
materials

Article

Dielectric Response and Structural Analysis of
(A3+, Nb5+) Cosubstituted CaCu3Ti4O12 Ceramics
(A: Al and Bi)

Hicham Mahfoz Kotb 1,2,*, Mohamad M. Ahmad 1,3, Adil Alshoaibi 1 and Koji Yamada 4

1 Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
mmohamad@kfu.edu.sa (M.M.A.); adshoaibi@kfu.edu.sa (A.A.)

2 Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
3 Department of Physics, Faculty of Science, The New Valley University, El-Kharga 72511, Egypt
4 Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University,

Narashino, Chiba 275-8575, Japan; yamada.kouji@nihon-u.ac.jp
* Correspondence: hkotb@kfu.edu.sa; Tel.: +966-13-589-9518

Received: 1 November 2020; Accepted: 14 December 2020; Published: 21 December 2020 ����������
�������

Abstract: CaCu3Ti4-x((A0.05Nb0.05))xO12 ceramics (A: Al and Bi; x = 0, 0.3) were synthesized by
high-energy mechanical ball milling and reactive sintering at 1050 ◦C in air. Rietveld refinement
of XRD data revealed the pure and (Al3+, Nb5+) cosubstituted ceramics contained a minor CuO
secondary phase with a mole fraction of about 3.2% and 6.9%, respectively, along with a CaCu3Ti4O12

(CCTO)-like cubic structure. In addition, (Bi3+, Nb5+) cosubstituted ceramics had a pyrochlore
(Ca2(Ti, Nb)2O7) secondary phase of about 18%. While the (Al3+, Nb5+) cosubstituted CCTO showed
the highest relative permittivity (ε’ = 3.9 × 104), pure CCTO showed the lowest dielectric loss (tanδ
= 0.023) at 1 kHz and 300 K. Impedance-spectroscopy (IS) measurements showed an electrically
heterogeneous structure for the studied ceramics, where a semiconducting grain was surrounded
by highly resistive grain boundary. The giant relative permittivity of the ceramics was attributed to
the Maxwell–Wagner polarization effect at the blocking grain boundaries and domain boundaries.
The higher tanδ of the cosubstituted samples was correlated with their lower grain boundary’s
resistivity, as confirmed by IS analysis. Modulus-spectrum analysis revealed two relaxation processes
for the pure and (Bi3+, Nb5+) cosubstituted CCTO samples. Dissimilar behavior was observed for the
(Al3+, Nb5+) cosubstituted CCTO, where three relaxation mechanisms were observed and attributed
to the grain, domain-boundary, and grain-boundary responses.
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1. Introduction

Materials with colossal relative permittivity (ε’ > 103) are important for numerous
energy-storage-related applications. In this regard, one of the most promising materials is
CaCu3Ti4O12 (CCTO) due to its specific dielectric properties. The relative permittivity of
CCTO can attain giant values of 104–106 with little dependency on temperature and frequency
of measurement [1]. The origin of the dielectric properties of CCTO is still controversially
discussed in the literature. Several studies evidenced an electrically inhomogeneous structure
for CCTO and its related materials, i.e., semiconductor grains surrounded by insulating grain
boundaries [2]. Considering this polycrystalline structure for CCTO, the model of the internal
barrier layer capacitor (IBLC) was proposed by Sinclair et al. [3] and was successfully used in
the literature to interpret the dielectric behavior of CCTO. According to this model, the colossal
ε’ of CCTO near room temperature and low frequency is due to the extrinsic effect related
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to Maxwell–Wagner (M–W) polarization at the internal resistive boundaries, such as grain
boundaries and/or domain boundaries [4,5]. At a high frequency of the applied electric field,
charge accumulation at the internal boundaries was reduced; hence, a decrease in ε′ was
observed. An additional extrinsic effect from the sample/electrode interface was also suggested
to contribute to the colossal permittivity of CCTO and its related materials [3]. Nevertheless,
the use of CCTO as a dielectric material in technology is hindered by its high dielectric loss
(tanδ > 0.05). Therefore, research continues for better understanding and improving the dielectric
response of CCTO, and to suggest alternative colossal permittivity dielectric materials. In this
regard, several strategies are being implemented, such as doping, substitution, and controlling
synthesis conditions [6–17]. In particular, cosubstitution for Ti4+ with heterovalent elements
was reported as a promising technique to reduce tanδ without degrading the ε’ of TiO2 and
CCTO ceramics [12,18–21]. For instance, (Al3+, Nb5+) cosubstituents resulted in the increased
relative permittivity (ε’ ≈ 2.9−4.1 × 104) and decreased dielectric loss (tanδ ≈ 0.045–0.058) of
CCTO ceramics [12]. Ceramics in [12] were prepared by a solid-state reaction process comprising
a calcination step at 850 ◦C for 12 h and conventional sintering at 1050–1090 ◦C for 3–36 h.
Several mechanisms were proposed to explain the colossal relative permittivity of the cosubstituted
CCTO, including the confinement of charge-carrier hopping by extrinsic defect clusters [20,22] and
the formation of internal capacitors at the internal boundaries of the ceramic (IBLC model) [12].
According to the IBLC model, the colossal permittivity of the ceramics is a result of the internal
capacitances that form due to the accumulation of charge carriers at the internal resistive boundaries
of the tested sample [3]. Considering this structure, the static relative permittivity ε′s of IBLC
ceramics depends on the thickness of the grain boundary (tg.b.), the average grain size (tg), and the
relative permittivity of the grain boundary (εr), as follows [23,24]:

