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Abstract: The detection of product defects is essential in quality control in manufacturing. This study
surveys stateoftheart deep-learning methods in defect detection. First, we classify the defects of
products, such as electronic components, pipes, welded parts, and textile materials, into categories.
Second, recent mainstream techniques and deep-learning methods for defects are reviewed with
their characteristics, strengths, and shortcomings described. Third, we summarize and analyze the
application of ultrasonic testing, filtering, deep learning, machine vision, and other technologies
used for defect detection, by focusing on three aspects, namely method and experimental results.
To further understand the difficulties in the field of defect detection, we investigate the functions
and characteristics of existing equipment used for defect detection. The core ideas and codes of
studies related to high precision, high positioning, rapid detection, small object, complex background,
occluded object detection and object association, are summarized. Lastly, we outline the current
achievements and limitations of the existing methods, along with the current research challenges,
to assist the research community on defect detection in setting a further agenda for future studies.

Keywords: defect detection; quality control; deep learning; object detection

1. Introduction

In the manufacture of mechanical products in complex industrial processes, defects such as
internal holes [1], pits [2], abrasions [3], and scratches [4] arise, due to failure in design and machine
production equipment as well as unfavorable working conditions. Products may also easily corrode [5]
and be prone to fatigue [6] because of daily application. These defects increase the costs incurred by
enterprises, shorten the service life of manufactured products, and result in an extensive waste of
resources, thereby causing substantial harm to people and their safety [7]. Hence, detecting defects is a
core competency that enterprises should possess in order to improve the quality of the manufactured
products without affecting production. Automatic defect-detection technology has obvious advantages
over manual detection. It not only adapts to an unsuitable environment but also works in the long run
with high precision and efficiency. Research on defect-detection technology can reduce the production
cost, improve production efficiency and product quality, as well as lay a solid foundation for the
intelligent transformation of the manufacturing industry.

Therefore, many scholars have reviewed defect-detection-related technologies and applications to
provide references for the application and research of defect-detection technology. For example, in view
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of the defect-detection technology applied by pharmaceutical products, Lalit Mohan Kandpal et al. [8].
summarized the application of hyperspectral [9], vibration spectrum [10], infrared [11], and other
spectral technologies. For surface defect detection of manufactured products, Xianghua Xie [12]
systematically recent advances in surface detection using computer vision and image processing
techniques. By comparing the findings of past studies, they find that surface defect detection based
on image processing requires high real-time performance in industrial applications. For fabric
defect detection, scholars [13,14] reviewed the application and development of defect-detection
methods commonly used in the production of textile fabrics from the perspective of defect-detection
development of the textile industry production. Thermal imaging technologies are widely used
in many industrial areas. I. Jorge Aldave [15] focused on the comparison of results obtained with
commercially available non-experimental IR methods to provide references for the cameras in the field
of non-destructive defect detection. Defect-detection technology is a hot topic in the industry and
academia. However, scholars have yet to categorize product defect types (for example, steel [16] and
textile [17]), the main detection techniques, summary of applications of defect-detection technology,
existing equipment for defect detection, and other prospects. In addition, the mainline, review,
and summary of the research status of relevant technologies locally and abroad have yet to be realized.

This paper first classifies the common defects of electronic components, pipes, welding parts,
and textile materials, as shown in Figure 1. Then, it summarizes the mainstream deep-learning
technology for defect detection and its application status and analyzes the application situation of
the main defect-detection equipment, in order to provide reference for defect-detection technology in
theory and practical application.

Figure 1. Defects in different areas : (a) metallization peeloff of electronic components [18]. (b) pipeline
corrosion [19]. (c) defective with gas pore [20]. (d) defect bigknot of textile materials [21]. (e) shrinkage
and porosity defect of Casting [22]. (f) defects in green, yellow, orange bounding box are scratch,
cratering, hump, respectively in carbody [23]. (g) Lack defect of gear [24]. (h) light leakage defect on
mobile screen [25]. (i) Convexity defect in aluminum foil [26]. (j) Scratch defect of the wheel hub [27].
(k) Branch defect of wood veneer [28]. (l) Bubble defect of tire sidewall [29].
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2. Survey of Defect-Detection Technologies

Product defect-detection technology is mainly to detect the surface and internal defects of products.
The defect-detection technology refers to the detection technology of spot, pit, scratch, color differences
and defect on the product surface. Internal defect-detection technology mainly includes internal
flaw detection, hole detection and crack detection [30]. At present, several methods are used to
detect product quality, including deep learning [31], magnetic powder [32], eddy current testing [33],
ultrasonic testing [34], and machine vision [35] detection methods.

