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Abstract: In this study, graphene was synthesized on the Si(100) substrates via the use of direct
microwave plasma-enhanced chemical vapor deposition (PECVD). Protective enclosures were applied
to prevent excessive plasma etching of the growing graphene. The properties of synthesized graphene
were investigated using Raman scattering spectroscopy and atomic force microscopy. Synthesis time,
methane and hydrogen gas flow ratio, temperature, and plasma power effects were considered.
The synthesized graphene exhibited n-type self-doping due to the charge transfer from Si(100).
The presence of compressive stress was revealed in the synthesized graphene. It was presumed that
induction of thermal stress took place during the synthesis process due to the large lattice mismatch
between the growing graphene and the substrate. Importantly, it was demonstrated that continuous
horizontal graphene layers can be directly grown on the Si(100) substrates if appropriate configuration
of the protective enclosure is used in the microwave PECVD process.

Keywords: graphene; direct plasma synthesis; microwave plasma enhanced chemical
vapor deposition

1. Introduction

Graphene is a monolayer or several layers of hexagonally shaped carbon atoms [1]. This 2D
carbon nanomaterial has achieved considerable interest due to the huge mobility of electrons and holes,
optical transparency, flexibility, and chemical inertness [1–3]. Graphene is already considered to
be a new transparent conductor [4,5], a monolayer alternative to the Schottky contact metals [6,7],
and even an active layer of semiconductor devices [8–12]. Graphene-based transistors [8], diodes [6,7],
photodetectors [9–11], and solar cells [12–14] are also meaningful in this context.

A complicated graphene transfer process is one of the main limitations preventing the broader
use of graphene in semiconductor device technology. In this instance, graphene is grown on
the copper of nickel catalytic foils [15]; followed by the complicated graphene transfer onto the
required dielectric or semiconductor substrates. During the transfer process, different adsorbates can
contaminate graphene [16]. Additionally, the transfer process can cause wrinkled or rippled surface
morphology of graphene [17]. In this case, the control of the graphene film or graphene-semiconductor
interface properties becomes a tricky task. Graphene can be synthesized on a silicon carbide (SiC)
substrate if appropriate vacuum heating conditions are used [18]. No catalytic metals are necessary
in this case [18]. However, the present use of SiC as a semiconductor is mainly limited by some
segments of high-power electronics [19]. SiC apart, it was shown recently that direct graphene
synthesis on the semiconductor or dielectric surfaces is possible via the use of plasma-enhanced
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chemical vapor deposition (PECVD) [20]. In this case, plasma activation of the chemical vapor
deposition is mandatory. It ensures enhanced dissociation of the plasma species during the graphene
synthesis process. However, plasma-related ion and electron bombardment of the growing graphene
surface is detrimental. It results in the creation of defects and may even make the etching process
prevail over the graphene growth [21]. Therefore, remote plasma is used for direct graphene synthesis.

Nevertheless, remote plasma mode is unavailable in the most conventional microwave and
inductively coupled plasma-based PECVD units. However, there are few studies on catalyst-less
and transfer-less horizontal graphene synthesis using direct PECVD. In this process, the growing
graphene film is additionally protected by some plasma shielding. Notably, the [21] sample was
enclosed in a metal cage with a honeycomb mesh shield, while in [22], a copper-foam-based Faraday
cage was applied. Direct graphene synthesis on insulating substrates such as glass [22], sapphire [21],
quartz [21] plates, as well as thermally deposited SiO2, Al2O3, MnO2, HfO2, and TiO2 films [21]
was demonstrated. However, for many devices, graphene synthesis on semiconductor substrates
is necessary. Monocrystalline Si(100) is still the most often used substrate for the fabrication of
microelectronic devices, solar cells, and different photodiodes. Therefore, catalyst-less and transfer-less
graphene synthesis on Si(100) using a direct microwave plasma system was considered in the
present study.

In this paper, the samples were protected from direct plasma action using several different
configurations of protective enclosures. The enclosures’ design was varied, taking into account two
processes: eliminating the unwanted direct plasma effects and flow of the reactive carbon, hydrocarbon,
and hydrogen species towards the substrate. The protective enclosure should screen the substrate
from direct plasma. At the same time, gas flows are changed due to the presence of the enclosure.
Herein, we wanted to know to what extent we can further suppress excessive direct plasma action by
reducing the enclosure’s top hole size or removing the top holes above a substrate, and to what extent
we can reduce protective enclosure design complexity. Synthesis parameters and their influence on the
graphene structure were analyzed thoroughly. We have shown that graphene can be synthesized on
the Si(100) substrate in a one-step process using a combination of the direct plasma and differently
shaped enclosures. It was revealed that even a very simple enclosure design consisting of a single
rectangular steel sheet without holes could be used as protective shielding.

2. Materials and Methods

The direct transfer-less synthesis of graphene was performed by the microwave PECVD system
Cyrannus (Innovative Plasma Systems (Iplas) GmbH, Troisdorf, Germany). A methane and hydrogen
gas mixture was used as a source of carbon and hydrogen. The hydrogen plasma was ignited until the
heater reached the target temperature. Hydrogen gas flow and plasma power were the same as in the
graphene growth process (Table 1). Methane gas was introduced when the temperature necessary for
graphene synthesis was reached. The growth process was conducted in one-step without a separate
nucleation stage.

