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Abstract: In this study, a method to optimize the mixing proportion of polyvinyl alcohol (PVA)
fiber-reinforced cementitious composites and improve its compressive strength based on the
Levenberg-Marquardt backpropagation (BP) neural network algorithm and genetic algorithm is
proposed by adopting a three-layer neural network (TLNN) as a model and the genetic algorithm as
an optimization tool. A TLNN was established to implement the complicated nonlinear relationship
between the input (factors affecting the compressive strength of cementitious composite) and output
(compressive strength). An orthogonal experiment was conducted to optimize the parameters
of the BP neural network. Subsequently, the optimal BP neural network model was obtained.
The genetic algorithm was used to obtain the optimum mix proportion of the cementitious composite.
The optimization results were predicted by the trained neural network and verified. Mathematical
calculations indicated that the BP neural network can precisely and practically demonstrate the
nonlinear relationship between the cementitious composite and its mixture proportion and predict
the compressive strength. The optimal mixing proportion of the PVA fiber-reinforced cementitious
composites containing nano-SiO2 was obtained. The results indicate that the method used in this study
can effectively predict and optimize the compressive strength of PVA fiber-reinforced cementitious
composites containing nano-SiO2.
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1. Introduction

Concrete is a widely used building material in engineering constructions [1]. With the large-scale
construction of long-span bridges, super-high-rise buildings, high-grade highways, large-scale
water conservancy facilities, and cross harbor tunnels, concrete materials are endowed with higher
expectations [2]. More problems have been caused by traditional concrete materials, such as the crack
propagation inside concrete materials and the lack of durability [1]. Therefore, it is crucial to optimize
the mix proportion and improve the compressive strength of concrete [3]. Recently, researchers have
added nanofiber additives in the concrete mixing process to optimize the performance of concrete.

Cementitious materials are becoming increasingly important for the future of the automated
building industry [4]. Related research results indicated that cementitious materials work against
environmental pollution by minimizing the emission of CO2, other pollutant gases and waste dust,
exhibit important feasibility and application prospects, and may become an appropriate substitute
for traditional cement mortar in the future [5]. Some researchers have produced some new materials
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to replace the traditional cement totally or in part, such as concrete incorporating ferronickel slag
(FNS) as a replacement of natural sand [6] and engineered cementitious composite layered reinforced
concrete beams [7]. Simultaneously, descriptions of fibers in cementitious composites containing
polydispersed hollow and core–shell microparticles [8], waste recycled hollow glass microspheres [9],
multiwalled carbon nanotubes [10], nano reservoir silts [11], SiO2 nanoparticles [12], palm oil fuel
ash [13], inclined steel fiber [14], cellulose nanocrystals [15], cobalt ferrite and nanoparticles [16]
are abundant. Polyvinyl alcohol (PVA) fiber-reinforced engineering cementitious composite is a
kind of new high-performance cementitious material which exhibits the features of strain hardening,
multiple-cracking high durability [17], and narrow crack width [18–20]. Additionally, it exhibits
the characteristics of multislit cracking and strain hardening [21] and possesses a broad application
prospect [22]. In recent years, PVA fiber-reinforced engineering cementitious composite has been
extensively studied [23]. Li and Gao discussed the multiple effects of the fluidity, microstructure,
and bending performance of cementitious composites with high-toughness reinforced by nano-SiO2

and hybrid fiber [24]. The results demonstrated that composites incorporated with 1.4% steel fibers
and 2.5% PVA fibers exhibited good flexural performance. Qiu and Lim conducted an experimental
study on the fatigue strength degradation of micro-PVA fiber in a cement matrix [25]. They discovered
that the fiber embedded in the cement matrix reduced the in-situ strength of the fiber, and changed the
fatigue properties of the fiber. Ranjbarian and Mechtcherine established a pre pull-out locking model
for PVA microfibers embedded in a cementitious matrix [26].