Wet magnetic particle detection mixes the magnetic powder in water, oil, or other liquid media.
Magnetic powder marks the location of defects through liquid pressure and the attraction of the
external magnetic field [32,36,37]. The moisture detection method has high sensitivity, and the liquid
medium is recyclable [38,39]. Dry Magnetic powder testing [40] directly attaches magnetic powder
onto the surface of the magnetized workpiece for defect detection. This method is used for the
local inspection of defects in large casting, welding parts, and other segments that are unsuitable
for wet detection. The continuous magnetic particle detection method detects defects in magnetic
suspension or powder under the external magnetic field [41]. The method can be used to observe the
defects in the external magnetic field. Several factors that influence the precision of Magnetic powder
testing include roughness and the profile of the test piece, the geometrical characteristics of defects,
the selected magnetization method, and the quality of operators [42]. Meanwhile, the factors that
influence the sensitivity of Osmosis testing are imaging reagent, the performance of osmotic fluid,
quality of operators, and the influence of defects. Factors that influence the accuracy of the detection of
eddy current are the type and parameters of coil and material and the profile of the test piece [43,44].

The ultrasonic testing effect is affected by the angle between the defect surface and the ultrasonic
propagation direction [34,45]. If the angle is vertical, then the signal returned is strong, and the defect
is easily detected. If the angle is horizontal, then the signal returned is weak, which makes detecting a
leak easy. Therefore, selecting the appropriate detection sensitivity and corresponding probe to reduce
leakage detection is necessary [46]. The factors that influence ultrasonic testing include projection
direction, probe effectiveness, sound contact quality, and instrument operating frequency [47,48].

Machine vision detection mainly consists of image acquisition and defect detection and
classification. Because of its fast, accurate, non-destructive and low-cost characteristics, machine vision
is widely used. Machine vision identifies objects mainly based on the color, texture and geometric
features of objects. The quality of image acquisition determines the difficulty of image processing.
In turn, the quality of the image processing algorithm directly affects the accuracy and error detection
rate of defect detection and classification [49–51]. The deep-learning method is also a defect-detection
method that is based on image processing, which is widely used to obtain useful features in massive
data [52]. Table 1 presents a comparison of commonly used product defect-detection methods.

Clearly, the traditional defect-detection techniques and the popular deep-learning defect-detection
techniques have their advantages. The traditional detection methods are highly focused. For instance,
Osmosis testing technology [53] is only suitable for detecting defects in highly permeable and
non-porous materials and have certain advantages over other general methods. However, most of the
traditional detection methods still need to rely on manual assistance to complete, especially when a
certain amount of instrument debugging is required before testing, and the equipment development
cost is high, which is not highly adaptable and limited by the equipment life and manufacturing
accuracy. Innovative defect-detection techniques, particularly machine vision and deep-learning
methods [54–56], have become the most popular in recent years and are one of the key technologies
for automating defect detection due to their versatility and lack of reliance on human assistance.
Compared to traditional defect detection methods, the new technologies offer better inspection results
and lower costs, but still rely on large amounts of learned data to drive model updates and improve
inspection accuracy.



Materials 2020, 13, 5755 4 of 23

Table 1. Comparison of common defect-detection methods.

Methods Strengths Weaknesses Applicable

Ultrasonic
testing [45]

Easy to use, strong penetration,
high sensitivity, portable equipment,
and automatic detection.

• Unsuitable for complex workpieces. Any material

Machine
vision
detection [51]

A wide range of applications, high
precision, remains unaffected by
the profile of the detection piece,
and automatic detection.

• Detects surface defects only. Any material

Magnetic
powder
testing [57]

The position, shape, and size of the
defect can be visualized, which is
suitable for any size of workpiece
detection. It has the characteristics of
high precision and low cost.

• Application is limited to
ferromagnetic materials.

• Detection results are affected by
the geometric shape of the test
pieces.

• Realizing automatic detection is
difficult.

Ferromagnetic
materials (e.g., cast
steel, pipe, calendar,
bar, etc.)

Osmosis
testing [58]

Free from the influence of material type
and shape profile and high sensitivity
to pinhole defects.

• Detecting porous materials is difficult,
and the detection speed is slow.

• Detection results are greatly affected
by the inspectors, and automatic
detection is difficult to carry out.

Nonporous
materials are tested
(e.g., metal casting,
ceramic, plastic,
glass, etc.)

Eddy current
testing [59]

Noncontact detection, fast detection
speed, high sensitivity, and suitable
for high-temperature environments,
automatic detection.

• The shape and size of the defects
cannot be visualized.

• The applicable materials are limited.
• Difficulty in detecting deep defects

with low detection accuracy.

Conductive or
non-metallic
material (e.g.,
workpieces, pipes,
wires, and graphite)

X-ray
testing [60]

Non-destructive detection, strong
penetration, free from the influence
of material appearance and structure,
and easy operation.

• Radiation effects for the staff involved
in the detection.

Any material

3. Survey of Deep-Learning Defect-Detection Technologies

Deep-learning technology has developed rapidly and made great success in object detection [61],
intelligent robot [62], saliency detection [63], parking garage sound event detection [64], sound event
detection for smart city safety [65,66], UAV blade fault diagnosis [67–69] and other fields [70–72].
Deep learning has a kind of deep neural network structure with multiple convolutions layer.
By combining low-level features to form a more abstract high-level representation of attribute
categories or features, the data can be better reached in abstract ways such as edge and shape to
improve the effectiveness of the deep-learning algorithm [70], Therefore, many researchers try to use
deep-learning technology to defect detection of product and improved the product quality [71–74].
Table 2 summarizes the advantages and disadvantages of deep-learning methods commonly used in
product defect detection. It mainly includes convolutional neural network (CNN) [75], autoencoder
neural network [74,76], deep residual neural network [77], full convolution neural network [78],
and recurrent neural network [79,80].