Monocrystalline Si(100) (UniversityWafer Inc., South Boston, MA, USA) was applied as a substrate
for the direct synthesis of graphene. No additional wet chemical cleaning of the substrate was performed.
Special enclosures protected the sample from excessive plasma action. Four steel enclosures of different
designs were used (Figure 1) to protect the sample from excessive plasma action. Three circular
enclosures (1st–3rd) had holes of different diameters and pattern arrangements on the top. The 4th
enclosure had a much simpler design and consisted of a rectangular steel sheet folded in two places.
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Figure 1. Protective enclosures used for direct synthesis of the graphene on Si(100): the first (1st) 
enclosure (top hole size 3.5 mm) (a), the second (2nd) enclosure (top hole size 2 mm) (b), the third 
(3rd) enclosure (top hole size 3.5 mm, no holes at the center) (c), the fourth (4th) enclosure (enclosure 
height 5 mm) (d). 

Technological parameters such as plasma power, CH4/H2 gas flow ratio, pressure, temperature, 
and time were varied. The graphene direct synthesis conditions can be found in Table 1.  

Raman scattering spectra of the synthesized samples were acquired using the Raman 
spectrometer inVia (Renishaw, Wotton-under-Edge, UK). The excitation wavelength was 532 nm. 
The excitation laser beam power was 1.5 mW. The ratio of 2D and G peak intensities (I2D/IG ratio) was 
estimated to evaluate the number of graphene layers [23]. The ID/IG peak intensity ratio was calculated 
to estimate the defect density of graphene [24,25]. Additionally, the positions of G and 2D peaks 
(Pos(G) and Pos(2D)) were also taken into account. Table S1 shows the possible relations between the 
Raman scattering spectra parameters mentioned above and the number of graphene layers, stress, 
doping, and defect density. The spectra were measured in several different places on the sample. The 
average values and standard deviation of the different Raman scattering spectra parameters were 
calculated for each sample.  

The surface morphology of the selected graphene layers was investigated using atomic force 
microscopy (AFM) at several different places on a sample. The measurements were done at room 
temperature in ambient air. The NanoWizardIII atomic force microscope (JPK Instruments, Bruker 
Nano GmbH, Berlin, Germany) was used. A v-shaped silicon cantilever operating in a contact mode 
was applied, as this mode is less sensitive to the possible presence of adsorbed species. The 
cantilever’s spring constant was 3 N/m, the tip curvature radius was 10.0 nm, and the cone angle was 
20°. A 2 µm × 2 µm AFM scan area was chosen to reveal small graphene layer features. The 
SurfaceXplorer and JPKSPM Data Processing software (version spm-4.3.13, JPK Instruments) were 
applied for data analysis.  

Figure 1. Protective enclosures used for direct synthesis of the graphene on Si(100): the first (1st)
enclosure (top hole size 3.5 mm) (a), the second (2nd) enclosure (top hole size 2 mm) (b), the third (3rd)
enclosure (top hole size 3.5 mm, no holes at the center) (c), the fourth (4th) enclosure (enclosure height
5 mm) (d).

Technological parameters such as plasma power, CH4/H2 gas flow ratio, pressure, temperature,
and time were varied. The graphene direct synthesis conditions can be found in Table 1.

Raman scattering spectra of the synthesized samples were acquired using the Raman spectrometer
inVia (Renishaw, Wotton-under-Edge, UK). The excitation wavelength was 532 nm. The excitation laser
beam power was 1.5 mW. The ratio of 2D and G peak intensities (I2D/IG ratio) was estimated to evaluate
the number of graphene layers [23]. The ID/IG peak intensity ratio was calculated to estimate the defect
density of graphene [24,25]. Additionally, the positions of G and 2D peaks (Pos(G) and Pos(2D)) were
also taken into account. Table S1 shows the possible relations between the Raman scattering spectra
parameters mentioned above and the number of graphene layers, stress, doping, and defect density.
The spectra were measured in several different places on the sample. The average values and standard
deviation of the different Raman scattering spectra parameters were calculated for each sample.

The surface morphology of the selected graphene layers was investigated using atomic force
microscopy (AFM) at several different places on a sample. The measurements were done at
room temperature in ambient air. The NanoWizardIII atomic force microscope (JPK Instruments,
Bruker Nano GmbH, Berlin, Germany) was used. A v-shaped silicon cantilever operating in a
contact mode was applied, as this mode is less sensitive to the possible presence of adsorbed species.
The cantilever’s spring constant was 3 N/m, the tip curvature radius was 10.0 nm, and the cone
angle was 20◦. A 2 µm × 2 µm AFM scan area was chosen to reveal small graphene layer features.
The SurfaceXplorer and JPKSPM Data Processing software (version spm-4.3.13, JPK Instruments) were
applied for data analysis.
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Table 1. Graphene synthesis conditions used in the present study.

Sample
No.