Owing to the high nonlinearity and strong generalization ability of the neural network model, it is
extensively used in the classification and prediction of complicated models. Recently, neural networks
have been widely applied to the research and prediction of concrete material properties to study
the nonlinear and complex relationships between concrete material properties and mix proportion.
A large number of studies indicated that the nonlinear mapping relationship constructed using neural
networks could deliver the performance of concrete materials, and neural network could be used to
optimize the mix proportion of concrete materials. Tanja and Ivana processed a database compiled
based on their experimental results of recycled brick aggregate concrete using neural network to
obtain a reliable prediction, and they proposed an optimized quantitative model for proportioning
concrete mixtures [27]. Haissam and Sudhir developed simple multilayer perceptron structure of
Artificial Neural Network models using Marshall mix design data, and the models were called by a
non-linear constrained genetic algorithm to optimize the asphalt mix, so as to achieve the prediction and
optimization of asphalt mixture composition [28]. On the basis of a time-series model, Wang created
an artificial neural network model of data mining to access the influence of cement curing stage on
pozzolanic activity [29] and subsequently predicted the pozzolanic activity. Based on a series of tests,
Ji and Lin established a prediction model of concrete strength and slump based on an artificial neural
network [30]. Through the reverse derivation of the two prediction models, the calculation models
to obtain the equivalent ratio of cement to water and the average paste thickness were established.
The concrete designed using this algorithm had small cement and water content, more excellent
durability, and higher economic and ecological benefits. Qi and Fourier used the neural network
and particle swarm optimization algorithm to predict the unconfined compressive strength of cement
paste filling [31], and the results indicated that the optimal artificial neural network model was highly
accurate for the prediction of cemented paste backfill strength. Jian and Roy investigated the debonding
behavior of high-performance fiber concrete and traditional concrete under a direct shear load and
established a robust machine learning model to calculate the shear debonding strength of the concrete
with influence parameters [32], which should corroborate the validity of the model in describing the
debonding response of the concrete.

With the development of deep research on nanoparticles and the gradual reduction in manufacturing
costs for nanoparticles [33], nanoparticles have been gradually extended to the application of civil
engineering owing to their characteristic nano effects [34]. Simultaneously, fiber-reinforced composites
are also widely used in the construction and building industry, such as plastic fibers as the only
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reinforcement for flat suspended slabs [35] and polyolefin fiber-reinforced concrete for infrastructure
applications [36,37]. However, currently, systematic studies on PVA fiber-reinforced cementitious
composites containing nano-SiO2 are very rare. Only a few studies reported the model establishment,
prediction, and optimization for the mix proportions and compressive strength of PVA fiber-reinforced
cementitious composites containing nano-SiO2. Besides, the mix proportion optimization of composite
materials is generally determined experimentally, which resulted in a large amount of manpower and
material resource consumption [38]. To reduce test consumption, improve test productiveness, and rapidly
determine the best mix proportion of the composites, it is crucial to establish a suitable model to predict
the compressive strength. In this study, the BP neural network will be used to propose a method for
compressive strength prediction of PVA fiber-reinforced cementitious composites containing nano-SiO2.
The BP neural network has been proven to exhibit a strong nonlinear mapping ability, and it can be
extensively used in the construction and prediction of complex nonlinear models [39]. Besides, orthogonal
test was conducted to establish a precise BP neural network, which can avoid the disadvantages of a neural
network that cannot converge and fall into the local optimal solution and contains a certain reference value.
Simultaneously, the genetic algorithm was applied to optimize the mix proportion of PVA fiber-reinforced
cementitious composites containing nano-SiO2. The results of this study can effectively guide the mix
proportion test of composite materials, reduce the human and material consumption, and improve the
test efficiency.

2. Preliminary Processing and Analysis of Original Data

When executing a neural network, a certain number of training samples must be used; those used
in this study were from Reference [40] and were processed as shown in Table 1 below. The mixtures 1–12
were prepared to study the influence of PAV fiber content on the compressive strength of cementitious
composites. The mixtures 12–15 were prepared to study the influence of nanoparticle content on
compressive strength of cementitious composites. Mixtures 15–18 were prepared to study the influence
of quartz sand diameter on the compressive strength of cementitious composites. Mixture 19 was
taken as the control mixture.

Table 1. Mix proportions of polyvinyl alcohol (PVA) fiber cementitious composites.

Mix
No.

Water Cement Quartz Sand Fly Ash PVA
Fiber Nano-SiO2

Water
Reducing

Agent

Compressive
Strength

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa

1 380 650 500 350 0 0 3 62.3
2 380 650 500 350 2.73 0 3 64.8
3 380 650 500 350 5.46 0 3 67.3
4 380 650 500 350 8.19 0 3 61.8
5 380 650 500 350 10.92 0 3 64.2
6 380 650 500 350 13.65 0 3 62.7
7 380 637 500 350 0 13 3 59.5
8 380 637 500 350 2.73 13 3 61.8
9 380 637 500 350 5.46 13 3 64.3

10 380 637 500 350 8.19 13 3 56.3
11 380 637 500 350 10.92 13 3 58.0
12 380 637 500 350 13.65 13 3 54.9
13 380 643.5 500 350 8.19 6.5 3 71.7
14 380 640.25 500 350 8.19 9.75 3 69.5
15 380 633.75 500 350 8.19 16.25 3 55.4
16 380 637 500 350 8.19 13 3 70.6
17 380 637 500 350 8.19 13 3 57.5
18 380 637 500 350 8.19 13 3 57.3
19 380 637 500 350 0 13 3 58.2