(1) Using the CNN to defect detection of product [75]. CNN is a feedforward neural network.
CNN consist of one or more convolutional layers and fully connected layers, as well as associated
weights and pooling layers [81]. Literature [82] is a very popular LeNet convolution neural network
structure. LeNet network structure can be used to detect defects in two situations: one is to design a
complex multi-layer CNN structure, use different network structure to extra image content features,
and complete end-to-end training to detect defects in images [56,83]; the other is to combine CNN
with CRF model, train CNN with CRF energy function as constraint or optimize network prediction
results with CRF. And to achieve the detection of product defects [71].
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Table 2. Deep-Learning Defect-Detection Methods.

Methods Strengths Weaknesses Applicable

CNN

It has a strong learning ability for high-dimensional
input data and can learn abstract, essential and
high-order features from a small amount of
preprocessed and even the most original data.

The good expression ability and the
calculation complex will increase with
the increase of network depth.

Unlimited
material

Autoencoder
neural
network

It has a good object information representation
ability, can extract the foreground region in the
complex background, and has good robustness to
the environment noise.

The input and output data dimensions
of the autoencoder machine must be
consistent.

Unlimited
material

Depth
residual
neural
network

The residual network has lower convergence loss
and does not overfit, so it has better classification
performance.

The network must cooperate with deeper
depth to give full play to its structural
advantages.

Unlimited
material

Full
convolution
neural
network

It can extract the feature of any size image, and obtain
the high-level semantic prior knowledge matrix,
which has a good effect on semantic level object
detection.

The feature matrix transformation
combined with the underlying features
is needed, and the convergence speed of
the model is slow.

Unlimited
material

Recurrent
neural
network

When there are fewer sample data, we can learn the
essential features of the data and reduce the loss of
data information in the process of pooling.

With the increase of the number of
iterations in the network training process,
the recurrent neural network model may
appear overfitting phenomenon.

Unlimited
material

(2) The product defect-detection technology based on the neural network [74,76]. Autoencoder
network mainly includes two stages: coding and decoding. In the coding stage, the input signal is
converted into a coding signal for feature extraction; in the decoding stage, the feature information is
converted into a reconstruction signal, and then the reconstruction error is minimized by adjusting
the weight and bias to realize the defect detection [84]. The difference between autoencoder networks
and other machine learning algorithms is that the learning goal of the autoencoder network is not for
classification, but for feature learning [85,86]. It also has a strong ability of autonomous learning and
highly nonlinear mapping. It can learn nonlinear metric functions to solve the problem of segmentation
of complex background and foreground regions [87].

(3) The product defect-detection technology of deep residual neural network [77]. The deep
residual network adds a residual module on the basis of the convolutional neural network. The residual
network is characterized by easy optimization and can improve the accuracy by increasing the network
depth [88,89]. CNN, Generative Adversarial Networks [90], etc. with the depth of the network
increases, the extraction feature increases, but it is easy to cause the activation function not to converge.
The purpose of the deep residual network is to optimize the increasing number of network layers with
residual while increasing the network structure, so that the output and input element dimensions of
the convolution layer in the residual unit are the same, and then through the activation function to
reduce the loss.

(4) Full convolution neural network [78]. The fully connected layer is a connection between any
two nodes between two adjacent layers. A fully connected neural network uses a fully connected
operation, so there will be more weight values, which also means that the network will take up
more memory and calculations [91]. During the calculation of the fully connected neural network,
the feature map generated by the convolution layer is mapped into a fixed-length feature vector.
The full convolution neural network can accept the input image of any size, and use the deconvolution
layer to sample the feature map of the last convolution layer, it can recover to the same size of the input
image.so that a prediction can be generated for each pixel, while retaining the spatial information in
the original input image, and finally classify the feature map of the upper sampling pixel by pixel.

(5) Recurrent neural network recursively from the evolution direction of sequence data and all
cyclic units are connected in a chain manner, and the input is sequence data [79,80]. The CNN model
mainly extracts the feature information of input layer test samples through convolution and pooling
operations. The recurrent neural network uses the recurrent convolution operation to replace the
convolution operation on CNN. The difference is that the recurrent neural network does not perform
the pooling layer operation to extract the features after the recurrent operation to extract the input
layer features, but uses the recurrent convolution operation to process the features of the samples.
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4. Survey of Object Detection Technologies Based on Deep Learning

Object detection methods based on neural networks can be divided into a one-stage method
based on regression [92–96] and a two-stage method based on candidate box generation and
classification [97–103]. The one-stage method does not need to generate candidate boxes in advance,
but it only needs to complete the three tasks of feature extraction, classification, and location regression.
By contrast, the two-stage method mainly has four tasks, namely feature extraction, generating
candidate boxes, classification, and location regression. Table 3 shows a comparative analysis of the
two types of object detection methods.