Enclosure
No. P, kW H2, sccm CH4, sccm p, mBar t, ◦C t, min

2E1 1 1.2 150 50 30 900 30

3E1 1 1.2 180 20 30 900 30

4E1 1 1.2 120 80 30 900 30

5E1 1 1.2 150 50 30 900 15

6E1 1 1.2 150 50 30 900 45

7E1 1 1.2 150 50 30 700 30

8E1 1 1.2 150 50 30 800 30

9E1 1 0.8 150 50 30 900 30

10E1 1 1.0 150 50 30 900 30

1E2 2 1.2 150 50 30 800 30

2E2 2 1.2 150 50 30 700 30

3E2 2 1.2 150 50 30 900 30

4E2 2 1.2 180 20 30 900 30

5E2 2 1.2 120 80 30 900 30

6E2 2 1.0 150 50 30 900 30

7E2 2 0.8 150 50 30 900 30

3E3 3 1.2 150 50 30 900 30

4E3 3 1.2 180 20 30 900 30

5E3 3 1.2 120 80 30 900 30

6E3 3 0.8 150 50 30 900 30

7E3 3 1.0 150 50 30 900 30

1E4 4 1.2 150 50 30 800 30

2E4 4 1.2 150 50 22 700 30

3E4 4 1.2 150 50 22 800 30

4E4 4 1.2 150 50 22 900 30

3. Results

3.1. Raman Spectra of Directly Synthesized Graphene

In the present study, graphene was synthesized on the Si(100) substrates using microwave PECVD.
Firstly, it is important to note that the direct synthesis of graphene on the Si(100) was not possible
when the protective enclosure was not used in the plasma discharge zone during the microwave
PECVD process. In this case, only the direct plasma interacting with the substrate was obtainable,
which suppressed the graphene’s growth.

In another instance, the sample was protected by the enclosure to prevent excessive direct plasma
interaction with the substrate. Protective enclosures with several different designs were used as plasma
shielding (Figure 1). In this case, the direct synthesis of graphene on the Si(100) substrate was successful.
The recorded Raman scattering spectra of the samples were typical for graphene (Figure 2) [23–43].
Characteristic G and 2D peaks as well as defects related peaks (D peak as well as less intensive D+D”
and D+D′ bands [39,40]) were observed. No separate D′ peak at ~1620 cm−1 was observed in all cases.
It is noteworthy that, in the Raman spectra of directly synthesized graphene, the D peak is always
observed [20–22]. That is the main difference from the graphene synthesized by chemical vapor
deposition (CVD) on catalytic foil and afterwards transferred onto the target substrate. This difference
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is mainly related to the presence of many grain boundary defects related to the nanocrystalline nature
of directly synthesized graphene.Materials 2020, 13, x FOR PEER REVIEW 5 of 16 
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Figure 2. Typical Raman scattering spectra of graphene directly synthesized on Si(100).

3.2. Effect of Synthesis Conditions and Enclosure Design on the Graphene Structure

The influence of the several key technological synthesis parameters (i.e., protective enclosure
design, plasma power, methane and hydrogen gas flow ratio, pressure, temperature, and synthesis
time) on the growth and structure of synthesized graphene was investigated. The 1st enclosure had
3.5 mm size holes on the top, while for the 2nd enclosure, the hole size was decreased to 2 mm. The 3rd
enclosure had 3.5 mm size holes on the top, but no holes at the center (Figure 1).

Firstly, the effect of the synthesis time was considered (Figure 3). The graphene was already formed
after 15 min of the microwave PECVD process. It was determined that after this time mark graphene
gets thinner, and more defects are promptly introduced into the graphene structure: the increase in
I2D/IG from ~0.72 to ~0.93 (Figure 3a) and the increase in ID/IG from ~1.8 to ~2.1 (Figure 3b). The other
experiments’ synthesis time was chosen by taking into account these results (30 min).
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Figure 3. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized at different process time (15 min,
30 min, 45 min). In all cases, every other process parameter is kept constant (H2 gas flow 150 sccm sccm,
CH4 gas flow 50 sccm, power 1.2 kW, pressure 30 mBar, temperature 900 ◦C). The 1st enclosure
was used.
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Figure 4 shows the I2D/IG and ID/IG ratios of graphene synthesized using different plasma power
and enclosures. As it can be seen in Figure 4a, plasma power effect varies for different enclosures.
The I2D/IG ratio of graphene synthesized using the 1st enclosure increases with plasma power. This result
implies that the number of graphene layers is reduced with an increase in plasma power. No clear
dependence was observed for the 2nd and the 3rd enclosure. However, in all cases, the I2D/IG ratio
of the graphene synthesized using 1.2 kW power was higher than the I2D/IG ratio of the graphene
synthesized using 0.8 kW power. The ID/IG ratio increased with plasma power for the 1st and the
3rd enclosure (Figure 4b). No clear dependence of the ID/IG ratio on plasma power was observed for
graphene synthesized using the 2nd enclosure.

Materials 2020, 13, x FOR PEER REVIEW 6 of 16 

 

ratio of the graphene synthesized using 1.2 kW power was higher than the I2D/IG ratio of the graphene 
synthesized using 0.8 kW power. The ID/IG ratio increased with plasma power for the 1st and the 3rd 
enclosure (Figure 4b). No clear dependence of the ID/IG ratio on plasma power was observed for 
graphene synthesized using the 2nd enclosure. 

 
Figure 4. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different plasma power (0.8 kW, 
1.0 kW, 1.2 kW) and enclosures. In all cases, every other process parameter is kept constant (H2 gas 
flow 150 sccm sccm, CH4 gas flow 50 sccm, pressure 30 mBar, temperature 900 °C, time 30 min). 