ε′s =
tg

tg.b.
ε′r (1)

In the present work, we investigated the structural and dielectric properties of cosubstituted CCTO
with the composition of CaCu3Ti4−x[(A0.05Nb0.05)]xO12 (A: Al and Bi; x = 0, 0.3). The investigated
ceramics were prepared by a simple reactive solid-state reaction process where the calcination step was
dismissed. The reactive sintering process has the advantages of having lower thermal budget and more
control on the grain size of the final ceramics [14]. To the best of our knowledge, there are no previous
reports on the dielectric properties of (Bi3+, Nb5+) or (Al3+, Nb5+)-cosubstituted CCTO ceramics
prepared by reactive sintering. Few reports exist on (Al3+, Nb5+)-cosubstituted CCTO ceramics
prepared by conventional solid-state reaction [12]. The structural and microstructural properties of the
prepared ceramics were studied using X-ray diffraction and FE-SEM measurements. The dielectric
properties of the prepared ceramics were studied in a wide range of frequencies (1 Hz–10 MHz) and
temperatures (120–400 K).

2. Materials and Methods

Powders of CaCu3Ti4−x((A0.05Nb0.05))xO12 (A: Al and Bi; x = 0, 0.3) were synthesized using
mechanochemical milling (Fritsch P-7 premium line machine). Stoichiometric amounts of high-purity
CaCO3, CuO, TiO2, Nb2O5, Bi2O3, and Al2O3 were ball-milled with 2-propanol as the medium for 20 h
at a rotation speed of 600 rpm. The mass ratio of grinding balls to powder was 8:1. After drying the
mixture at 200 ◦C for 12 h, about 0.5 g of the obtained powder was pressed at pressure of 200 MPa for
3 min using a uniaxial hydraulic press. The obtained green pellet was then sintered in air at 1050 ◦C
for 15 h. Prepared samples are referred to as CCTO, CCTANO, and CCTBNO. Field-emission scanning
electron microscope (FE-SEM) (Joel, SM7600F, Tokyo, Japan) was used to study the microstructure of
the ceramics. X-ray diffraction (XRD) measurements in the range of 10◦ ≤ 2θ ≤ 90◦ were collected using
a Bruker D8 Advance X-ray powder diffractometer (CuKα radiation, Karlsruhe, Germany). A turnkey
concept 50 system from Novocontrol was used for impedance-spectroscopy (IS) measurements over
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the 1 Hz–10 MHz frequency range and 120–400 K temperature range in a dry nitrogen atmosphere.
Sputtered gold electrodes were used for electrical measurements.