Table 3. Comparative analysis of two kinds of object detection methods.

Methods Onestage Object Detection Twostage Object Detection

Principle
The input original image is processed directly to
obtain the position coordinate value and category
probability. The position is corrected thereafter.

Candidate regions are extracted from the input
image through selective search and region generation
network. Thereafter, convolution, pooling, and other
processing is conducted to obtain feature maps.

Advantage

In the case of the low input separation rate,
the speed and accuracy can be balanced
simultaneously, and the detection speed is
fast, which can reach above 45 FPS.

The deep semantic features of the object can be
obtained. The detection accuracy of the object is high,
whether it is a small object or a scene with considerable
density.

Insufficient Low accuracy for small objects and prone to miss
detection, low positioning accuracy.

The algorithm has a large volume, large amount of
stored data, complicated calculation process, and slow
detection speed.

Realtime Realtime. Cannot reach real time

Representative one-stage methods include: Joseph Redmon et al. [92,93]. proposed the You
Only Look Once(YOLO) method, which inherits OverFeat, and its detection speed reaches 45 pieces
per second. The speed advantage makes it an end-to-end leader. Redmon et al. [94]. modified
the network structure of YOLO and proposed the YOLOv2 and YOLO9000 methods, with a 4.00%
increase in mAP. YOLOv3 [95] follows the Darknet53 network of YOLOv2 and combines it with the
FPN [96] network structure. Thereafter, the prediction results are obtained from the convolutional
network. Corresponding improvements enable the accuracy to reach 22.2 milliseconds per piece,
and the best effect of mAP@0.5 on the COCO test set reaches 33.00%. However, the overall model
becomes considerably complicated, and speed and accuracy serve as checks and balances for each
other. To solve the problem of poor positioning accuracy of the YOLO algorithm, Wei Liu et al. [97].
proposed the Single Shot MultiBox Detector(SSD) method that combines YOLO regression ideas with
the Faster R-CNN [98] anchor box mechanism, using the Visual Geometry Group Network(VGG)
as the feature extraction network. The VGG is a convolutional neural network model proposed by
K. Simonyan [99]. To address the issue that the SSD algorithm cannot easily detect small objects,
Cheng-Yang Fu et al. [100]. proposed a DSSD method, which replaces the VGG16 of SSD with the
ResNet101 network, thereby enhancing the network’s ability to extract features.

The representative two-stage methods are as follows. Girshick et al. [101]. proposed the Rich
Feature Convolutional Neural Network (R-CNN) to enrich the features in the training process. That is,
the mAP of the PASCAL VOC2007 test set was refreshed to 58.50%. He et al. [102]. proposed the
Spatial Pyramid Pooling Network(SPP-Net) algorithm based on R-CNN to solve the problems of
repetitive operations and shape distortion of convolutional neural networks. SPP-Net abandons
the R-CNN clipping candidate box and image sub-block scaling operations before inputting the
neural network, and adds an SPP structure between the convolutional and fully connected layers
to increase the generation rate of candidate box and save computational overhead. Given the time
cost caused by repeated computation of multiple stages and features during training and the space
cost caused by storage of intermediate feature data, Girshick et al. [103]. proposed Fast R-CNN,
which combines deep network with SVM classification. Accordingly, classification and regression
are performed simultaneously by the full connectional layer network, thereby forming a multi-task
model. This module has numerous calculations, given the problem that SPP-Net and Fast R-CNN have
separate candidate area modules. Ren et al. [27] proposed the Faster R-CNN algorithm based on Fast
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R-CNN. Faster R-CNN adds an RPN network to the backbone network structure and sets multi-scale
anchor points on the basis of established rules. To solve the problem that the Faster R-CNN rounds the
feature map size when performing ROI pooling and downsampling, Mask R-CNN [104] abandons the
rounding operation of the picture size and proposes to replace the ROI Pooling layer with ROI Align
and use double Linear interpolation fills pixels at non-integer positions. Accordingly, no position error
occurs when the downstream feature map is mapped upstream.

5. Summary Analyses of the Application Status of Defect-Detection Technology

5.1. The Traditional Method for Defect-Detection Technology

Non-destructive defect detection of products is widely used in manufacturing, in which analyzing
the pros and cons of different algorithms can help to understand and improve the algorithms. Here we
focus on the application status using the combination of classical defect detection and other algorithms.
Figure 2. shows the different defect-detection methods and their corresponding performance results or
summaries for non-destructive defect detection.

Figure 2. Summary and analysis of defect-detection methods.

The ultrasonic defect-detection methods are widely used to detect the defects in the internal
structure of the sample. Therefore, the results are mainly reflected in the performance of the ultrasonic
signal [105]. The findings, as shown in [106], indicates that the ultrasonic defect-detection methods have
the advantages of fast detection speed and simple operability. They also have special advantages in
detecting defects in the internal material and structure as well as the size of the product. However, this
method is unsuitable for workpieces with complicated structures with low detection efficiency [106].
Ultrasonic techniques are especially ineffective for detecting defects on the upper surface of the sample
since a nonlinear relationship exists between the defect position and the signal receiving the time,
which leads to the defect to be closely positioned to the direct pass wave end [107]. The denser the
distribution of the real position of the product, the higher the certainty of the “trailing” phenomenon
of the direct pass wave signal on the map.