Figure 5 shows the I2D/IG and ID/IG ratios of graphene synthesized using different CH4/H2 gas 
flow ratio mixtures and enclosures. A too low CH4/H2 gas flow ratio (i.e., 0.11) was not sufficient to 
initiate the growth of graphene on the Si(100) substrate. The further increase in the methane flow and 
decrease in the hydrogen flow resulted in the increase in the number of graphene layers, as evident 
from the I2D/IG ratio decrease (Figure 5a). It was also found that the ID/IG ratio decreased with the 
increase in the CH4/H2 gas flow ratio for the 1st and the 2nd enclosure (Figure 5b).  

 
Figure 5. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different flow ratio (0.11, 0.33, 
0.67) CH4/H2 mixture of gas and enclosures. In all cases, every other process parameter is kept 
constant (power 1.2 kW, pressure 30 mBar, temperature 900 °C, time 30 min). 

Figure 6 shows the I2D/IG and ID/IG ratios of graphene synthesized using different temperatures 
and enclosures. It is important to note that no graphene growth was observed at 600 °C. As it can be 
seen in Figure 6a, the I2D/IG ratio increases with the process temperature. Thus, the number of 
graphene layers grown decreases with the increase in temperature when the microwave PECVD 
process is performed in the range of 700–900 °C. For graphene synthesized using the 1st enclosure, 

0.6 0.8 1.0 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

I 2D
/I G

Power (kW)

(a)1st enclosure
2ndenclosure
3rd enclosure

0.6 0.8 1.0 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

I 2D
/I G

Power (kW)

(a)1st enclosure
2ndenclosure
3rd enclosure

(a)1st enclosure
2ndenclosure
3rd enclosure

0.6 0.8 1.0 1.2 1.4
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

(b)

I D/I
G

Power (kW)

1stenclosure
2ndenclosure
3rd enclosure

0.6 0.8 1.0 1.2 1.4
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

(b)

I D/I
G

Power (kW)

1stenclosure
2ndenclosure
3rd enclosure

0.0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

1.2

1.4

si
gn

al

no
 g

ra
ph

en
e

I 2D
/I G

CH4/H2 gas flow ratio

1st enclosure
2ndenclosure
3rd enclosure

(a)

0.0 0.2 0.4 0.6 0.8
1.2

1.4

1.6

1.8

2.0

2.2

(b)

si
gn

al

I D/I
G

CH4/H2 gas flow ratio

1stenclosure
2ndenclosure
3rd enclosure

no
 g

ra
ph

en
e

Figure 4. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different plasma power (0.8 kW,
1.0 kW, 1.2 kW) and enclosures. In all cases, every other process parameter is kept constant (H2 gas
flow 150 sccm sccm, CH4 gas flow 50 sccm, pressure 30 mBar, temperature 900 ◦C, time 30 min).

Figure 5 shows the I2D/IG and ID/IG ratios of graphene synthesized using different CH4/H2 gas
flow ratio mixtures and enclosures. A too low CH4/H2 gas flow ratio (i.e., 0.11) was not sufficient to
initiate the growth of graphene on the Si(100) substrate. The further increase in the methane flow and
decrease in the hydrogen flow resulted in the increase in the number of graphene layers, as evident
from the I2D/IG ratio decrease (Figure 5a). It was also found that the ID/IG ratio decreased with the
increase in the CH4/H2 gas flow ratio for the 1st and the 2nd enclosure (Figure 5b).

Materials 2020, 13, x FOR PEER REVIEW 6 of 16 

 

ratio of the graphene synthesized using 1.2 kW power was higher than the I2D/IG ratio of the graphene 
synthesized using 0.8 kW power. The ID/IG ratio increased with plasma power for the 1st and the 3rd 
enclosure (Figure 4b). No clear dependence of the ID/IG ratio on plasma power was observed for 
graphene synthesized using the 2nd enclosure. 

 
Figure 4. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different plasma power (0.8 kW, 
1.0 kW, 1.2 kW) and enclosures. In all cases, every other process parameter is kept constant (H2 gas 
flow 150 sccm sccm, CH4 gas flow 50 sccm, pressure 30 mBar, temperature 900 °C, time 30 min). 

Figure 5 shows the I2D/IG and ID/IG ratios of graphene synthesized using different CH4/H2 gas 
flow ratio mixtures and enclosures. A too low CH4/H2 gas flow ratio (i.e., 0.11) was not sufficient to 
initiate the growth of graphene on the Si(100) substrate. The further increase in the methane flow and 
decrease in the hydrogen flow resulted in the increase in the number of graphene layers, as evident 
from the I2D/IG ratio decrease (Figure 5a). It was also found that the ID/IG ratio decreased with the 
increase in the CH4/H2 gas flow ratio for the 1st and the 2nd enclosure (Figure 5b).  

 
Figure 5. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different flow ratio (0.11, 0.33, 
0.67) CH4/H2 mixture of gas and enclosures. In all cases, every other process parameter is kept 
constant (power 1.2 kW, pressure 30 mBar, temperature 900 °C, time 30 min). 