The concrete function of normalization is to induce the statistical distribution of unified samples.
If the original data are used for analysis, the singular data in the sample will interfere with the test,
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which may increase the network training time or cause a convergence failure in the network. To avoid
the phenomenon above and eliminate the calculation error caused by different data units and the
system error caused by the difference in factor magnitude, the sample data shall be normalized [41]
before further data analysis and processing, as follows:

x′(m,i) =
x(m,i) − xm,min

xm,max − xm,min
(1)

y′pi =
ypi − yp,min

yp,max − yp,min
(2)

where, x(m,i) is the content of component m in the mix proportion i; i is 1–19, m is 1–7, which corresponds
to water, cement, quartz sand, fly ash, PVA fiber, nanoparticles, water reducing agent, respectively; ypi
is the compressive strength corresponding to the mix proportion i; yp,min is the minimum compressive
strength of 19 composite specimens with different mix proportion; yp,max is the maximum compressive
strength of 19 composite specimens with different mix proportion; y′pi is the normalized compressive
strength of composite i.

According to the procedures shown in Figure 1, a multiple linear regression model [42] was built
for the connection between the composite’s mix proportion and its compressive strength, based on the
stepwise regression method, which was obtained as follows:

y = 0.348763x2 − 0.000270133x3 − 0.0677087x5 (3)

where, x2 is the normalized cement dosage; x3 is the amount of quartz sand after normalization; x5 is
the amount of PVA fiber after normalization.

Utilizing the obtained linear regression model, the prediction results of the last four groups of
data in Table 1 are presented in Table 2 below. From the prediction results, it can be perceived that the
prediction results of the linear regression model for the compressive strength of PVA fiber-reinforced
cementitious composites containing nano-SiO2 exhibits a large deviation.

Table 2. The prediction results of the linear regression equation.

Mix No.
Compressive Strength Predicted Compressive Strength Relative Error

MPa MPa %

16 70.6 143.2 102.9378
17 57.5 143.2 149.1723
18 57.3 143.2 150.0421
19 58.2 143.8 147.1125

Pearson correlation analysis [43] and variance analysis were performed to analyze the compressive
strength of the composites obtained from the linear regression equation above and the actual
compressive strength to assess the degree of interdependence between the two variables. Results from
the Pearson correlation analysis are presented in Table 3, and the results of the variance analysis of
the regression equation are presented in Table 4. As shown in Table 3, the conspicuousness is 0.652,
which is a moderate correlation between 0.5 and 0.8 [44,45]. Therefore, according to the Pearson
correlation analysis, the significance of this linear regression model is moderate. The variance analysis
shown in Table 4 shows that the significance P > 0.05, i.e., when the error is 0.05 [46], no significant
difference appears between the predicted and actual compressive strength values.
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Figure 1. A multiple linear regression model constructed using the stepwise regression method. (a)
First step, (b) Second step, (c) Third step.

Table 3. The prediction results of the linear regression equation.

Project Correlation Coefficient Saliency Number of Cases

Y1 1.0 0.652 19
Y 1.0 0.652 19

Table 4. Variance analysis results of regression equation.

Project Sum of
Squares Freedom Mean Square F Saliency

Inter group combination 1.517 14 0.108 0.277 0.974
Weighting (between groups) 0.583 1 0.583 1.494 0.276
Variance (between groups) 0.933 13 0.072 0.184 0.994

In group 1.952 5 0.390 0 0

In general, when applying the linear regression method to predict the compressive strength of
composite materials, many factors affect the compressive strength. Owing to the complex relationship
between mix proportion and compressive strength, the linear regression method cannot reflect the
relationship between mix proportion and compressive strength well enough to accurately predict the
compressive strength of PVA fiber cementitious composites containing nano-SiO2.

To further prove the superiority of neural network, a quadratic multiple regression process is
established as follows:

y = 1.1335x5 − 0.0013x2
2 + 0.0024x3

2
− 0.0973x5

2
− 0.1485x6

2 (4)

where, x2 is the normalized cement dosage; x3 is the amount of quartz sand after normalization; x5 is
the amount of PVA fiber after normalization; x6 is the amount of Nano-SiO2 after normalization.
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As shown in Tables 5 and 6, the fitting result of the quadratic nonlinear regression equation is
better than that of linear equation, but the fitting effect is still general, and the prediction error is large,
which is not suitable for prediction and optimization. Hence, the BP neural network was used to
construct a nonlinear mapping relationship to predict the compressive strength of PVA fiber-reinforced
cementitious composites.

Table 5. Predicted results of the linear regression equation.

Mix no.
Compressive Strength Predicted Compressive Strength Relative Error

MPa MPa %

16 70.6 50.2 0.2895
17 57.5 50.2 0.1276
18 57.3 50.2 0.1246
19 58.2 47.4 0.1855

Table 6. Predicted results of the linear regression equation.