The machine vision-based defect-detection methods are suitable for the detection of surface defects
in products, which has achieved up to 88.60% accuracy in binary defect-detection problems [108].
The defect-detection accuracy over scratches, holes, scales, pitting, edge cracks, crusting, and inclusions
can reach 95.30% [109]. Our survey shows that the machine vision-based image recognition is widely
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used in manufacturing surface defect detection due to the feature extraction ability from the images
made possible by recent deep-learning techniques.

The defect-detection methods are based on filtering has a strong ability to describe the disturbance
signal and detection of the tool defect inside the machine.

To the abovementioned main categories of defect-detection methods for mechanical
products, several other technologies are also available such as the X-ray image defect-detection
technology [110], Pulse magnetoresistance method [111], Acoustic emission technology [106]. These
methods [106,110,111] have shown positive detection results and can provide theoretical and practical
guidance for real-world applications. In addition, studies show that the majority of the early works
studied a single defect-detection problem such as the defects in the material [112,113], shape [114,115],
size [116], color [117], and surface of a product [118,119]. At the same time, studies on defects with
varying size, crack depth, and other information are scarce, which is also a major limitation of existing
defect-detection research [120–122]. The following is an experimental summary of some research
methods [108–110,123–132]. The reference [123–126] are the experimental results of ultrasonic detection.
The reference [109,127–131] are the experimental results of Filter detection. The reference [108,110,132]
are the experimental results of other quality detection technologies.

• The frequency accuracy of the weld defect is over 60.00% when the frequency band is
100–200 kHz.Positive detection results can be obtained at frequencies of 100 to 200 kHz and
300 to 400 kHz [106].

• The total detection rate of the two types of samples in “defects” and “no defects” is 88.60% [108].
• Analysis of the effects of different surface defects and locations on the test results.The average

recognition rate under eight types of defects is 95.30% [109].
• Poor detection effect with defect depth less than 2mm [110].
• The peak times of surface and subsurface defect depth of 3 mm are 16.59 and 37.01 ms,

respectively [111].
• Realizes the detection and recognition of defects in different texture samples [123].
• Reduces unnecessary interference and extract weak signals from strong background noise [124].
• Effective detection of holes, axial cracks, and circumferential cracks [125].
• Detect cracks less than 3 mm [126].
• Can detect defects exceeding 1 mm2 [127].
• Resolves the quality defect detection with image noise and complex background [128].
• Improved Doppler distortion and multi-bearing source aliasing in bearing signals [129].
• Positive recognition effect on the position, shape, and size of the defect [130].
• It can define six features based on the characteristics of seam cracks and employed SVM for

classification. The true positive rate was 94.46%, and the false-negative rate was only 0.29% [131].
• The 8-bit grayscale image recognition rate of an image size of 2500 × 2000 pixels is 94.00% [132].

5.2. Machine Learning for Defect-Detection Technology

Another major trend in the literature survey of defect-detection technology is the emerging
dominance of the machine learning methods, which are now widely used in all fields of product
defect detection. The defect-detection technology can be divided into two main categories: surface
defect detection [133] and internal fault diagnosis [134]. Surface defect detection is similar to ’visual’
detection, that is, learning from the target features in an image with the help of deep-learning image
processing technology to classify and locate product defects in the image, whereas internal fault
diagnosis is similar to ’Auditory’ detection, that is, the diagnosis of faults in rotating parts such as
bearings by means of modal analysis using digital signals in the time or frequency domain. We found
that the defect-detection complex functions and enhanced feature extraction [135]. Table 4 Survey of
Deep-learning methods in defect methods based on deep learning have achieved the best experimental
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result thus far. The highest precision of these algorithms can reach 99.00% with a recognition time of
0.12 ms for a single image [136]. The lowest precision level is 86.20% [137].

Table 4. Machine Learning for Defect-Detection Technology.

No. Methods Performance

1 Deep ensemble
learning [23]

Recall of 93.00% and detection precision of 88.00%.

2 Deep CNN [42] The proposed fast architecture mAP is 96.72%, whereas FPS is 83.00
Training time consumption is 133 min.

3 CNN [136] The overall recognition rate of the six kinds of defect dataset reaches
99.00%. The recognition time of a single image is 1.2 ms.

4 Deep CNN [137] The CNNs were trained using 12,000 images that were collected from
over 200 pipelines. The average testing accuracy, precision, and recall
rates were 86.20%, 87.70%, and 90.60%, respectively.

5 CNN and Naïve
Bayes data
fusion [138]

The Naïve Bayes decision making discards false positives effectively.
The proposed framework achieves a 98.3% hit rate against 0.1 false
positives per frame.

6 Machine
learning [139]

The ICA, Gabor filter, and RF require approximately 0.097, 0.265 and
0.014 s, respectively, to detect defect for a 640 × 480-pixel image with
sliding window search. However, CNN takes 0.217s and is slower
than ICA and RF.