Figure 6 shows the I2D/IG and ID/IG ratios of graphene synthesized using different temperatures 
and enclosures. It is important to note that no graphene growth was observed at 600 °C. As it can be 
seen in Figure 6a, the I2D/IG ratio increases with the process temperature. Thus, the number of 
graphene layers grown decreases with the increase in temperature when the microwave PECVD 
process is performed in the range of 700–900 °C. For graphene synthesized using the 1st enclosure, 

0.6 0.8 1.0 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

I 2D
/I G

Power (kW)

(a)1st enclosure
2ndenclosure
3rd enclosure

0.6 0.8 1.0 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

I 2D
/I G

Power (kW)

(a)1st enclosure
2ndenclosure
3rd enclosure

(a)1st enclosure
2ndenclosure
3rd enclosure

0.6 0.8 1.0 1.2 1.4
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

(b)

I D/I
G

Power (kW)

1stenclosure
2ndenclosure
3rd enclosure

0.6 0.8 1.0 1.2 1.4
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

(b)

I D/I
G

Power (kW)

1stenclosure
2ndenclosure
3rd enclosure

0.0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

1.2

1.4

si
gn

al

no
 g

ra
ph

en
e

I 2D
/I G

CH4/H2 gas flow ratio

1st enclosure
2ndenclosure
3rd enclosure

(a)

0.0 0.2 0.4 0.6 0.8
1.2

1.4

1.6

1.8

2.0

2.2

(b)

si
gn

al

I D/I
G

CH4/H2 gas flow ratio

1stenclosure
2ndenclosure
3rd enclosure

no
 g

ra
ph

en
e

Figure 5. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different flow ratio (0.11, 0.33, 0.67)
CH4/H2 mixture of gas and enclosures. In all cases, every other process parameter is kept constant
(power 1.2 kW, pressure 30 mBar, temperature 900 ◦C, time 30 min).
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Figure 6 shows the I2D/IG and ID/IG ratios of graphene synthesized using different temperatures
and enclosures. It is important to note that no graphene growth was observed at 600 ◦C. As it can
be seen in Figure 6a, the I2D/IG ratio increases with the process temperature. Thus, the number of
graphene layers grown decreases with the increase in temperature when the microwave PECVD
process is performed in the range of 700–900 ◦C. For graphene synthesized using the 1st enclosure,
the ID/IG ratio increases with temperature (Figure 6b). However, the highest density of defects was
observed for the graphene synthesized using the 2nd enclosure at 700 ◦C.
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Figure 6. I2D/IG (a) and ID/IG (b) ratios of graphene synthesized using different temperatures (700 ◦C,
800 ◦C, 900 ◦C) and several enclosures. In all cases, every other process parameter is kept constant
(H2 gas flow 150 sccm sccm, CH4 gas flow 50 sccm, power 1.2 kW, pressure 30 mBar, time 30 min).

Altogether, it was revealed that the most crucial graphene direct synthesis parameter in our case is
the CH4/H2 gas flow ratio. A too low ratio results in no graphene synthesis. The number of graphene
layers increases with methane flow when the ratio is substantially large for graphene synthesis. At the
same time, defect density decreases. This is valid for all studied enclosures. When the temperature
is too low, graphene does not grow. Subsequently, the temperature increase results in the decrease
in graphene layer thickness. However, no typical behavior regarding defect density can be found.
The plasma power effects are the least clear. The possible physical mechanisms hidden behind these
results will be considered in Sections 4.2 and 4.3.

3.3. The Number of Graphene Layers and Defect Density

Figure 7 shows the I2D/IG vs. ID/IG ratio plot for all investigated samples (Table 1). It is considered
that the I2D/IG vs. ID/IG ratio change for the 1st and the 3rd enclosure followed linear distribution
pattern as the I2D/IG increased with ID/IG ratio. Such an outcome contradicts the results reported
by [24] (Table S1), where I2D/IG decreased as a result of oxygen ion etching. It can be explained by the
different nature of the defects in our study and [24] (boundary defects vs. irradiation defects).

No clear dependence of the I2D/IG ratio on the enclosure configuration was found (Figure 7).
The lowest ID/IG ratios were observed for graphene synthesized using the 3rd enclosure, while for
graphene samples synthesized using the 1st enclosure, the range of ID/IG ratio values was the broadest.
Almost all ID/IG ratio values of the graphene synthesized using the 2nd enclosure were within
the range typical for graphene grown using the 1st enclosure. Additionally, comparing the ID/IG

ratios of the graphene samples synthesized using the 1st and the 2nd enclosures and the same other
synthesis conditions, one can see that in some cases larger ID/IG ratio values were found for the 1st
enclosure, and in other cases for the 3rd enclosure (Figures 4–6).
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The enclosure design was simplified even more, considering the results described above,
though less graphene synthesis experiments were performed using the 3rd enclosure. No holes at the
protective enclosure’s center resulted in a decrease in the ID/IG ratio (see Figure 7). Therefore, holes were
removed from the enclosure’s entire surface to suppress the direct plasma effects further. The modified
enclosure shape was simply a rectangular steel sheet folded in two places (Figure 1d). Graphene was
synthesized at the temperature of 700 ◦C using a protective sheath of such a simple structure. The I2D/IG

and ID/IG ratios of these graphene samples were within the typical values for the 3rd envelope,
although no additional optimization of the deposition conditions was performed. Further detailed
research on graphene synthesized using simplified enclosures is in progress.

