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Abstract: The electronics related to the fifth generation mobile communication technology (5G) are
projected to possess significant market potential. High dielectric constant microwave ceramics used as
filters and resonators in 5G have thus attracted great attention. The Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x
= 2/3) ceramic system has aroused people’s interest due to its underlying excellent microwave dielectric
properties. In this paper, the relationships between the dielectric constant, Nd -doped content,
sintering temperature and the density of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x= 2/3) ceramics were studied.
The linear regression equation was established by statistical product and service solution (SPSS)
data analysis software, and the factors affecting the dielectric constant have been analyzed by
using the enter and stepwise methods, respectively. It is found that the model established by the
stepwise method is practically significant with Y = −71.168 + 6.946x1 + 25.799x3, where Y, x1 and x3

represent the dielectric constant, Nd content and the density, respectively. According to this model,
the influence of density on the dielectric constant is greater than that of Nd doping concentration.
We bring the linear regression analysis method into the research field of microwave dielectric ceramics,
hoping to provide an instructive for the optimization of ceramic technology.

Keywords: microwave dielectric ceramics; Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) system;
dielectric constant; linear regression analysis

1. Introduction

With the development of mobile communication equipment and portable terminals towards
miniaturization and multifunctionality, the demand for filters and resonators have been
increasing steadily. Microwave dielectric ceramics are the key materials of filters and resonators
for telecommunications [1–5]. The re are three important parameters to evaluate the ceramics:
dielectric constant εr, quality factor Qf and temperature coefficient of resonate frequency τf.
High dielectric constant is beneficial for microwave devices because the size of dielectrics is inversely
proportional to

√
εr. Currently, BaO-Ln2O3-TiO2 (Ln: lanthanide) based systems exhibit superior

properties in the high dielectric materials, which have aroused considerable attention [6–9]. For the
solid solution of Ba6−3x(Sm1−yNdy)8+2xTi18O54, it has a like-perovskite tungsten bronze structure with
TiO6 octahedra. According to the atomic occupation, the structural formula of the solid solution can be
written into [Ln8+2xBa2−3xVx]A1[Ba4]A2Ti18O54 (0≤ x≤ 2/3, V:Vacancy). A1 is the rhombic site and A2 is
the pentagonal site [10,11]. Suzuki et al. attributed a significant drop in Qf to the occupation of large Ba
by Sr at the A1-site [12]. Amaral et al. demonstrated that there exists evident crystal orientation in thick
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films, which controls the microwave dielectric properties of the ceramics [13]. Vilarinho et al. obtained
different dielectric constants by adjusting the thickness of BaLa2Ti4O15 and Ba4Nd9.33Ti18O54 films [14].
Wang et al. investigated the process and microwave dielectric properties of the BaTiO3 and BaTe4O9

system, and especially explored systematically the relationship between the microwave dielectric
properties and Nd/Sm ratio and x value of Ba6−3x(Sm1−yNdy)8+2xTi18O54 [15–18]. According to
previous studies [19], Ba6−3xSm8+2xTi18O54 ceramic has the best comprehensive properties, for example,
high dielectric constant, high quality factor and negative resonant frequency temperature coefficient
(τf), while Ba6−3xNd8+2xTi18O54 ceramic presents a positive τf. The refore, the co-doping of Sm and
Nd in the Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) system would lead to near zero τf, which is very
important to improve the frequency stability of the devices. Although the effect of co-doping of Sm
and Nd on the properties of Ba6−3x(Sm1−yNdy)8+2xTi18O54 has been investigated [20,21], the statistical
analysis method was rarely used to study the factors affecting the performance.