Project Correlation Coefficient Saliency Number of Cases

Y1 1.0 0.770 19
Y 1.0 0.770 19

3. Construction of Neural Network and Orthogonal Experiment

3.1. Construction of the Neural Network

The neural network algorithm simulates the working mode of human brain neurons by constructing
the neuron structure [47] with a certain information transmission path and providing the connection
weight function, thereby enabling artificial learning. Currently, it is widely [48] used to establish and
predict complex nonlinear models. The BP feed-forward neural network was trained in accordance
with the error backpropagation algorithm. Using the learning rule of the steepest descent method,
the mathematical mapping relationship of the input–output mode is not required. In an arithmetic
operation, the algorithm processes the signal forward propagation in the hidden layer; after comparing
the output value with the actual value, the error backpropagation error returns to the hidden layer [49].
Finally, the feedback error returns to the input layer such that the neurons of each input layer share
the error [50]. Simultaneously, the weights and thresholds are adjusted continuously until the output
value of the output layer satisfies certain accuracy requirements. However, the BP neural network
converges slowly and yields a local optimal solution, which leads to difficulty in obtaining the global
optimal solution. To solve these problems, some new fast and effective algorithms were used as
necessary. Among them, the Levenberg–Marquardt optimization algorithm exhibits fast convergence
speed and good application performance [51], which is an optimal algorithm for medium-scale models.
Therefore, according to the sample size and the sophisticated model studied herein, we selected the
Levenberg–Marquardt algorithm to build the model.

The Levenberg–Marquardt algorithm applies the Jacobian and Hesse matrices to solve
multidimensional optimization problems [52,53], whose principle is as follows:

f (x) = 0, x = [x0, x1, · · · , xn] (5)

The Jacobian matrix is as follows:

J f =


∂ f1
∂x0

· · ·
∂ f1
∂xn

...
. . .

...
∂ fn
∂x0

· · ·
∂ fn
∂xn

 (6)
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The Hessian matrix is as follows:

H f =



∂2 f
∂x02

∂2 f
∂x0∂x1

· · ·
∂2 f

∂x0∂xn
∂2 f

∂x1∂x0

∂2 f
∂x1

2 · · ·
∂2 f

∂x1∂xn
...

...
. . .

...
∂2 f

∂xn∂x0

∂2 f
∂xn∂x1

· · ·
∂2 f
∂xn2


(7)

The basic form of the iterative equation is as follows:

xx+1 = xs + ∆ (8)

∆ = −
(
JT

f J f + λI
)−1

JT
f f (9)

where ∆ is the neural network feedback weight (threshold) value change matrix; J is the Jacobian
matrix, which is the first-order differential matrix of the training error to the threshold value; λ is the
initial adjustment amount; I is the unit matrix; f is the training error matrix.

It is noteworthy that when λ is small, the Levenberg–Marquardt algorithm is similar to the
Gauss–Newton algorithm. If the value is large, the Levenberg-Marquardt algorithm can be regarded as
a gradient descent method, which is positively related to the error of the algorithm feedback process.

Based on the principle of momentum gradient descent, each layer of neurons in the BP neural
network extracts a small batch of data for a small gradient descent through certain learning and training
batches and obtains an exponential weighted average for a series of gradients to reduce the error and
adjust the vibration, before gradually approaching the optimized value for model construction. The
expression of the exponential weighted average is as follows:

λ = β× λn−1 + β× lrate× λn (10)

where λi is the adjustment of the gradient i; β is the momentum factor, where (0,1) is used and the
weight update is increased when two gradients are the same; otherwise, the update is reduced; lrate is
the learning rate, which is positively related to the prominent weight change of the network in the
iterative process.

In exponential weighting, each operation must obtain the average of an index and memorize it.
In addition, each adjustment contains the information of all previous data. Figure 2 shows the flow
chart of the Levenberg–Marquardt algorithm.

According to the principle of the Levenberg–Marquardt algorithm of the BP neural network,
a three-layer neural network model was constructed, as shown in Figure 3. The compressive
strength of the cementitious composite containing PVA fiber is primarily related to its mix proportion
including water, cement, quartz sand, fly ash, PVA fiber, nano-SiO2 and water-reducing agent [54],
correspondingly reflected by seven nodes in the input layer (seven components of an input vector).
Additionally, one node in the output layer corresponds to the compressive strength. During training,
three batches were divided by the raw data: 70% as training data, 15% as test data, and 15% as validation
data, and model optimization is achieved by adjusting the relevant parameters and functions.
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Figure 3. Architecture of three-layer backpropagation (BP) neural network model.