3.4. Dopant Density and Stress

The 2D peak position dependence on the G peak position can provide information about the
graphene’s doping and stresses in graphene layers. This was shown in numerous studies investigating
single-layer graphene synthesized by CVD on catalytic copper foil and transferred to the target
substrate [28–33]. Some studies on multilayer transferred graphene have also been carried out [30].
The reported results from different authors follow similar dependencies. However, in directly
synthesized graphene, the defect density is usually higher [20]. Therefore, the D peak is visible in the
directly synthesized graphene’s Raman scattering spectrum [20–22,38]. This makes the situation more
complicated. Hence, an additional analysis was carried out regarding the possible influence of defects
on other Raman scattering spectrum parameters. It should be noted that the I2D/IG ratio depends on
the defect density, concentration of dopants, and the number of graphene layers. It was shown that the
I2D/IG ratio decreases with the appearance of the defect-related D peak in the Raman spectrum and the
subsequent increase in defect density [41]. Graphene doping also leads to a reduced I2D/IG ratio [41].
However, in our case, opposite dependence was found (Figure 7).

Another structural parameter that can influence the analysis of graphene doping and stress level
is the different number of graphene layers. Both the 2D and G peak positions depend on the number
of graphene layers (Table S1). In some studies, the upshift of the 2D peak position has been shown
for few-layer graphene [30]. Following the latter research work, Raman spectra of the transferred
graphene and the relationship between Pos(2D) vs. Pos(G) plots and stress as well as doping were
analyzed [30].

Figure S1 shows a shift from Pos(2D) to the higher wavenumbers with increasing I2D/IG ratio.
However, Pos(2D) should shift to the lower wavenumbers with increasing I2D/IG ratio due to the
decrease in the number of graphene layers [39]. In our case, no clear dependence of the I2D/IG ratio
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on the G peak position was found (Figure S2). Thus, the Pos(2D) upshift should not be related to the
increased number of graphene layers.

The dependence of Pos(2D) on Pos(G) is shown in Figure 8. Both the 2D and the G peak positions
are shifted to the higher wavenumbers than the values typical for single-layer defect-free graphene.
A vector analysis of the plot was performed according to the methodology presented in [28–33].
It can be seen that the 2D peak position is significantly shifted to the higher wavenumbers
(by ~25–35 cm−1) compared to a value typical for defect-free, undoped, transferred single-layer graphene.
The graphene samples synthesized in the present study were determined to be in the range
of 2–4 layers thick, according to the analysis of the I2D/IG ratio (see Figure 7 and Figure S3,
for calculation method, see [23] and Table S1). However, the 2D peak position values are also shifted
upwards compared to the position typical for two-layer defect-free undoped transferred graphene.
Thus, it is considered that compressive stress was present in the investigated graphene samples
(according to [28–33] and Table S1), in agreement with [42].
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Figure 8. Pos(2D) vs. Pos(G) plot. The black dash-dot line refers to the undoped strained graphene
(plotted according to the method [28]). The black dot line refers to the p-type doped strained graphene
(constant hole concentration and different stress levels) (plotted according to [28]). The red dash-dot line
refers to the unstrained p-type graphene (plotted according to [28]). The red dot line refers to the p-type
doped strained graphene (constant stress level and different hole concentrations) (plotted according to
the method [28]). The blue dash line refers to the strained n-type doped graphene (plotted according
to [30], taking into account graphene layer number related shift of 2D peak position). The navy and
white colored rhombus symbol refers to the unstrained and undoped graphene [28].

The analysis of the plot (Figure 8, Figure S4) regarding possible doping of the graphene revealed a
less convenient picture. It should be emphasized that p-type graphene was investigated in most of the
studies mentioned above [28–31,33]. The results reported in [28] revealed unintentional p-type doping
of the graphene. However, the overall dependence of Pos(2D) on Pos(G) does not follow the vectors
typical for p-type doped graphene (Figure 8, Figure S4). This behavior is rather typical for the n-type
doped and strained graphene [30].

3.5. AFM Study

Several graphene samples synthesized using the 4th protective enclosure were studied by AFM to
determine the number of the graphene layers as well as to evaluate the continuity of the graphene.
AFM topographical images of the samples are presented in Figures S5–S7. The graphene samples’
surface morphology is very different from silicon substrate morphology (Figure S8). In all cases,
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AFM images revealed continuous horizontal graphene layers (Figures S5–S7). Similar AFM images
were reported for directly synthesized graphene by other authors (e.g., [20,21,44,45]). One can notice
some black features corresponding to the lowest surface points. It can be interpreted as holes in the
graphene [46].

Previous studies [47–49] reported that step height of a single-layer graphene was found to be in
the range of ~0.35–0.4 nm. The graphene AFM height profile was analyzed. Approximate graphene
thickness was calculated by measuring the height from the zero points corresponding to the graphene
holes to the profile maxima. A mixture of the single-layer and two-layer graphene was found for
samples 1E4 and 2E4 (Figures S5–S7). In the case of the sample 3E4, up to three graphene layers can
be found. An alternative graphene thickness evaluation method by using the AFM measurement
data was performed following the histogram method [46,48]. Hence, the influence of the adsorbed
contaminants can be minimized. According to the histogram method, the thickness of the graphene was
between one and two layers for samples 1E4 and 3E4, while the thickness of sample 2E4 corresponded
to single-layer graphene (Table S2, and Figures S5b, S6b, S7b and S8b). Thus, the average graphene
thickness was found to be between one and two layers. In this case, graphene thickness evaluated via
the use of AFM measurement data is in good agreement with graphene thickness calculated from the
I2D/IG ratio according to [23] (Figure S3).