Statistical product and service solutions (SPSS) are mathematical analysis software, which include
the correlation analysis, regression analysis, cluster analysis, discriminant analysis, etc. The regression
analysis can be divided into linear regression analysis, non-linear regression analysis, curve estimation
and logistic regression. Among them, linear regression analysis is especially valuable in determining
the critical factor [22,23]. Doreswamy proposed the linear regression model and predicated the attribute
values from the large engineering materials database [24]. The study of regression analysis suggested
that data mining techniques is applicable to the investigation on material informatics, which could
facilitate the development of new materials. For microwave dielectric ceramics, the re are many factors
to influence the dielectric constant, for example, element doping, sintering temperature and density.
SPSS is thus employed to determine the critical factor of affecting the dielectric constant.

There are many different methods to establish mathematical models by SPSS, such as the enter
method (forced entry method), the forward method, the backward method and the stepwise method.
The enter method can generate rich information via taking all the factors into consideration, but its
sophisticated nature introduces disputes on the results. The stepwise method combines the merits
of the forward and backward methods and can establish the mathematical model with fast speed.
Consequently, in this paper, we applied the enter and stepwise methods to create the mathematical
models and analyze the factors that affect the dielectric constant of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x =
2/3) microwave dielectric ceramics. The relationships between the dielectric constant, Nd dopant,
sintering temperature and the density have been established by using the models, which is
valuable for the development of high-performance BaO-Ln2O3-TiO2 dielectric ceramics for microwave
communication applications.

2. Experimental Process

2.1. Materials

The starting materials including BaCO3 (99.0%), Sm2O3 (99.9%), Nd 2O3 (99.9%) and
TiO2 (99.0%) were weighed in stoichiometric ratios according to the chemical formula of
Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) with y = 0, 0.1, 0.2, 0.3 and 0.4.

2.2. Preparation of Ceramics

The ceramics were made from the starting materials, which were mixed and grounded for 4 h
with ethanol using polyurethane jars and zirconia balls by the Planetary Ball Mill (Hunan Future
Mechanical & Equipment Manufacturing CO., LTD, Yueyang, China), the n dried and calcined at
1050 ◦C for 2 h. The furnace type is KSL-1750X-S (made in Hefei Kejing Materials Technology CO.,
LTD, Hefei, China). The calcining powders with 5 wt % PVA (from Aladdin Holdings Group, Beijing,
China) binder were passed through a mesh and pressed into pellets with a 2:1 ratio of their diameters
to thicknesses. The sizes of samples were 10 mm in diameter and 5 mm in thickness. The se pellets
were heat treated at 550 ◦C for 1 h with 5 ◦C/min of heating rate, and then sintered in air at 1300 ◦C,
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1350 ◦C and 1400 ◦C for 2 h respectively with 10 ◦C/min of heating rate. When the heating schedule
was finished, it was cooled with the furnace.

2.3. Ceramics Characterization

The crystal structures of the ceramics were characterized by X-ray diffraction using a Bruker
AXS D8-Focus diffractometer (Bruker Corporation, Karlsruhe, Germany) with Cu Kα radiation
(λ = 1.540598 Å). The step size was 0.02◦ and the scan rate was 5◦/min. The densities were tested
by the DE-200M apparatus made by HONGTUO Instrument (Dongguan, China). The measurement
method of ceramic density was based on the Archimedes principle. The immersion liquid was the
water. The formula for calculating the bulk density of the sample is according to Equation (1).

ρ = m0 × ρw/(m1 − m2) (1)

ρ is bulk density of the ceramic, g/cm3; ρw is the density of the water at the temperature of the test,
g/cm3; m0 is the weight of the ceramic after drying at 105 ◦C for 3 h, g; m1 is the weight of the ceramic
in air with water saturation after vacuum-pumping, g, and m2 is the weight of the ceramic in water
with water saturation after vacuum-pumping, g.

The morphologies of the ceramics were observed with a scanning electron
microscope (SEM, SU8010, Hitachi, Tokyo, Japan). The microwave dielectric properties were
measured using the Hakki and Coleman method by the Agilent E8362B network vector analyzer
(Agilent, Palo Alto, USA). The spectroscopy frequency range is from 10 MHz to 20 GHz, and the
resonant frequencies of all samples made in our study were lower than 10 GHz. The temperature
range was from 20 to 80 ◦C for determining the temperature coefficient of the resonance frequency τf.