7 CNN and
self-similarity [140]

Benchmarked on a publicly available dataset of SEM images,
outperformed the state of the art by approximately 5% by reaching an
area under the curve of approximately 97.00%.

8 3D active stereo [141]
omnidirectional
vision sensor

The highest accuracy to detect defects is 97.00%. The recognition time
of a single image is 0.19 s.

9 Deep neural
networks [142]

This paper obtained a mean IOU of 68.68% over 55.94%. The
performance of all three metrics on the validation data reflect the
superiority of adversarial training.

10 Deep CNN [143] Maximum accuracy of the 32 × 32 pixel-sized image is 94.68% in
industrial detection.

11 Support vector
machine and
CNNs [144]

In-wheel defect detection, accuracy is larger than 87.00%. The
precision value is larger than 87.00%. The recall rate is larger than
89.00%.

12 Deep convolutional
autoencoder [145]

Recall 95.70% Precision 91.80% the inspection time for an image of
512 × 512 pixels is only 20 ms.

13 CNN [146] Average accuracy of 93.02 % only 8.07 ms for predicting one image on
an ordinary computer.

14 CNN [147] The mean accuracy of 99.38% with the std value of 0.018.
15 Fully Convolutional

Neural Network [148]
Accuracy 99.14% a batch of 50 images required only 0.368 s.

16 Machine
learning [149]

Accuracy as high as 99.4%.

17 Few-shot
Learning [150]

Accuracy rate can reach 97.25%.
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6. Survey of Defect-Detection Equipment

At present, defect-detection equipment is mainly used in the production and processing stage of
products. In the 1960s, due to the demand for the medical examination market, machine vision-based
defect-detection robots are developed to detect insoluble foreign bodies in medical injection. Many
visual inspection equipment providers were born such as BOSCH(Germany) [151], COMPUR [152],
BS [153], CMP (Italy) [154], and Valley Industries (Japan) [155]. Recently, demand for intelligent
manufacturing has been increasing as shown in China’s intelligent manufacturing 2025, German
industry 4.0 and Britain’s “Modern Industrial Strategy”. Driven by these practical applications,
demand for defect-detection equipment has been increasing steadily.

Figure 3. Types of defect-detection equipment: (a) Rhein–Nadel automation (RNA) glass
defect-detection system [156] (b) Visual detection system for defects of EvenFit components [157]
(c) Rhein–Nadel automated detection system for defects in mechanical parts [158] (d) The visual
detection system of the EvenFit capsule [159] (e) KEYENCE product size measuring instrument [160] (f)
AVI soldering appearance inspection machine [161] (g) Hardware and workpiece visual measurement
equipment [162] (h) ET-F1 engine cylinder bore eddy current detector [163].

Figure 3 presents the defect-detection equipment widely used in the industry. In Table 5,
we summarize the advantages and disadvantages of these defect-detection equipment aiming to
identify the recurrent and difficult challenges in defect detection. Figure 3a features a defect-detection
system for LYNX mechanical parts, which detects missing mechanical parts and external surface
damages and assembly of parts. Figure 3b shows the use of machine vision to visually detect
component defects. However, it is found that current detection accuracy and detection performance
remain incapable of fully meeting the requirements of high-speed production in smart factories.
Furthermore, stability and real-time performance should be further improved.
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Table 5. Existing defect-detection equipment.

Name Performance
Packaging
defect-detection
equipment

Function color detection, window or insert detection, carton ejection, tilt,
double-feed monitoring and glue line detection of mechanical
product packaging.

Trait remote control, off-site monitoring, and tracking. ineffective for metal
or special transparent packing.

LYNX
Industrial
vision
system

Function detect and analyze missing and damaged parts and assembly errors.
Trait System hardware can be controlled by the central terminal, which

can adapt to various working environments and cover the detection
amount of size and size. It is easy to operate, fully closed,
a multi-detection system with data.

IRNDT infrared
thermal
imaging testing

Function The defect image is displayed, and the feature is evaluated by heating
the tested parts and analyzing the defect position with abnormal
internal temperature.

Trait The equipment has the characteristics of the non-contact, large area,
fast speed and visual display it has a poor effect on metal parts with a
large amount of heat deformation.

Smart
U32
Ultrasonic
scanning
detector

Function This is used to perform ultrasonic phased array probe, sound beam
control, and dynamic focusing technology to realize scanning and
imaging detection of composite and metallic materials.

Trait Coupling stability, automatic measurement, and accurate verification.
However, it is not good for the detection of large-size parts and
non-metal parts.

Parts
appearance
optical
detection
equipment

Function This is used to detect parts with diameters ranging from 65 mm to 110
mm, such as sprockets, stators, and rotors. It can also detect breakage,
bumps, and cracks.

Trait TPros: non-destructive testing, multi-angle identification, fast
detection speed, high precision, stable performance, and accurate
data statistics function.

Turbine
detection
system

Function The defect of the shallow surface of metal parts is detected through
the analysis and treatment of the eddy current. It is suitable for defect
detection of conductive materials.

