Supplementary Materials

Highly luminescent 4*H*-1,2,4-triazole derivatives: synthesis, molecular structure and photophysical properties

Monika Olesiejuk^{1,*}, Agnieszka Kudelko¹ and Marcin Swiatkowski²

- ¹ Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, PL-44100 Gliwice, Poland; monika.olesiejuk@polsl.pl
- ² Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, PL-90924 Łódź, Poland; marcin.swiatkowski@p.lodz.pl
- * Correspondence: Monika.Olesiejuk@polsl.pl; Tel.: +48-32-237-17-29

Table of contents

1.	¹ H NMR and ¹³ C NMR spectra	2
2.	HRMS spectra	50
3.	X-ray crystallography data	74
4.	Absorption and emission spectrometry data	83

1. ¹H NMR and ¹³C NMR spectra

4-Ethyl-3,5-bis[4-(naphthalen-1-yl)phenyl]-4H-1,2,4-triazole (7b).

Plot date 2019-07-09

4-Ethyl-3,5-bis[4-(naphthalen-2-yl)phenyl]-4H-1,2,4-triazole (7c)

4-Ethyl-3,5-bis[4-(quinolin-3-yl)phenyl]-4H-1,2,4-triazole (7d).

4-Ethyl-3,5-bis[4-(quinolin-6-yl)phenyl]-4H-1,2,4-triazole (7e).

Piot date 2019-07-09

 $3,5-Bis[4-(dibenzothiophen-4-yl)phenyl]-4-ethyl-4H-1,2,4-triazole~(\mathbf{7f}).$

Data file exp

Plot date 2019-07-11

3,5-Bis[4-(dibenzofuran-4-yl)phenyl]-4-ethyl-4H-1,2,4-triazole (7g).

4-Ethyl-3,5-bis[4-(9-methyl-9H-carbazol-3-yl)phenyl]-4H-1,2,4-triazole (7h).

Data file exp

Plot date 2019-07-25

$\label{eq:2.1} 4-Ethyl-3, 5-bis [4-(9-ethyl-9H-carbazol-3-yl) phenyl]-4H-1, 2, 4-triazole~(\textbf{7i}).$

Data file /home/vnmrj_4.2_A/fidlib/Data/AgnieszkaKude/ko/2019/Lipiec/MO131-13c.fid

Plot date 2019-07-30

$\label{eq:2.1} 4-Ethyl-3,5-bis[4-(thiantren-1-yl)phenyl]-4H-1,2,4-triazole~(\mathbf{7k}).$

3,5-Bis[4'-(N,N-diphenylamino)biphenyl-4-yl]-4-propyl-4H-1,2,4-triazole (8a).

 $\label{eq:alpha} 4-Butyl-3, 5-bis [4'-(N,N-diphenylamino) biphenyl-4-yl]-4H-1, 2, 4-triazole~(\textbf{9a}).$

4-Butyl-3,5-bis[4-(naphthalen-1-yl)phenyl]-4H-1,2,4-triazole (9b).

$\label{eq:alpha} 4-Butyl-3, 5-bis[4-(naphthalen-2-yl)phenyl]-4H-1, 2, 4-triazole~(9c).$

Plot date 2019-07-16

4-Butyl-3,5-bis[4-(quinolin-3-yl)phenyl]-4H-1,2,4-triazole (9d).

Data file exp

Plot date 2019-07-25

 $\label{eq:alpha} 4-Butyl-3, 5-bis [4-(9-ethyl-9H-carbazol-3-yl) phenyl]-4H-1, 2, 4-triazole~(\textbf{9i}).$

4-Butyl-3,5-bis[4'-(9H-carbazol-9-yl)biphenyl-4-yl]-4H-1,2,4-triazole (**9j**).

 $\label{eq:alpha} 4-Butyl-3,5-bis[4-(thiantren-1-yl)phenyl]-4H-1,2,4-triazole~(9k).$

$\label{eq:2.1} 4-Hexyl-3,5-bis [4'-(N,N-diphenylamino) biphenyl-4-yl]-4H-1,2,4-triazole~({\bf 10a}).$

2. HRMS spectra

4-Ethyl-3,5-bis[4'-(N,N-diphenylamino)biphenyl-4-yl]-4H-1,2,4-triazole (7a).

4-Ethyl-3,5-bis[4-(naphthalen-1-yl)phenyl]-4H-1,2,4-triazole (7b).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 31 formula(e) evaluated with 7 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N
502.2281	100.00	502.2283	-0.2	-0.4	24.5	C36 H28 N3	409.4	8.228	0.03	36	28	3
		502.2032	24.9	49.6	25.5	C34 H24 N5	406.8	5.678	0.34	34	24	5
		502.2535	-25.4	-50.6	23.5	C38 H32 N	411.1	9.967	0.00	38	32	1
		502.1596	68.5	136.4	30.5	C39 H20 N	413.3	12.112	0.00	39	20	1
		502.2971	-69.0	-137.4	18.5	C33 H36 N5	401.1	0.004	99.63	33	36	5
		502.2572			2015							-

4-Ethyl-3,5-bis[4-(naphthalen-2-yl)phenyl]-4H-1,2,4-triazole (7c).