3. Results and Discussion

3.1. X-ray Characterization of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) Ceramics

X-ray diffraction patterns of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) ceramics sintered at 1400 ◦C
for 2 h are illustrated in Figure 1. According to the XRD standard card PDF #43-0235, the ceramics were
pure phase Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) solid solution with Nd contents ranging from y = 0
to 0.4. Figure 1b shows that the peaks at the vicinity of 2θ = 31.7◦ shifted towards lower degrees with
the increase of Nd content, which suggests that Sm ions (r = 1.098 Å with hexa-coordinate [25]) were
replaced by Nd ions with a larger radius (r = 1.123 Å with hexa-coordinate [25]) [15]. The ceramics show
the properties of pure Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) solid solution phases without impurities.
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Figure 1. XRD diffraction patterns of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3, y = 0, 0.1, 0.2, 0.3, 0.4) 
ceramics sintered at 1400 °C for 2 h: (a) patterns for 2θ from 10 to 65° and (b) partial enlarged detail 
of XRD patterns around 2θ = 31.7°. 
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The resonate frequency f, dielectric constant εr and quality factor Qf were measured at 
microwave frequencies by the Hakki and Coleman method. For the specific ceramics, the resonate 
frequency is constant, so the dielectric constant value is very reliable. The mathematical models of 
the dielectric constant were established, in which Y, x1, x2 and x3 denote the dielectric constant, Nd 
content relative to Sm, sintering temperature (°C) and the density (g/cm3), respectively. Table 1 
summarizes the densities and dielectric constants of the ceramics with different Nd contents and 
sintered at different temperatures. The Nd contents x1 varied from 0 to 0.4, while the sintering 
temperatures x2 from 1300 to 1400 °C at which the samples were fired into ceramics. According to 
Table 1, the multiple linear regression mathematical models were established by using SPSS 
software. 

Table 1. Densities and dielectric constants with different Nd contents and sintering temperatures. 

Y x1 x2 (°C) x3 (g/cm3) 
61.83 0 1300 5.18 
73.03 0 1350 5.62 
75.55 0 1400 5.65 
63.12 0.1 1300 5.17 
74.35 0.1 1350 5.61 
75.68 0.1 1400 5.64 
71.51 0.2 1300 5.46 
73.30 0.2 1350 5.61 
75.28 0.2 1400 5.61 
72.25 0.3 1300 5.47 
74.97 0.3 1350 5.59 
75.97 0.3 1400 5.61 
72.21 0.4 1300 5.44 
74.20 0.4 1350 5.56 
76.34 0.4 1400 5.59 

Notes: Y—Dielectric constant; x1—Nd content; x2—Sintering temperature; x3—Density. 

Figure 1. XRD diffraction patterns of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3, y = 0, 0.1, 0.2, 0.3, 0.4)
ceramics sintered at 1400 ◦C for 2 h: (a) patterns for 2θ from 10 to 65◦ and (b) partial enlarged detail of
XRD patterns around 2θ = 31.7◦.

3.2. Establishment of the Mathematical Models Based on the SPSS Multiple Linear Regression Analysis

The resonate frequency f, dielectric constant εr and quality factor Qf were measured at microwave
frequencies by the Hakki and Coleman method. For the specific ceramics, the resonate frequency is
constant, so the dielectric constant value is very reliable. The mathematical models of the dielectric
constant were established, in which Y, x1, x2 and x3 denote the dielectric constant, Nd content relative
to Sm, sintering temperature (◦C) and the density (g/cm3), respectively. Table 1 summarizes the
densities and dielectric constants of the ceramics with different Nd contents and sintered at different
temperatures. The Nd contents x1 varied from 0 to 0.4, while the sintering temperatures x2 from 1300
to 1400 ◦C at which the samples were fired into ceramics. According to Table 1, the multiple linear
regression mathematical models were established by using SPSS software.