4. Discussion

4.1. Effect of the Deposition Conditions. Comparison with Results Reported Elsewhere

Our obtained results were further compared with previous studies. In most of the studies
regarding direct graphene synthesis, graphene was grown on different dielectric substrates. There are
substantially less studies reporting direct graphene synthesis on silicon. Therefore, graphene’s direct
growth on different substrates was considered in this comparison.

It must be pointed out that in [38], no clear dependence of the I2D/IG ratio on the process time was
found for graphene directly synthesized on dielectric SiO2, quartz, and sapphire substrates from a
CH4/H2/Ar gas mixture. Nevertheless, an ID/IG ratio increase with the process time was observed,
in good agreement with the present research.

There are few studies on the effects of the hydrocarbon gas and hydrogen flow ratios on the
structural properties of directly synthesized graphene. Analogously to our research, the I2D/IG and
ID/IG ratios decreased with increasing C2H2/H2 flow ratio for graphene directly synthesized on fused
silica and quartz by electron cyclotron resonance (ECR) PECVD [44]. A similar tendency was found
in [45], where direct graphene synthesis on quartz via the CVD process was performed. Following the
latter work, a too low methane flow resulted in no graphene growth, in agreement with our results.
However, the ID/IG ratio increased with the increase in CH4/H2 flow ratio [45].

Similarly to the graphene synthesized using the 1st enclosure, the I2D/IG ratio increased with
plasma power for graphene directly synthesized via PECVD on SiO2 [50]. However, the ID/IG ratio in
that study decreased with plasma power [50].

Likewise to the graphene synthesized in our study using the 1st and the 2nd enclosure, the I2D/IG

ratio increased with process temperature for graphene synthesized on Si(100) and glass from a C2H2/Ar
gas mixture via microwave PECVD [51]. An opposite result was reported for graphene grown on
quartz and fused silica substrates from a C2H2/H2 gas mixture via ECR PECVD [44]. In in [50] and [21],
I2D/IG ratio dependence on temperature was rather non-monotonic. The I2D/IG ratio was highest [21]
or lowest [50] at the specific temperature range used for the synthesis of graphene. Similarly to
the graphene synthesized using the 1st enclosure, the ID/IG ratio increased with temperature in [50].
A decrease in the ID/IG ratio with temperature was reported in [21,44,51], similar to the case of the
graphene synthesized using the 2nd enclosure.
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Thus, the different effects of the gas flow ratio, plasma power, and temperature on the graphene
structure were found in various studies. The discrepancy of the results reported by other authors was
more considerable than the results reported in the present study.

4.2. Effect of the Deposition Conditions. Physical and Chemical Phenomena Involved

The graphene structure’s dependence on the technological synthesis process conditions found in
the present research can be explained by considering the main graphene growth-related physical and
chemical processes.

Notably, the decrease in the number of graphene layers with increasing process time can be
explained by the hydrogen etching prevailing over the growth of additional graphene layers as it was
reported in [52].

The increase in the graphene I2D/IG ratio with plasma power (Figure 4) can be related to
the dependence of the methane and hydrogen dissociation rate on plasma power [50]. It can be
considered that, in the case of graphene grown using the 1st enclosure, carbon-containing reactive
species concentration increased with plasma power slower than hydrogen atoms and ion concentration,
while in other cases, changes in that concentration with plasma power were non-monotonic. It seems
that graphene defect density increased with plasma due to the decrease in the graphene crystallite size
or the enhanced irradiation by ions and electrons.

The decrease in the number of graphene layers with increased CH4/H2 gas flow ratio was observed
in Figure 5. It can be explained by competition between two processes: graphene growth due to the
carbon-containing active species flux towards the surface [50,53] and etching of the carbon-carbon
bonds by hydrogen [44,54,55]. If the CH4/H2 ratio is too low, the etching reaction is much faster than
the growth of the graphene layers [56]. This is the reason why no graphene growth was observed
for samples 3E1, 4E2, and 4E3. The increase in the methane to hydrogen gas flow ratio resulted in a
suppression of graphene growth over the etching. In this case, a further increase in the active flux of
CHx and C species towards the substrate and the reduced amount of hydrogen atoms will result in
the increase in the number of graphene layers. The increasing size of graphene nanocrystals cannot
explain the reduction in the ID/IG ratio with the increasing CH4/H2 ratio presented in Figure 5. It is
because the increase in graphene nucleus density with decreased H2 content due to the hydrogen
etching resulted in a smaller graphene grain size [44]. Thus, the possible lowering of the hydrogen
plasma-induced defect density with decreased hydrogen gas flow should be considered [57].

Several phenomena should be taken into account to explain the lowering of the number of
graphene layers with increased process temperature (Figure 6). It was reported in [44] that the rate
of the graphene etching by hydrogen decreases with temperature [44]. Therefore, it should instead
result in a decrease in the I2D/IG ratio with temperature. On the other hand, the desorption rate of
carbon atoms increases with temperature, as reported in [52]. This can be a cause of the decrease in the
number of graphene layers with increased deposition temperature.