Trait Eddy current testing is only applicable to conductive materials. It can
only detect defects on the surface or near the surface layer. It is not
conducive for use in components with complicated shapes.

Sealing
detection
equipment

Function It collects and analyzes the images of the seal ring directly above, sides,
and bottom and extracts the surface scratches and bubble defects of
the seal ring.

Trait The equipment can set the number of test stations, adjust the test
sequence and methods at will, and support the detection of all product
models. The detection speed is slow, which reduces the production
tempo along the pipeline.

3D Visual
measuring
equipment

Function It has the functions of edge extraction, contour degree and other
2D and 3D form tolerance calculation, 3D digital model comparison,
and heat map display.

Trait The device can only detect non-transparent products, and the
measuring effect is insufficient when the running speed is over
400 mm/s.
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Table 5. Cont.

Name Performance
Inkjet detector Function It can detect defects in mechanical parts without and incomplete codes,

indented characters, and offset position of the code.
Trait The device consists of a code detection unit, man-machine interface,

and stripper. However, it is ineffective in detecting parts with
greasy surfaces.

7. Challenge

7.1. 3D Object Detection

In modern computer vision systems, people are satisfied with 2D object detection. With the advent
of 2.5D depth sensor, building 3D models has become increasingly important, and 3D geometric shapes
have been considered an important clue in object recognition. One of the most important challenges of
3D is that given a depth map of an object from an angle, the 3D structure of an object can be inferred.
We are convinced that one of the important trends in visual recognition is to identify defects on the
surface of an object and infer its corresponding 3D model to determine the shape defects in the 3D
layer. This situation is akin to that when we observe one side of a table, i.e., we naturally visualize a 3D
model of the entire table. To determine the table based on the surface defects and in the 3D shape of the
defects, various methods can be used to reconstruct and synthesize shapes, although such techniques
are based on assembly. They are the same class or type of 3D shape completion. The completion of 3D
models of different types of objects in complex environments should be studied further. At present,
similar studies have been conducted. For example, the linear relationship between the 3D defect
size of transparent parts and image gray level is found under certain circumstances [164]. On this
basis, a set of vision-based transparent micro-defect measurement systems is developed. Iglesias [165]
developed an automated inspection system to examine SLATE based on the use of 3D color cameras
to capture data and using computer vision algorithms developed specifically for the purpose of
studying SLATE characteristics. In a previous study [166], a potato virtual reality model reconstruction
algorithm based on 3D shape and color images is proposed for sample quality tracking and review.
The model redisplays potato color and 3D shape data in multiple views and supports 360-degree
rotation in horizontal and vertical directions to simulate a handheld exam experience. This depth
image processing is a potentially effective method for future non-destructive post-harvest grading,
particularly for products in which size, shape, and surface conditions are important factors. In a
previous study [167], a detection method combining grayscale image and 3D depth information
is proposed.

7.2. High Precision, High Positioning, Fast Detection, Small Object

Through investigation, it is found that high precision [96,98], high positioning [94,96,98], fast
detection [94], small object, complex background [94,96,98,168], occluded object detection [94,168],
and object detection based on the association between objects [96,98] are the main challenges of
the current deep-learning algorithm in the application of quality detection. In order to further
assist researchers and enterprise engineers to apply the deep-learning method to product defect
detection, Table 6 are from high precision [96,98], high positioning [94,96,98], fast detection [94],
small object [96,100], complex background [94,96,98,168], occluded object detection [168,169], object
association [170], and other aspects are summarized in the relevant papers published in ICCV and
CVPR and other well-known international conferences in recent years, and the core idea and source
code of these better papers are summarized to assist R & D personnel in knowledge reuse and
innovative design.
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Table 6. Summary of object detection methods with high precision, high positioning, fast detection, small
object, complex background, occluded object detection.

Ref. High
Precision

Position
Ability Fast Small

Object
Train
Strategy

Irregular
Object

Imbalance
Data

Complex
Background

Occluded
Objects

Objects
Relationship Published

[94] X X X X X CVPR2017

[96] X X X X CVPR2017

[98] X X X X X CVPR2017

[100] X X X X X arXiv

[104] X X X X ICCV2017

[168] X X ICCV2017

[169] X X ICCV2017

[170] X X CVPR2018

[171] X X X CVPR2017

[172] X X ICCV2017

[173] X X ICCV2017

[174] X X ICCV2017
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8. Development Trend

Our survey found that most of the existing defect-detection studies focused on defect detection of
specific products. But the identification accuracy of current online defect-detection techniques remains
to be improved. The following aspects of defect detection need special attention:

• Combined with the actual requirements of the factory, online defect detection of manufacturing
products on the conveyor belt should be realized.

• As intelligent manufacturing enterprises attach importance to defect-detection technology,
embedded sensor equipment to conduct online real-time detection of defects in manufactured
products can be designed and used. Then, various non-destructive defect-detection methods
should be integrated to realize multi-modal defect detection of manufacturing products, which
can have broad application prospects in the field of defect detection.