Table 1. Densities and dielectric constants with different Nd contents and sintering temperatures.

Y x1 x2 (◦C) x3 (g/cm3)

61.83 0 1300 5.18
73.03 0 1350 5.62
75.55 0 1400 5.65
63.12 0.1 1300 5.17
74.35 0.1 1350 5.61
75.68 0.1 1400 5.64
71.51 0.2 1300 5.46
73.30 0.2 1350 5.61
75.28 0.2 1400 5.61
72.25 0.3 1300 5.47
74.97 0.3 1350 5.59
75.97 0.3 1400 5.61
72.21 0.4 1300 5.44
74.20 0.4 1350 5.56
76.34 0.4 1400 5.59

Notes: Y—Dielectric constant; x1—Nd content; x2—Sintering temperature; x3—Density.
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3.3. Linear Regression Model Based on the Enter Method

The enter method is also named as the forced enter method, while all of the arguments are
introduced into the model simultaneously. Generally, the enter method is suitable to find out the
significance of the argument. By fitting the enter method, the arguments that are nonsignificant will
be found.

Table 2 is the summary of the regression model based on the enter model. The parameters were
obtained with the correlation coefficient R = 0.973 and coefficient of determination R2 = 0.947. R2 refers
to the fitting degree, which indicates the quality of the model. The closer R2 is to 1, the more appropriate
the model will be. The adjusted multiple correlation coefficient Ra

2 is 0.943, which confirms that
there are strong linear correlations between dielectric constants and Nd content, sintering temperature
and the density of the ceramics [26]. The F-value (joint hypotheses test) was 243.722, and p-value
(probability value under the corresponding F-value) was 0.000, which further confirmed that our
model was suitable. The p-value was smaller than 0.05, which indicates that the linear regression
equation had passed the 0.05 alpha-level significance test. From Table 2, the Durbin–Watson test value
(DW) was 2.112, which means that the model does not have self-correlation [27].

Table 2. Summary of the regression model based on the enter model.

Model R R2 Ra
2 SEE F-Value p-Value DW

1 0.973 0.947 0.943 1.03618 243.722 0.000 2.112

Notes: R—Correlation coefficient; R2—Coefficient of determination; Ra
2—Adjusted multiple coefficient of

determination; SEE—Estimated standard error; F-value—Joint hypotheses test (the total significance test for
regression equation); p-value—Probability value under the corresponding F-value; DW—Durbin–Watson test value.

The regression equation (Equation (2)) can be obtained by the regression coefficient shown in Table 3:

Y = −73.375 + 7.347x1 + 0.107x2 + 23.568x3 (2)

Table 3. Regression coefficients based on the enter model.

Models

Non Standardized
Coefficient

Standardized
Coefficient

t p-Value VIF
B Standard

Error Beta

1 (Constant) −73.375 5.834 - −12.576 0.000 -
x1 7.347 1.129 0.242 6.506 0.000 1.069
x2 0.107 0.058 0.102 1.842 0.073 2.356
x3 23.568 1.596 0.827 14.763 0.000 2.425

Notes: B—Non standard regression coefficient; Beta—Standard regression coefficient; t—Hypothesis test of partial
regression coefficient; p-value—Probability value under the corresponding F value; VIF—Variance inflation factor
(when it is larger than 10, the re is serious multicollinearity).

According to the regression Equation (2), when the density increases by 1 g/cm3, the dielectric
constant will increase by 23.568. When the sintering temperature increases by 100 ◦C, the dielectric
constant will increase by 10.7. When Nd content is increased by 1% relative to that of Sm, the dielectric
constant will enhance by 0.07347.