3.2. Initial Test of BP Neural Network

Prior to the neural network orthogonal test, a trial test was performed to preliminarily observe
the matching of the BP neural network model to the PVA fiber-reinforced cementitious composite
to prepare for the following orthogonal test for determining the specific parameters. The parameter
settings of the initial trial test are presented in Table 7.

The results of the BP neural network trial test, the relationship between gradient and learning
times, and gradient and mean square error of the training data are exhibited in Figures 4–6, respectively,
which are arranged from top to bottom and left to right according to the parameter level. As shown
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in these figures, after a certain number of iterations, the neural network can converge to obtain a
relatively accurate solution. Therefore, the BP neural network was employed in the subsequent
search. However, some disadvantages, such as obtaining the local optimal solution, remained [55].
Therefore, an orthogonal test must be performed to optimize the parameters of the neural network.Materials 2020, 13, 521 11 of 25 
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Figure 4. Results of the BP neural network trial test. (a) P-4c-k; (b) P-7c-k; (c) P-10c-k; (d) P-13c-k. Figure 4. Results of the BP neural network trial test. (a) P-4c-k; (b) P-7c-k; (c) P-10c-k; (d) P-13c-k.
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Table 7. The initial parameter setting of the model.

No.
Number of
Neurons in

Saphenous layer

Training
Times

Mean
Square

Error (MSE)

Learning Rate
lrate

Momentum
Factor β

Display
Interval
Times

P-4c-k 4 10000 0.0000001 0.005 0.1 10
P-7c-k 7 10000 0.0000001 0.007 0.5 19
P-10c-k 10 10000 0.0000001 0.01 0.9 25
P-13c-k 13 10000 0.0000001 0.1 1.2 35
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3.3. Orthogonal Test of Network Experiment

3.3.1. Test Program

Through extensive experimental studies, it was discovered that when the Levenberg–Marquardt
algorithm was used to establish the neural network model, the training effect was the best.
Meanwhile, the hyperbolic tangent s-type (tansig) transmission function was utilized as the input
layer transmission function, linear transmission function (purelin) as the output layer transmission
function, and momentum gradient descent method (traingd) [56] as the reverse training function.
The trial experiment indicated that in a specific training process, the number of hidden layer neurons,
frequency of training, MSE, learning rate, momentum factor, and display interval times affected the
performance of BP training.

To further optimize the model, the relevant parameters were selected more purposefully, the effects
of interfering factors on the test results were avoided, and initial quantity interactions in the
test were considered. In this study, an orthogonal test was performed to optimize the relevant
parameters. During the trial, three experimental levels were designed for each parameter, whose values
corresponding to the changes in each level are presented in Table 8 below, which were selected based on
experience. Among them, the number of neurons was ascertained by the following empirical formula:
l =
√

n + m + a, a ∈ [1, 10], where a is an integer obtained from the boundary of 1–10. The training
times were determined according to the convergence times of the trial test. Furthermore, the remaining
limit and median values within the corresponding allowable range were used such that the orthogonal
test results were optimal. The predicted value of Group 19 obtained through the neural network model
was recorded during the experiment.

Table 8. The corresponding parameter values of each test level.

No.
Number of

Neurons in the
Saphenous Layer

Training
Times

Mean
Square

Error (MSE)

Learning
Rate lrate

Momentum
Factor β

Display
Interval
Times

Level 1 2 100 0.001 0.0010 0.0110 3
Level 2 16 500 0.00001 0.5006 0.5030 52
Level 3 32 1000 0.0000001 1.0001 0.1000 101

During the test evaluation, the value of each factor at each level was compared with the predicted
compressive strength value, the regression sum of the quadratic corresponding to each parameter
value calculated, and regression analysis conducted while evaluating the significance of each factor
and its interactions on the model. The initial parameters were adjusted until the model was optimized.
In the experiment, Matlab was used to compile the algorithm, and the SPSS software was used for a
single-factor ANOVA.

3.3.2. Test Results and Analysis

To satisfy the requirements of concise expression, the number of hidden neurons, training times,
mean square error, learning rate, momentum factor, and display interval times in the table above
are represented by the characters A, M, N, B, C and D, respectively. A × B represents the interaction
between the number of hidden neurons and learning rate by analogy, while A × C and B × C is similar
to A × B. The orthogonal test header of the BP neural network is designed as shown in Table 9 [57,58].

Table 9. The head of the orthogonal test considering the interaction.

Level A M N B (A ×
B)1

(A ×
B)2

C (A ×
C)1

(A ×
C)2

(B ×
C)1

D (B ×
C)2

Column number 1 2 3 4 5 6 7 8 9 10 11 13
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The statistical results obtained from the experiment are exhibited in Table 10 [59], in which the
interaction items do not directly affect the test results. The parameter values in a certain column
correspond to the level of the orthogonal test in Table 8, which are distinguished by brackets
when recording.