3. Results

The X-ray diffraction pattern of the powder (not shown here) showed the onset of formation of a
CCTO-like cubic phase during the mechanical milling step. The diffraction patterns of the ceramic
samples are shown in Figure 1. Though the majority of diffraction peaks for all ceramics could
be indexed as a CCTO cubic phase (JCPDS file no. 75–2188), additional peaks of other secondary
phases were observed. Therefore, the Rietveld refinement method was deployed using RIETAN-2000
software [25] to elucidate the structural parameters, and to identify and determine the percentage
of the secondary phase. The refined structure parameters and agreement factors of the profile are
shown in Table 1. The pure and CCTANO ceramics contained a minor CuO secondary phase with
a mole fraction of about 3.2% and 6.9%, respectively. CCTBNO showed a considerable pyrochlore
(Ca2(Ti, Nb)2O7) secondary phase of about 18%. Moreover, CCTBNO ceramics showed an increased
lattice parameter compared to that of CCTO due to the larger ionic radius of dopants Nb5+ (69 pm)
and Bi3+ (96 pm) compared to Ti4+ (61 pm). Additionally, a peak at 2θ = 30.56◦ was observed for all
samples that could not be univocally indexed.
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Figure 1. Rietveld refinements of XRD patterns of (a) CaCu3Ti4O12 (CCTO), (b) CCTANO, and
(c) CCTBNO ceramics. Yobs, experimental data; Ycal, calculated data. The symbol (?) represents an
unindexed peak.

Table 1. Lattice parameter (a), unit cell volume (V) for main CCTO phase, and agreement factors
of profile (Rp), weighted profile (Rwp), structure (RF), and goodness of fit (GofF) obtained through
Rietveld refinement.

Sample CCTO CCTANO CCTBNO

Space group Im3 Im3 Im3
a (Å) 7.394 (3) 7.397 (8) 7.40056

V (Å3) 404.28 (1) 404.86 (1) 405.3165
Rp (%) 11.820 16.316 11.256

Rwp (%) 15.552 21.429 15.357
RB (%) 10.453 13.805 7.741
RF (%) 8.582 12.305 5.675
GofF 1.74 2.22 2.0

Figure 2 depicts the microstructure of CCTO, CCTANO, and CCTBNO ceramics as studied by
FE-SEM. Similar grain size distribution was observed for CCTO (7–9 µm) and CCTANO (6–12 µm),
while CCTBNO demonstrated a rather smaller but uniform grain size of ~3 µm. These grain-size values
were clearly smaller than those in the literature for pure and cosubstituted CCTO ceramics prepared by
a conventional solid state reaction (SSR) technique, which is in the 20–40 µm range [12,26,27]. The effect
of doping on the grain size of CCTO ceramics was previously studied, where a reduction in the grain
size of CCTO ceramics was observed that was attributed to the solute drag effect of the dopants [28,29].
Therefore, the smaller grain size of CCTBNO compared to that of other samples of the present study
suggests that Bi dopants have more dragging force than that of Al.

Elemental analysis was carried out using energy dispersive X-ray (EDX) as shown in Figure 2.
The elements of each composition were detected, and found to be uniformly distributed across
grains and grain boundaries. Element-mole ratios obtained from EDX analysis of the grain were
Ca:Cu:Ti = 1:2.87:3.97, Ca:Cu:Ti:Nb:Al = 1:3:3.68:0.16:0.17, and Ca:Cu:Ti:Nb:Bi = 1:3:3.68:0.17:0.13 for
the CCTO, CCTANO, and CCTBNO ceramics, respectively. These results were close to the expected
theoretical values based on the stoichiometry of each composition. Nevertheless, grains of the CCTO
sample were found to be frequently surrounded by Cu-rich regions, as shown in Point B in Figure 2,
where the element-mole ratio was found to be Ca:Cu:Ti = 1:42.91:3.92. These Cu-rich regions were
probably due to the formation of a liquid CuO phase that wet the grains during sintering.
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Figure 2. (left) FE-SEM micrographs for fractured surface of CCTO, CCTANO, and CCTBNO ceramic
samples; (right) EDX spectrum for marked points.

Figure 3a–c present the spectra of relative permittivity ε’ and dielectric loss tanδ at the selected
temperatures of 150, 200, and 300 K. The frequency dependency of ε’ at 150 K for all samples showed
one plateau followed by a steplike decrease in the high-frequency range, which is accompanied
by a peak in the spectra of tanδ. With increasing temperature, ε’ increased, and the peak of tanδ
shifted towards higher frequencies. This dielectric behavior was similar to a Debye-like relaxation
process [4,30], which is generally related to the dipole relaxation in the system; however, it sometimes
originates from the electrical heterogeneity of the system [31]. As shown by the solid lines in Figure 3a–c,
the high-frequency relative permittivity spectra fit well with the modified Debye equation [32]:

ε∗ = ε′ − iε′′ = ε∞ + (εs − ε∞)/
[
1 + (iwt)1−∝

]
, (2)
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where εs is static relative permittivity, ε∞ is the relative permittivity at high frequency, ω is angular
frequency, τ is relaxation time, and α is a measure of the distribution of relaxation time (0 < α ≤ 1). For an
ideal Debye relaxation, α = 1. Nevertheless, deviation from the modified Debye relaxation was observed
for all ceramics at a low frequency, which denoted that there was an additional source of polarization
responsible for the giant relative permittivity of the current ceramics. The temperature dependence of the
extracted fitting parameters (τ and α) is given in Figure 3d. Values of αwere found to be in the range of
0.02–0.15 for all samples, which indicated a distribution of relaxation time. Additionally, the temperature
dependence of the fitted τ values was found to follow the Arrhenius law [33]:

τ = τ0 exp
( ER

kBT

)
, (3)

where τ0 and ER are the pre-exponential factor and the activation energy for the relaxation, respectively.
The calculated values of ER were 0.1, 0.125, and 0.147 eV for CCTO, CCTANO, and CCTBNO,
respectively. These ER values were found to be similar to the relaxation energy in grain calculated from
the analysis of modulus spectra of the samples, as is elaborated later in this section. Moreover, Figure 3
shows that pure CCTO displayed a superior dielectric property in terms of better ε’ stability and lower
tanδ values over the studied frequency and temperature ranges. The CCTANO sample exhibited
considerably superior ε’ values in the frequency range (1–106 Hz) at room temperature. The values of
ε’ at 1 kHz and 300 K were 1.2 × 104, 3.9 × 104, and 4.6 × 103 for the CCTO, CCTANO, and CCTBNO
ceramics, respectively.
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Figure 3. Spectra of ε’ and tanδ for CCTO, CCTANO, and CCTBNO ceramics at (a) 150, (b) 200, and
(c) 300 K; (d) temperature dependence of τ and α. Solid and dashed lines, fitting results by modified
Debye equation and Arrhenius relation, respectively.
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The values of minimal tanδ at room temperature were 0.023 (at 1 kHz), 0.255 (at 40 kHz), and 0.114
(at 115 kHz) for the CCTO, CCTANO, and CCTBNO ceramics, respectively. The dielectric performance
of the CCTANO sample was comparable to that reported for CaCu3Ti4−x[(Al0.05Nb0.05)]xO12 (x:0–0.2)
prepared by a high-temperature SSR method (ε’ = 2.9−4.1 × 104, tanδ = 0.045–0.058 at 1 kHz) [12].

Figures 2 and 3 show that CCTBNO had the lowest ε’ and smallest grain size. The CCTANO
sample had a slightly larger grain size than that of CCTO, which correlated with the larger ε’ of the
former. Therefore, the dielectric behavior of the CCTO, CCTANO, and CCTBNO ceramic samples
tended to follow the IBLC model, where relative permittivity is correlated with grain size. Moreover,
the lower dielectric performance of the CCTBNO ceramic was thought to be due to its lower CCTO-like
phase content, as revealed by the Rietveld refinement analysis. Figure 4 shows the complex-impedance
(Z*) plots at room temperature for the pure and cosubstituted CCTO ceramics of the current study.
On the one hand, CCTO and CCTBNO samples showed similar features for Z* plot at room temperature,
where a large semicircular arc that spread over a wide range of frequencies was observed. Nevertheless,
the expanded view of the high-frequency region (see inset) shows a nonzero intercept of the impedance
spectra. It is broadly accepted that the nonzero intercept at a high frequency is attributed to the grain
response, whereas the large arc at a low frequency is assigned to the grain-boundary response [23].
Resistivity values for the grain and grain boundary, estimated from the intercept of the semicircular
arcs with the Z’ axis, were found to be 70 and ~50 MΩ.cm for CCTO, and 187 and 4.7 MΩ.cm for
CCTBNO. On the other hand, careful inspection of the Z* plot for CCTANO revealed the existence of
three semicircular arcs at high, medium, and low frequencies, respectively, as shown in Figure 5 and
the inserted expanded views. Thus, besides the grain response, additional contributions from grain
boundaries and domain boundaries, and/or the electrode effect were possibly active in the CCTANO
ceramics. The estimated resistivity values from the three arcs at room temperature were 187 Ω.cm
(high frequency), 4.51 kΩ.cm (medium frequency), and 0.43 MΩ.cm (low frequency).

Table 2. Values of equivalent-circuit parameters at selected temperatures by ZSimpWin fitting.