Both the arguments x1 and x3 have passed the significance test for the confidence level α = 0.05.
However, the p-value for x2 was 0.073, which is greater than 0.05. This suggests that x2 should
not be an argument in this linear regression model, which will be corroborated by the stepwise
regression method as shown in our following discussion. From Equation (2), the most important
impact factor on Y is x3, indicating that the density is the most important parameter affecting the
dielectric constant. The relationship between densities and dielectric constants is also verified from
Table 1. It is found that density plays a more important role than temperature. In fact, the density
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is related to sintering temperature. When the temperature was lower than the optimized sintering
temperature range, the density gradually increased to the maximum value with increasing temperature.
While the temperature was beyond the optimized sintering temperature range, the ceramics were
over-fired, and consequently, the densities decreased. However, in this model, the re were no
significance correlations between temperatures and dielectric constants. We thought that the impact of
temperatures might be included in the density factor. If fired at lower temperatures, the ceramics
will not be densified and deteriorate the densities. The refore, temperature and density should not be
considered concurrently as influencing factors. From Table 3, the VIFs (variance inflation factor) of
three arguments x1, x2 and x3 were less than 10, which suggests that there was no multicollinearity
among them [28,29].

In Table 3, Beta is the standardization coefficient and B is the non standardization coefficient.
In SPSS, the standardization is to eliminate the error caused by different units among arguments
and dependent variable. The data standardization method is that the value of original data
subtracts the mean of the corresponding variable and then divides by the standard deviation of
the variable. The calculated regression equation is called the standardized regression equation, and the
corresponding regression coefficient is the standardized regression coefficient. The relationship
between the non standardized coefficient B and standardized coefficient Beta can be expressed
by Equation (3):

Beta = B × σx/σy (3)

Beta is the standardized coefficient; B is the non standardized coefficient; σx is the standard
deviation of an argument and σy is the standard deviation of the dependent variable.

The standardized coefficient can be used to evaluate which one is more important among all
arguments. The non standardized coefficient reflected the absolute effect of the change of an argument
on the dependent variable. From Table 3, the maximum Beta was 0.827 for x3, so among x1, x2 and x3,
x3 was the most important for the dielectric constant.

Figure 2 is the residual frequency distribution histogram and residual normal probability plot
based on the enter method. Figure 2a is the normal distribution, and the dots were nearly on a straight
line in Figure 2b, which shows that the mathematical model established by the enter method had
passed the error test of normality. Through the Shapiro–Wilk test, the level of significance was more
than 0.05, so this further proved the model was suitable.
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3.4. Linear Regression Model Based on the Stepwise Method

The stepwise method is totally different from the enter method. In the stepwise method,
the arguments are introduced into the model one by one. The F-value test was performed at each step
to ensure that only significant arguments were included in the regression equation before the new
argument was introduced. Table 4 is the summary of the regression model based on the stepwise
method. Model 1 is the transition model and Model 2 is the final model. In the process of simulation,
the x3 argument was firstly chosen by the software, leading to the strongest linear correlation between
x3 and Y. After the x1 argument was chosen, the linear regression model was established between Y
and x1 and x3, while x2 was eliminated. For the mathematical model established by the enter method,
the argument x2 did not pass the test of normality. For the model established by the stepwise method,
x2 was eliminated and not introduced into the model. As mentioned above, as the impact of the
temperature on the dielectric constant has already been included in the density, we did not need to
consider the influence of both temperature and density simultaneously.

Table 4. Summary of the regression model based on the stepwise method.

Models R R2 Ra
2 SEE F-Value p-Value DW

Model 1 0.944 0.892 0.889 1.44551 353.77 0.000 -

Model 2 0.971 0.943 0.940 1.06529 344.272 0.000 2.184

Notes: R—Correlation coefficient; R2—Coefficient of determination; Ra
2—Adjusted multiple coefficient of

determination; SEE—Estimated standard error; F-value—Joint hypotheses test (the total significance test for
regression equation); p-value—Probability value under the corresponding F value; DW—Durbin–Watson test value;
Model 1—only one argument x3; Model 2—two arguments x3 and x1.