4.3. Effect of Protective Enclosure Design

A few studies could be considered while analyzing the protective enclosure design’s influence on
the graphene structure. Notably, a study on graphene synthesized on glass using a copper foam-based
protective Faraday cage revealed a tendency that a smaller aperture hole size can result in a better
electric field shielding effect [22]. Thus, it can be considered that in our case, the lower ID/IG ratios
for graphene synthesized using the 3rd protective enclosure can be explained by better suppression
of the electric field due to the absence of the holes at the enclosure’s center. On the other hand,
no apparent difference between the ID/IG ratios of the graphene synthesized using the 1st and the 2nd
protective enclosures is in good accordance with [22], where reduced protective cage hole size resulted
in no further apparent decrease in electric field strength.
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4.4. Mechanisms Responsible to the N-Type Self Doping of Graphene and Induction of Compressive Stress

According to Figure 8 and Figure S4, unintentional n-type doping was found for directly
synthesized graphene. It is worth noting that self-induced doping was already observed for graphene
directly synthesized on Ge(111) by CVD [58]. Possible sources of such behavior would be adsorbates or
substrate-induced effects. Atmospheric adsorbates (oxygen, water) usually result in p-type doping of
the graphene [59–61]. P-type self-doping for graphene transferred onto the SiO2 substrate occurred due
to various surface treatments and residual charges created on the substrate [62]. Unintentional graphene
n-type doping was reported for epitaxial graphene directly synthesized on SiC via high-temperature
annealing in a vacuum or inert ambient gas [63,64]. It was explained by the substrate-to-graphene
charge transfer [64]. A study of the graphene transferred onto different substrates revealed that p-type
self-doping, n-type self-doping, and no doping could be achieved via selection of the appropriate
substrate [58,65]. Simulations revealed that when graphene is put onto SiO2, the graphene’s electronic
structure strongly depends on the interface geometry and surface polarity [66]. In the case of the O-polar
SiO2 surface with dangling bonds, graphene’s p-type doping takes place [66]. Graphene placing on the
Si-polar surface with dangling bonds results in graphene’s n-type self-doping [66]. Considering the
studies mentioned above, it is supposed in our case that charge transfer from the Si(100) substrate to
the graphene took place during the microwave PECVD process. It resulted in the n-type self-doping of
the graphene, similar to the cases of SiC and Si-polar SiO2 substrates.

One can see in Figure 8 that directly synthesized graphene in the present study is found to
be stressed. This stress is compressive in nature. It should be mentioned that, in the case of the
exfoliated graphene transferred onto SiO2, pristine graphene sheets may exhibit both compressive
and tensile strain [28]. This native strain becomes compressive due to the annealing at 100 ◦C or
higher temperatures [28]. Similar effects of the annealing were reported for CVD synthesized graphene
transferred onto the SiO2 substrate [67]. On the other hand, epitaxial graphene directly grown on
SiC above 1100 ◦C exhibited substrate-induced compressive strain [28]. Compressive stress may
be present in graphene directly synthesized on Si(100) [42], quartz [44], Ge(110) [58], and SiO2 [68].
Thus, our results are in good agreement with the studies mentioned above. It is considered that,
in our case, compressive stress was induced during a direct graphene synthesis as thermal stress due
to the large lattice mismatch between graphene and Si, as was suggested in [20,69].

5. Conclusions

In conclusion, the transfer-less and catalyst-less synthesis of graphene on Si(100) substrates
via a combination of direct microwave plasma-enhanced chemical vapor deposition and protective
enclosures was performed.

A study of the effect of the CH4/H2 gas flow ratio, temperature, and plasma power on graphene
structure revealed that the most significant technological parameter used in the present study was
methane and hydrogen gas flow ratio. Plasma power effects were the least pronounced. It seems
that if a temperature is sufficiently high for graphene synthesis, the crucial process is a competition
between plasma etching by hydrogen and carbon-containing active species influx towards the surface.
If hydrogen flow is too high and/or methane flow is too low, etching prevails against growth and no
graphene is formed. Afterwards, the number of graphene layers increases with carbon species flow
and/or with decreased hydrogen flow. Hydrogen species density is a much more critical etching factor
than increased plasma power. The thermally stimulated desorption of carbon atoms is important,
while the formation of the plasma-induced radiation defects has less influence on graphene growth
and defect density.

A study of the enclosure effects revealed no top hole size effects for investigated enclosures.
The absence of top holes in the middle of the enclosure reduced the plasma effect on the growing
graphene and decreased defect density. The graphene was successfully synthesized using just
a rectangular steel sheet folded in two places as a simplified protective enclosure, considering
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these results. Graphene was grown at a temperature of 700 ◦C using a protective sheath with such a
simple structure.

Analysis of the positions of 2D and G peaks revealed unintentional n-type doping of the graphene.
It was explained by charge transfer from the Si(100) substrate to the graphene. The presence of
compressive stress was found in graphene. It was supposed that the large lattice mismatch between
the growing graphene and the silicon induced thermal stress.

An atomic force microscopy study confirmed the growth of continuous horizontal graphene layers.
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