Table 10. The sample deviation analysis results of each interaction test.

NO.
A M N B A × B C A × C B ×

C
D B ×

C R

1 2 3 4 5 6 7 8 9 10 11 12

1 2 100 0.001 0.0010 (1) (1) 0.0110 (1) (1) (1) 3 (1) 64.4
2 2 500 0.00001 0.5006 (1) (1) 0.5030 (2) (2) (2) 52 (2) 60.3
3 2 1000 0.0000001 1.0001 (1) (1) 0.1000 (3) (3) (3) 101 (3) 62.9
4 2 100 0.001 0.0010 (2) (2) 0.0110 (1) (1) (1) 3 (1) 59.9
5 2 500 0.00001 0.5006 (2) (2) 0.5030 (2) (2) (2) 52 (2) 60.9
6 2 1000 0.0000001 1.0001 (2) (2) 0.1000 (3) (3) (3) 101 (3) 63.0
7 2 100 0.001 0.0010 (3) (3) 0.0110 (1) (1) (1) 3 (1) 62.9
8 2 500 0.00001 0.5006 (3) (3) 0.5030 (2) (2) (2) 52 (2) 63.6
9 2 1000 0.0000001 1.0001 (3) (3) 0.1000 (3) (3) (3) 101 (3) 64.7
10 16 100 0.001 0.0010 (2) (2) 0.0110 (1) (1) (1) 3 (1) 62.0
11 16 500 0.00001 0.5006 (2) (2) 0.5030 (2) (2) (2) 52 (2) 60.6
12 16 1000 0.0000001 1.0001 (2) (2) 0.1000 (3) (3) (3) 101 (3) 61.2
13 16 100 0.001 0.0010 (3) (3) 0.0110 (1) (1) (1) 3 (1) 62.5
14 16 500 0.00001 0.5006 (3) (3) 0.5030 (2) (2) (2) 52 (2) 64.1
15 16 1000 0.0000001 1.0001 (3) (3) 0.1000 (3) (3) (3) 101 (3) 61.1
16 16 100 0.001 0.0010 (1) (1) 0.0110 (1) (1) (1) 3 (1) 60.7
17 16 500 0.00001 0.5006 (1) (1) 0.5030 (2) (2) (2) 52 (2) 61.1
18 16 1000 0.0000001 1.0001 (1) (1) 0.1000 (3) (3) (3) 101 (3) 63.7
19 32 100 0.001 0.0010 (3) (3) 0.0110 (1) (1) (1) 3 (1) 61.7
19 32 500 0.00001 0.5006 (3) (3) 0.5030 (2) (2) (2) 52 (2) 60.5
21 32 1000 0.0000001 1.0001 (3) (3) 0.1000 (3) (3) (3) 101 (3) 60.3
22 32 100 0.001 0.0010 (1) (1) 0.0110 (1) (1) (1) 3 (1) 62.4
23 32 500 0.00001 0.5006 (1) (1) 0.5030 (2) (2) (2) 52 (2) 61.5
24 32 1000 0.0000001 1.0001 (1) (1) 0.1000 (3) (3) (3) 101 (3) 62.8
25 32 100 0.001 0.0010 (2) (2) 0.0110 (1) (1) (1) 3 (1) 61.8
26 32 500 0.00001 0.5006 (2) (2) 0.5030 (2) (2) (2) 52 (2) 64.5
27 32 1000 0.0000001 1.0001 (2) (2) 0.1000 (3) (3) (3) 101 (3) 62.9

After a regression analysis of the experimental results, the parameters that affected the performance
of the neural network the most can be obtained, while the total square sum of the sample regression is
calculated as follows:

T =
α∑
β=1

Level∑
i=1

Num∑
j=1

Ri j, R =
T

α× Level ×Num
(11)

TTS =

Level∑
i=1

Num∑
j=1

(Ri j −R)
2

(12)

The sum of sample regression squares of a parameter change can be obtained as follows:

TTA = Num

Level∑
i=1

[
kβ(i) −R

]2

=

Level∑
i=1

Total∑
χ=1

Ri j

2

Num
−

T2

Level ×Num
(13)

where Level is the number of parameter layers; Num is the number of tests performed at a certain level; Ri j
is the test result of the first test conducted at level i; Total is the total number of tests; Total = Level ×Num;
TTA is the square sum of variance of a parameter; TTS is the sum of squares of the total variance; α is
the number of test parameters; β is the test parameter number; χ is the test number.
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Meanwhile, each interaction item is regarded as an interfering factor, and the calculation method
of the samples’ regression square sum is analogous to that of each single factor’s sum of sample
regression square, whose ultimate arithmetic results are shown in Table 11.