• The main objects of 2D image surface defect-detection technology are surface scratches and
abrasions. Obtaining in-depth information about the defects is limited. However, in the actual
production process, the defect information of the product is not only displayed on the surface of
the manufactured product but also requires the use of 3D defect-detection methods to detect the
3D surface characteristics of the test sample.

• With the rapid development of artificial intelligence and big data technology, useful information
that can be extracted is abundant. Applying the rich information accurately to the manufacture of
product defect feedback technology, defect control, and fault diagnosis warrants further research.

• Aiming at the multi-fault diagnosis of intelligent equipment with defect-detection technology in
complex industrial processes, one of the important research directions to undertake should
be effective fault prediction and diagnosis for intelligent equipment when multiple faults
simultaneously occur.

• High-precision identification technology. In the process of image acquisition, the apparent
characteristics of the object can considerably change with different lighting conditions and
shooting angles and distance. Many noise interference and partial occlusion of the detected
sample can also have a great impact on the detection results due to the different backgrounds of
the detection object. The abovementioned factors are commonly used in industrial applications,
which can lead to substantial difficulties in detecting defects in manufactured products. Therefore,
such a problem should be further solved to improve the feature extraction capability of the current
online non-destructive defect-detection technology and improve the accuracy of non-destructive
defect detection.

• How to optimize the quality of image acquisition, improve the accuracy of the candidate box,
extract features more comprehensively and accurately for learning, and extract features of
small-size targets are the future research directions;

• Presently, a large number of neural networks (including neural networks improved for a certain
problem) have their own advantages and disadvantages. These networks are implemented based
on a large amount of data. How to use fewer picture samples to train the recognition model with
excellent performance is a big difficulty;

• With more and more product derivatives, it remains to be studied how to transfer a trained model
to another similar product and ensure its accuracy and detection efficiency;

• After the defect is detected and the type of defect is clear, it is very important to deal with the
information of the object, and it is also very necessary to separate the defective product from
the non-defective product. The defect-detection system can be combined with the early warning
system to give timely warning after detecting the defective products, and the staff can timely
eliminate the defective products. Or with the sorting system, the manipulator to eliminate the
defective products, in addition, can also establish traceability system to check the production
process will make the product defects steps, and timely optimization of the production process,
so as to reduce the production cost;
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• Future studies can also design defect information feedback technology that is based on
defect-detection technology. Many feedback methods and objects remain undiscussed and are
difficult points for future research. Once product information is processed and analyzed, and after
determining the cause of the product defect or fault information, the defect or fault information
can be fed back to the mother-machine system to realize online production and self-correction
of the product. Doing so can help improve product quality and reduce manpower, material
resources, and production costs. Finally, we hope to compare the performance of the mainstream
deep-learning detection model, which can provide a reference for researchers in deep-learning
surface defect detection. See Table 7 for details.

Table 7. Performance comparison of deep-learning object detection model.

Model Network Structure Real-Time Performance Analysis mAP Published
VOC2007 COCO

Faster R-CNN [27] ResNet101 Poor realtime performance 73.20% 37.40% NIPS’15
YOLO [92] VGG16 Good real-time performance 66.40% 23.70% CVPR’16
OverFeat [93] −− Poor real-time performance −− −− ICLR’14
YOLO V2 [94] Darknet19 Good real-time performance 78.60% 21.60% CVPR’17
YOLOv3 [95] Darknet53 Good real-time performance −− 57.90% Arxiv’18
FPN [96] ResNet Good real-time performance −− 36.20% CVPR’17
SSD [97] VGG16 Good real-time performance 76.80% 31.20% ECCV’16
DSSD [100] ResNet101 Good real-time performance 81.50% 33.20% Arxiv’17
R-CNN [101] AlexNet Poor realtime performance 58.50% −− CVPR’14
SPP-Net [102] ZF-Net Poor realtime performance 59.20% −− ECCV’14
Fast R-CNN [103] VGG16 Poor realtime performance 70.00% 19.70% ICCV’15
Mask R-CNN [104] ResNet101 Poor real-time performance −− 39.80% ICCV’17
R-FCN [171] ResNet101 Poor realtime performance 79.5% 29.90% NIPS’16
MegDet [175] ReseNet Good real-time performance −− 52.50% CVPR’18

9. Summary

Industrial product quality is an important part of product production, and the research on
defect-detection technology has great practical significance to ensure product quality. This article
provides a comprehensive overview of the research status of product defect-detection technology
in complex industrial processes. We have compared and analyzed traditional defect-detection
methods and deep-learning defect-detection techniques, and comprehensively summarized the
experimental results of defect-detection techniques. Meanwhile, combined with the actual application
requirements and the development of artificial intelligence technology, the defect-detection equipment
was investigated and analyzed. Through investigation, we found that 3D object detection, high
precision, high positioning, rapid detection, small targets, complex backgrounds, detection of occluded
objects, and object associations are the hotspots of academic and industrial research. We also pointed
out that embedded sensor equipment, online product defect detection, 3D defect detection, etc.
are the development trends in the field of industrial product defect detection. We believe that the
investigation will help industrial enterprises and researchers understand the research progress of
product defect-detection technology in the field of deep learning and traditional defect detection.
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