For Model 2, Ra
2 was 0.940, which made the linear fitting result better than Model 1. The statistical

significance for p-value of the model was 0.000, which passed the test of confidence level α = 0.05.
Model 2 had no self-correlation for DW = 2.184, and passed the error independence test. For Model 1,
it had also no self-correlation. Since there was only one argument, the DW was zero.

From Table 5, the linear regression model can be obtained by the stepwise regression method as
follow (Equation (4)):

Y= −71.168 + 6.946x1 + 25.799x3, (4)

Table 5. Regression coefficient based on the stepwise model.

Model

Non Standardized
Coefficient

Standardized
Coefficient

t p-Value VIF
B Standard

Error Beta

1 (Constant) −75.847 7.897 - −9.604 0.000 -
x3 26.899 1.430 0.944 18.809 0.000 1.000

2 (Constant) −71.168 5.871 - −12.123 0.000 -
x3 25.799 1.069 0.906 24.128 0.000 1.029
x1 6.946 1.139 0.229 6.097 0.000 1.029

Notes: B—Non standard regression coefficient; Beta—Standard regression coefficient; t—Statistics for test;
p-value—Probability value under the corresponding F value; VIF—Variance inflation factor (when it is larger than
10, the re is serous multicollinearity); x3—Density; x1—Nd content.

The probability value p-value of both x1 and x3 were 0.000, which shows that the model had
passed the significance test and the arguments x1 and x3 had statistical significance. The VIF values
were 1.029 for x1 and x3, and there was no multicollinearity between the arguments. Comparing the
Beta value, it was found that the Beta value (0.906) of x3 was much greater than that (0.229) of x1,
which implies that x3 was more important than x1.
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Figure 3 is the residual frequency distribution histogram and residual normal probability plot
obtained by the stepwise method. As shown in Figure 3a, the residual frequency distribution
histogram met the normal distribution. Figure 3b shows that almost all the points were on a line. By the
Shapiro–Wilk test, the level of significance was more than 0.05. We thus concluded that the hypothesis
about the error normality was reasonable and the model passed the test of the error normality.
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3.5. Comparison of Two Regression Models

For more than one argument, adjusted multiple correlation coefficient Ra
2 can be used to evaluate

the quality of the model. The closer the value is to 1, the better the model is. In this study, Ra
2

were 0.943 and 0.940 for the enter regression model and the stepwise model, respectively. The refore,
both models were of high quality and could be used to explain the relationship between the dependent
variable and the arguments. For the enter method, the argument x2 did not pass the significance
test, which shows that temperature had little effect on the dielectric constant. As mentioned above,
because there were close relationships between temperature and the density, it was not appropriate
for them to be considered as impact factors at the same time. For Model 2 established by the stepwise
method without x2, although it includes fewer arguments without all the information, it meets the
purpose that the reasonable, simply and useful regression models should be established with the most
suitable and the least arguments [27].

3.6. Guidance of the Model on Other Properties of Microwave Dielectric Ceramics

For microwave dielectric ceramics there are three important performances (1) dielectric constant εr,
(2) quality factor Qf and (3) the temperature coefficient of resonant frequency τf. For the BaO-Ln2O3-TiO2