Sample
Temperature/Equivalent

Circuit
R1-grain
Ω.cm

CPE1 R2-g.b.
Ω.cm

CPE2 R3-d.b.
Ω.cm

CPE3

C1
(nF) n1

C2
(nF) n C3

(nF) n3

CCTO

200 K
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Figure 4. Room-temperature complex-impedance plan (Z*) plots for CCTO, CCTBNO, and CCTANO
ceramics. Solid lines, fitting of measured data to equivalent circuits (Table 2).Materials 2020, 13, x FOR PEER REVIEW 8 of 13 
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Figure 5. Complex-impedance plan (Z*) plots for CCTO, CCTANO, and CCTBNO ceramics at selected
temperatures. Solid lines, fitting of measured data to equivalent circuit (Table 2).

Moreover, Figures 4 and 5 show that the semicircular arcs of the complex-impedance plots
were depressed, which confirmed the nonideal Debye behavior as previously discussed in Figure 3.
To model a nonideal Debye response, a constant phase element (CPE) is often used in the model
equivalent circuit [34,35]. The capacitance value of the CPEi element is calculated using the following
relation [36,37]:

Ci =
[Ri.Qi]

1
ni

Ri

where Ri, Qi, and ni are the CPEi’s fitting parameters, and n ranges from n = 0 for the purely
resistant behavior to n = 1 for the purely capacitive behavior of the CPE element. Experimental
complex-impedance data were well-fitted to the equivalent circuits shown in Table 2 using ZSimpWin
(v3.10, Ametek, EChem software, Ann Arbor, MI, USA). In all cases, the chi2 value was in the order of
10−3–10−4, which reflects the goodness of fit as shown by the solid lines in Figures 4 and 5. The obtained
fitting parameters for the experimental data at 200 and 300 K are summarized in Table 2. The values of
n were found to lie in the range of 0.91–0.98, indicating the close proximity of capacitance behavior.
The estimated resistivity of the grain, grain boundary, and domain boundary (Rg) was close to their
values calculated by the intercept method.
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Thus, complex-impedance measurements of the current samples revealed their electrical
inhomogeneity, where they were composed of semiconductor grains and electrically insulating regions
in the form of domain and/or grain boundaries. This electrically inhomogeneous structure suggested
the Maxwell–Wagner (M–W) polarization effect as the origin of the giant relative permittivity of the
current samples, as shown in Figure 3. M–W polarization ascribes the effect of the polarization that takes
place at blocking interfaces and boundaries such as sample surface/electrode, grain/grain boundary,
and domain/domain boundary [4,5]. Figure 6 depicts the Arrhenius plots for the conductivity of the
grain, domain-boundary, and grain-boundary regions. The activation-energy values for conduction
could be calculated using the Arrhenius relation [33]:

σ = σ0 exp
(
−Ea

kBT

)
(4)

where σ0 is the pre-exponential factor, kB is Boltzmann constant, and Ea is the activation energy for
conduction. As summarized in Table 3, Ea values were close to the reported activation energy for the
single- and doubly-ionized oxygen vacancies, which are typically in the 0.1–0.5 and 0.6–1.2 eV ranges,
respectively [38]. Moreover, the value of the activation energy of grain conduction increases slightly by
cosubstitution. In contrast, the value of Ea of grain-boundary conduction considerably decreases for
cosubstituted ceramics.
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Figure 6. Arrhenius plots of conductivity for CCTO, CCTBNO, and CCTANO ceramics.

Table 3. Activation energy for conduction Ea (eV) and relaxation ER (eV).

Sample Ea(g.) Ea(d.b.) Ea(g.b.) ER(PHF) ER(PMF) ER(PLF)

CCTO 0.093 - 0.628 0.099 - 0.751
CCTBNO 0.113 - 0.404 0.114 - 0.444
CCTANO 0.121 0.357 0.301 0.131 0.390 0.327

Oxygen vacancies develop during a high-temperature (>1000 ◦C) sintering step due to oxygen
loss [39]. Additional free electrons are expected by the partial substitution of Ti4+ by the pentavalent
Nb5+, which explains the reduced resistivity of CCTANO and CCTBNO ceramics as compared to
the pure CCTO sample. Moreover, the substitution of the Bi3+ acceptor ions for Ti4+ requires oxygen
vacancies for charge conservation. Possible reaction equations, written using the Kröger–Vink notation
for defects, are as follows:

Oo ⇔
1
2

O2 + V′′o + 2e− (5)