Table 11. Results of sample regression variance analysis.

Interfering
Factor

Sum of Squares of
Sample Regression

TTA

Freedom
f

Sum of Mean
Regression Squares

MS
F Saliency

A 2.060 2 1.030 0.391 0.683
M 0.828 1 0.828 0.314 0.582
N 0 0 0 0 0
B 0 0 0 0 0

A× B 0.112 1 0.112 0.043 0.839
C 0.000 0 0 0 0

A×C 1.023 1 1.023 0.388 0.542
B×C 1.023 1 1.023 0.388 0.542

D 0 0 0 0 0
e(N, B, C, D) 0 0 0 0 0

By comparing the error with the sum of the samples’ regression squares caused by each influencing
factor, it is clear that the mean square error and momentum factor have a negligible effect on the
performance of the neural network; therefore, they are regarded as negligible accidental errors.
The F test indicated that the greater the F value, the stronger was the sensitivity. According to the
experimental results in Table 8, the sensitivities of A, M, A× B, A×C, and B×C to the experiment was
highly significant. Nevertheless, the performance of the neural network was almost unaffected by N, B,
C, and D. Therefore, according to the importance of the model, the sequence of factors from strong to
weak was as follows: The interaction between number of hidden neurons and learning rate, number of
hidden neurons, training times, interaction between training times and mean square error, interaction
between number of hidden neurons and mean square error, number of display intervals, learning rate,
mean square error, and momentum factor, among which the effect on the model was not significantly
different when only the last four items were considered.

4. Model Parameter Optimization and Validation

4.1. Parameter Optimization

Based on the previous section, we can obtain the effect of each parameter change on the model
and ultimately determine the best value of each parameter through range analysis, which can be
determined in Table 12 and expressed as follows:

∑
A(i) =

Num∑
β=1

Ri j (14)

kA(i) =
∑

A(i)
Num

(15)

RA = max
γ

kA(i) −min
γ

kA(i) (16)

where Num is the number of tests performed at a certain level; Ri j is the result of the test conducted at
level i; A is the influence factor; γ is the number of test parameters; and β is the test parameter number.

The results of range analysis reveal that the larger the range, the more significant is the
parameter, which illustrates that the number of neurons in the hidden layer is the most remarkable.
Other factors, including the learning rate, number of display intervals, and momentum factors affect
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the experiment results, whose degrees of effect are almost the same, which is consistent with the results
of variance analysis.

Table 12. The results of the range analysis.

Project A M N B C D

F1 62.54277 62.04506 62.04506 62.04506 62.04506 62.04506
F2 62.18327 61.91194 61.91194 61.91194 61.91194 61.91194
F3 62.03376 62.52182 62.52182 62.52182 62.52182 62.52182

Range R 3.426 2.284 2.284 2.284 2.284 2.284

According to the principle that the smaller the parameter value, the higher the utilization rate
of the neural network and the better is the performance, when the parameter change does not
significantly affect the model, the factor level value with the smaller performance index should be
selected. Meanwhile, although the interval times, learning rate, mean square error, and momentum
factor have little effect on the test results, their interactions impose definite effects on the test results.
Therefore, the value should be selected such that its effect on the test results should be reduced to
obtain more accurate test results and a higher degree of model fitting.

Combined with the analysis of range and variance, the training times and number of neurons
in the hidden layer are significant when they function individually, whereas the number of neurons
in the hidden layer, learning rate, and momentum factor are significant when they interact with
each other. Meanwhile, the mean square error and number of display intervals are relatively small.
Considering the operation performance of the neural network, the best parameter combination of
the BP neural network is obtained: Training times 100 (Level 1), hidden layer neurons 2 (Level 1),
mean square error 0.001 (level), learning rate 0.5006 (Level 2), display interval times 52 (Level 2), and
momentum factor 0.503 (Level 2).

4.2. The Model Test

It was discovered that the predicted compressive strength was 59.2 MPa, which was closer to
the real compressive strength of 58.2 MPa compared with any group of orthogonal experiments.
Subsequently, we must examine the generalization ability of the constructed neural network, and then
assess whether the network has been equated, in which an outstanding neural network is trained to
forecast the last three groups of data in Table 1, whose results are shown in Table 13 below. It is clear
that the error of the network’s simulation results can be controlled to within 11%, thereby avoiding
over-fitting in training.

Table 13. The results of the BP neural network generalization ability test.

