
|            |            |                                                       |               | 764    | 765      |                            |
|            |            |                                                       |               | 714    | 724      |                            |
| (07.04     | 692.47     | 701.75                                                | 702.40        | 705    | 705      | BO3 $\pi$ and BO3 $\delta$ |
| 097.94     | 640.88     | 668.32                                                | 668.38        | 690    | 675      |                            |
|            |            |                                                       |               | 673    | 662      |                            |
|            |            | (12.05                                                | (42.20)       | 646    |          |                            |
|            |            | 613.95                                                | 642.29        | 620    |          |                            |
| EQE 47     |            | E(9.04                                                | (10.92        | 609    | (11      |                            |
| 383.47     |            | 368.24                                                | 612.83        | 600    | 611      | $bO_3 0 + AI tr.$          |
|            |            | 407 29                                                | E3E E3        | 555    | 577      |                            |
|            |            | 497.20                                                | 555.55        | 527    | 535      |                            |
|            | 481.96     | 478.66                                                | 497.09        | 423    | 510      |                            |
| 207.96     | 440.88     | 446.90                                                | 447.08 402    | 407    | 496      | $BO_3 t. + AI tr.$         |
| 397.00     | 416.99     | 438.07                                                | 439.13        | 401    | 464      |                            |
|            | 381.76     | 389.13                                                | 399.08        | 388    | 420      |                            |
|            |            | 251 52                                                | 254.26        | 344    |          | BO: libr                   |
|            |            | 351.52                                                | 334.30        | 338    |          | DO3 IIDI.                  |
|            |            | 334.21                                                | 334.65        | 307    |          |                            |
|            | 307.83     | 270 74                                                | 271 10        | 303    |          | $PO_{1}$ libr + Altr       |
| 273.98     | 281.30     | 281.30         270.74           220.40         230.85 | 271.19        | 262    |          | DO3 lidr. + Al tr.         |
|            | 220.40     |                                                       | 230.87        | 228    |          |                            |
|            |            | 110 50                                                | 125.96        | 137    |          | V ha                       |
|            |            | 118.52                                                | 133.80        | 120    |          | r tr.                      |
|            | 63.83      |                                                       |               |        |          | Y tr.                      |

**Table S6.** Calculated and experimental phonon frequencies (cm<sup>-1</sup>) of YAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> together with proposed assignments. Notations: ss – symmetric stretching, as – antisymmetric stretching,  $\pi$  – outof-plane bending,  $\delta$  – in-plane bending, libr. – librations, tr – translations.



Figure S1. Total (a) and partial density of states (b), (c), (d), (e) of YAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>.



**Figure 2.** Polarized Raman spectrum of YAB single crystal obtained from the -z(xx)z orientation.



**Figure S3.** Polarized Raman spectrum of YAB single crystal obtained from the -z(xy)z orientation.



**Figure S4.** Calculated Raman spectra of YAB in the -x(zz)x, -x(yz)x and -x(yy)x polarizations.



**Figure 5.** Normal modes of vibration of  $[BO_3]^3$ - ions: (**a**)  $v_1$  symmetric stretching, (**b**)  $v_2$  out-of-plane bending, (**c**)  $v_3$  antisymmetric stretching, (**d**)  $v_4$  in-plane bending.



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).