Materials 2020, 13, 5822 10 of 13

2Nb2O5 ⇔ 4Nb•Ti + 8Oo + O2(g) + 4e− (6)

Bi2O3 ⇔ 2Bi′Ti + V••o + 3Oo. (7)

Considering the findings of complex-impedance measurements, the effect of Nb5+ dopants in
reducing resistivity was more pronounced for grain boundaries, which explains the comparatively
higher tanδ of the cosubstituted ceramics compared with that of CCTO. Moreover, free electrons might
have been captured by Cu2+ and Ti4+, thus forming Cu+ and Ti3+ ions in order to maintain charge
balance. Thus, the hopping of electrons between oxygen vacancies and mixed-valent structure of
Cu+/Cu2+ and Ti3+/Ti4+ might have contributed to conduction in the present ceramics. Figure 7a–c
show the spectra of the real (M’) and imaginary (M”) parts of the electric modulus at selected
temperatures of 120, 150, 200, 250, 300, and 350 K. M’ values were nearly zero at low frequencies for
all samples and increased with frequency, which indicated the suppression of electrode polarization
effects [40]. Two relaxation peaks could be seen in the spectrum of M” for CCTO and CCTBNO. At low
temperatures, the first peak appeared at a high frequency (HFP); then, with increasing temperature,
a second peak began at low frequencies (LFP). Both peaks were thermally activated, where they shifted
towards higher frequencies with increasing temperature. The existence of high- and low-frequency
peaks is commonly reported for CCTO-based ceramics, and is attributed to the response of the grain
and grain boundary, respectively [12,30].
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Figure 7. Spectra of M’ and M” for (a) CCTO, (b) CCTBNO, and (c) CCTANO ceramics at
selected temperatures.

As depicted in Figure 7c, three thermally activated peaks existed in the spectra of M” for the
CCTANO sample. In addition to the commonly reported low- and high-frequency peaks, a third peak
appeared at medium frequencies (MFP). The frequency at the peak maximum of the M” spectra (fmax)
was related to relaxation time (τ) as τ = 1/2πfmax. As shown in Figure 8, temperature dependency of



Materials 2020, 13, 5822 11 of 13

τ follows the Arrhenius law (Equation (3)). Calculated ER values related to the different relaxation
peaks are given in Table 3. ER values were close to the Ea values, and both were in the reported
range of activation energies of oxygen vacancies, as previously discussed. Thus, the single- and
doubly-ionized oxygen vacancies played a considerable role in the relaxation and conduction responses
of the investigated samples.
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Figure 8. Arrhenius plots of relaxation time for CCTO, CCTANO, and CCTBNO ceramics.

4. Conclusions

CaCu3Ti4-x[(A0.05Nb0.05)]xO12 ceramics (A: Al and Bi; x = 0, 0.3) were synthesized by high-energy
mechanical ball milling and reactive sintering inside a tubular furnace for 15 h at 1050 ◦C in air.
X-ray diffraction measurements revealed a cubic CCTO structure as the main phase for all ceramic
samples. Nevertheless, the (Bi3+, Nb5+)-cosubstituted CCTO demonstrated a secondary pyrochlore
phase content of ~18% (mole ratio). It also showed the smallest and most uniform grain size of
~3 µm compared to the pure (7–9 µm) and (Al3+, Nb5+)-cosubstituted CCTO (6–12 µm). The studied
ceramics showed colossal relative permittivity (ε’ > 103) over wide ranges of temperature and
frequency, with the (Al3+, Nb5+)-cosubstituted CCTO sample having the highest relative permittivity
of ε’ = 3.9 × 104 at 1 kHz and 300 K. The giant relative permittivity of the ceramics could be
attributed to the Maxwell–Wagner polarization effect at the blocking grain and domain boundaries.
Meanwhile, cosubstituted CCTO samples of the present study revealed degradation of its dielectric
loss (tanδ), which was attributed to the decrease in grain-boundary resistance, as revealed by
impedance-spectroscopy analysis. Modulus-spectrum analysis revealed two relaxation processes
for the pure and (Bi3+, Nb5+)-cosubstituted CCTO samples. Dissimilar behavior was observed for
(Al3+, Nb5+)-cosubstituted CCTO, where three relaxation mechanisms contributed and were attributed
for the grain, domain-boundary, and grain-boundary responses. The calculated activation energies
highlighted the role of single- and doubly-ionized oxygen vacancies in the relaxation and conduction
responses of the investigated samples.
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