system, the re was a generally recognized correlation between the three performances, that is the
temperature coefficient τf was positively correlated and quality factor Qf was negatively correlated
with the dielectric constant, which had been confirmed by many researches [19,21,30,31]. In this study,
the same correlations among the three performances were also obtained, when referring to Figure 4.
While y (i.e., molar content of Nd to Sm) from 0 to 0.4, εr and τf increased and Qf decreased with
y. The suitable model was established for evaluating the effect of process parameters on dielectric
constant by linear regression analysis. So, the effect of the same parameters on the quality factor and
temperature coefficient could be estimated by the established model. According to the stepwise model,
the re was a positive correlation between Nd content and the dielectric constant, so there was also a
positive correlation between Nd content and τf, but a negative correlation for Qf. Due to the small
number of samples, the re was no linear regression analysis on the quality factor and temperature
coefficient of ceramics in this study. Especially for the temperature coefficient test, it would take
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a lot of time to get enough data. In the future work, we will further study Qf and τf by linear
regression analysis.
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Figure 4 is the microwave dielectric properties of ceramics sintered at 1400 ◦C with different Nd
content. At 1400 ◦C, the ceramics showed better properties than those sintered at other temperature.
The scanning electron microscopes (SEMs) are illustrated in Figure 5. From Figure 5a, the ceramics
sintered at 1350 ◦C appeared as incomplete grain growth, while the ceramics at 1450 ◦C (see Figure 5c)
show overheated and some grains were melted together, which had the tendency of secondary grain
growth who led to the enlargement of internal pores. However, the ceramics sintered at 1400 ◦C
present grains with complete growth and uniform size. So, only the properties of ceramics sintered
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at 1400 ◦C were chosen to be discussed. As shown in Figure 4a, with the increase of Nd content,
the dielectric constants of ceramics increased gradually, which was due to the contributions of cell
volume and ionic polarizability of Nd dopant. Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) solid solution
is the like-perovskite tungsten bronze structure with the ABO3 type. The superlattice exists in the
direction of c axis, which is due to the tilting of the titanium-oxygen octahedron [32]. The size and
filling degree of ions at the A site will affect the tilt degree of Ti—O octahedron, and then change the
cell volume. Nd dopant will occupy the A site, so the substitution of Nd for Sm affects the tilt degree
of octahedron and cell volume. According to Clausius–Mossotti Equation (5), the dielectric constant
of ceramics is determined by the cell volume Vm and the total ionic polarizability αD, namely [26]:

εr =
3Vm + 8παD

3Vm − 4παD
, (5)
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(c) 1450 ◦C.

The ionic polarizabilities of Nd3+ and Sm3+ were 5.01 Å3 and 4.74 Å3 respectively.
So, the substitution of Nd3+ at A site influences not only the cell volume Vm, but also the total ionic
polarizability αD, which resulted in the change of dielectric constant εr. The dopant element Nd
with a large ionic radius and large ionic polarizability relative to Sm will increase the unit cell volume
and then lead to the enlargement of the octahedral B site occupied by Ti4+ in the TiO6 octahedron,
which accounted for the increases of the ionic electronic polarizability and then the dielectric constant.
This was also confirmed by Wang et al. [15] and Valant et al. [33]. The dielectric constant is the
synergistic effect of the unit cell volume and polarizability. Similarly, the lanthanum (La) element
dopant with a large ionic radius of 1.36 Å and ionic polarizability of 6.03 Å3 will also increase the
dielectric constant of ceramics, but decrease the quality factor. The influence of the La dopant will be
reported elsewhere. This study will benefit the prediction of the dielectric constant of ceramics with
different dopants and guide the investigation of other ceramic systems.



Materials 2020, 13, 5733 11 of 12

4. Conclusions

Microwave dielectric ceramics with high dielectric constants were prepared. The two kinds of
linear regression models were established and compared. The model built by the stepwise method
had more practical significance than that by the enter method. The better model was Y = −71.168 +

6.946x1 + 25.799x3, where Y, x1 and x3 represent the dielectric constant, Nd content and the density,
respectively, which disclosed the relationship between the dielectric constants and Nd content and the
density of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) microwave dielectric ceramics. Based on the model,
it is clear that the density (x3) was more important to the dielectric constant (Y) than Nd content (x1),
owing to the standardized coefficient Beta value that was 0.906 for x3 but 0.229 for x1, while a large
Beta value indicates that it was more significant. This model will help to instruct how to optimize the
preparation technology in order to obtain high dielectric constant microwave ceramics.
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