Mix No.
Compressive Strength Predicted Compressive Strength Relative Error

MPa MPa %

16 70.6 63.2 10.522
17 57.5 60.8 5.7005
18 57.3 58.9 2.7342
19 58.2 59.2 1.7765

5. Results and Discussion

By applying the genetic algorithm in Matlab to optimize the mix proportion of the composite
materials [60], two iterations of the genetic algorithm are performed in the main process [61].
One performs before the BP neural network to obtain individual population and fitness values
for training the BP neural network. However, the other is performed after the BP neural network to
obtain individuals that are brought into the BP neural network again to train the network, rendering
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the network more accurate. The individual fitness of the latter is obtained partly by the fitness function
of the BP model and partly by the initial fitness function. The latter part is substituted into the BP
neural network to render it more accurate. When the nonlinear mapping relationship established in
the BP neural network is substituted as the fitness function, it can be inferred from a previous study
that the fitness function can be calculated as follows [62]:

f =
1
2
×max(abs(ti − purelin(w2 × tan sig(w1 ×mi + b1) + b2)))

2 (17)

According to the Chinese Standard [63] and the literature [40], the water-binder ratio is 0.35–0.41;
the water-cement ratio is 0.5–0.65; the cement-sand ratio is 1.22–1.36; the volume content of PVA fiber
is 0–1.5%; the content of nano-SiO2 is 0–2.5%. The mathematical model is as follows [64]:

max f (x1, x2, x3, x4, x5, x6, x7)

subject



350 < x1 < 410
0.50 < x1

x2
< 0.65

1.22 < x2
x3
< 1.36

320 < x4 < 380
0 < x5 < 13.65
0 < x6 < 16.25

1 < x7 < 5

(18)

where mi is the input vector; ti is the target vector; w1, w2, b1, b2, are the input and output layer weight
and threshold matrices, respectively; f is the nonlinear mapping constructed in the neural network
model; x1, x2, x3, x4, x5, x6, x7 are the mix proportions of the composite material.

To improve the efficiency of searching for the maximum, the chromosome code was written in
real numbers, with a crossover probability of 0.6 and a mutation probability of 0.01 for executing
the algorithm, while the number of single chromosome corresponded to the number of variables,
which was 8 [60]. For each iteration through the algorithm, the current optimal individual was forced to
participate in the next generation evolution. After 100 generations, the best mixture ratio was as follows:
Water: cement: quartz sand: fly ash: PVA fiber: nano-SiO2: water reducer = 384:649:508:349:9.5:8.1:3.0.
The BP neural network predicted the corresponding compressive strength, i.e., 68.7, which is superior
to most of the compressive strengths in Table 1 (except for mixtures 13 and 16).

The differences from the best mix proportion in the literature [40] are shown in Table 14. As is shown
in Table 14, the differences between the two optimal mix proportions are within 0.1%. According to the
literature [40], the compressive strength of PVA fiber-reinforced cementitious composites containing
nano-SiO2 can be enhanced when the content of PVA is 0–0.6%. Besides, with the increase of PVA fiber
content, the compressive strength has no obvious increase or decrease trend. Therefore, the difference
of PVA content can be ignored. Moreover, the compressive strength values of the two mix proportions
are close, so the two mix proportions can be understood as the same mix proportion, which reflects the
reliability of the BP neural network.

Table 14. Optimum mix of PVA fiber-reinforced cementitious composites containing nano-SiO2.

Source
Water-Cement

Ratio
Cement-Sand

Ratio
Volume Content

of PVA Fiber
Content of
Nano-SiO2

Compressive
Strength

% % % % MPa

Prediction
model 0.59 1.28 1.0 0.9 68.7

Literature [40] 0.60 1.29 0.9 1.0 71.7



Materials 2020, 13, 521 21 of 24

6. Conclusions

(1) The BP neural network model could reflect the complex nonlinear mapping relationship
between the compressive strength and its mix proportion, which could facilitate in predicting the
compressive strength of PVA fiber-reinforced cementitious composites. Moreover, using the genetic
algorithm to optimize the BP neural network could effectively optimize the mix proportion of
composite materials, whose results could be used in the composite mix proportion test and improve
the test efficiency.

(2) The parameters of the BP neural network could be determined by an orthogonal test that
considered the effect of the interaction among the parameters on the performance of the neural network
for achieving a BP neural network model with good performance. The conspicuousness of each
parameter for the performance of the BP neural network was from strong to weak in the following
sequence: The interaction between the number of hidden neurons and learning rate, the number
of hidden neurons, training times, the interaction between training times and mean square error,
the nteraction between number of hidden neurons and mean square error, the number of display
intervals, the learning rate, the mean square error, and the momentum factor.

(3) The optimal mix proportion of the PVA fiber cementitious composite was water: cement: quartz
sand: fly ash: PVA fiber: nano-SiO2: water reducer = 384:649:508:349:9.5:8.1:3.0, whose predicted
compressive strength was 68.7 MPa. It was verified that the experimental results could be used to
optimize the compressive strength of cementitious composites reinforced by PVA fibers.
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