4-Ethyl-3,5-bis[4-(quinolin-3-yl)phenyl]-4H-1,2,4-triazole (7d).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 31 formula(e) evaluated with 7 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	Ν	
504.2188	100.00	504.2188	0.0	0.0	24.5	C34 H26 N5	293.5	0.302	73.92	34	26	5	
		504.2440	-25.2	-50.0	23.5	C36 H30 N3	295.0	1.783	16.82	36	30	3	
		504.1752	43.6	86.5	29.5	C39 H22 N	296.6	3.457	3.15	39	22	1	
		504.2691	-50.3	-99.8	22.5	C38 H34 N	296.5	3.332	3.57	38	34	1	
		504.1501	68.7	136.3	30.5	C37 H18 N3	296.9	3.674	2.54	37	18	3	

*

m

Ξ

÷

4-Ethyl-3,5-bis[4-(quinolin-6-yl)phenyl]-4H-1,2,4-triazole (7e).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 31 formula(e) evaluated with 7 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	Н	Ν	
504.2189	100.00	504.2188	0.1	0.2	24.5	C34 H26 N5	479.8	0.373	68.87	34	26	5	
		504.2440	-25.1	-49.8	23.5	C36 H30 N3	481.1	1.616	19.86	36	30	3	
		504.1752	43.7	86.7	29.5	C39 H22 N	482.7	3.246	3.89	39	22	1	
		504.2691	-50.2	-99.6	22.5	C38 H34 N	482.5	3.096	4.52	38	34	1	
		504.1501	68.8	136.4	30.5	C37 H18 N3	483.0	3.555	2.86	37	18	3	

.

Ξ

3,5-Bis[4-(dibenzothiophen-4-yl)phenyl]-4-ethyl-4H-1,2,4-triazole (7f).

3,5-Bis[4-(dibenzofuran-4-yl)phenyl]-4-ethyl-4H-1,2,4-triazole (7g).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 93 formula(e) evaluated with 20 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N	0	
582.2183	100.00	582.2182	0.1	0.2	28.5	C40 H28 N3 O2	366.1	1.155	31.51	40	28	3	2	
		582.2222	-3.9	-6.7	32.5	C45 H28 N	369.7	4.760	0.86	45	28	1		
		582.2294	-11.1	-19.1	28.5	C39 H28 N5 O	365.4	0.482	61.73	39	28	5	1	
		582.1970	21.3	36.6	33.5	C43 H24 N3	369.1	4.154	1.57	43	24	3		
		582.2433	-25.0	-42.9	27.5	C42 H32 N O2	368.1	3.140	4.33	42	32	1	2	

-

Ε

4-Ethyl-3,5-bis[4-(9-methyl-9H-carbazol-3-yl)phenyl]-4H-1,2,4-triazole (7h).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 93 formula(e) evaluated with 19 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N	0	
608.2817	100.00	608.2814	0.3	0.5	28.5	C42 H34 N5	236.4	0.344	70.91	42	34	5		
		608.2702	11.5	18.9	28.5	C43 H34 N3 O	237.7	1.633	19.54	43	34	3	1	
		608.2953	-13.6	-22.4	27.5	C45 H38 N O	240.3	4.200	1.50	45	38	1	1	
		608.3026	-20.9	-34.4	23.5	C39 H38 N5 O2	240.5	4.382	1.25	39	38	5	2	
		608.2590	22.7	37.3	28.5	C44 H34 N O2	238.8	2.687	6.81	44	34	1	2	

4-Ethyl-3,5-bis[4-(9-ethyl-9H-carbazol-3-yl)phenyl]-4H-1,2,4-triazole (7i).

•

Ξ

÷

3,5-Bis[4'-(9H-carbazol-9-yl)biphenyl-4-yl]-4-ethyl-4H-1,2,4-triazole (7j).

Multi Tolera Eleme Numb Monoi 186 fo	iple Mas ince = 100 ent predict er of isoto sotopic Ma rmula(e) e ents Used:	as Analysi: 0.0 mDa / tion: Off ope peaks u ass, Even El evaluated wi	s: 2 mas DBE: m used for i-l lectron Ion th 38 resu	s(es) hin = -10 FIT = 2 s Its withi	proce 0.0, ma n limits	ssed ax = 50	.0 5 closest results	for each m	ass)										4 III +
Mass	RA	Calc.	Mass	mDa	PPM	DBE	Formula		i-FIT	i-FIT Norm	Fit Conf %	C	н	NO					*
732.31	26 100	0.00 732.	3127	-0.1	-0.1	36.5	C52 H38 N5		386.0	2.607	7.38	52	38	5	1				
733.31	52 56	732.3 732.3 732.3 732.3 733.3 733.3 733.3 733.3	3015 3266 3339 2903 3107 3219 3231	11.1 -14.0 -21.3 22.3 4.5 -6.7 -17.0	15.2 -19.1 -29.1 30.5 6.1 -9.1 -24.4	36.5 35.5 31.5 36.5 35.5 35.5 25.5	C53 H38 N3 O C55 H42 N O C49 H42 N5 O2 C54 H38 N O2 C55 H41 O2 C54 H41 N2 O C53 H41 N4	2	386.6 388.0 383.6 387.3 379.5 379.5 379.5	3.198 4.579 0.158 3.832 1.541 1.495 1.572	4.09 1.03 85.34 2.17 21.41 22.43 20.76	53 55 49 54 55 54 54 53	38 42 42 38 41 41 41	3 1 1 1 5 2 1 2 2 2 1 4					•
MO131 1: TOF	648 (1.40 MS ES+	9) Cm (640:	:656)																
100 J															732.	3126		6.81e+	+005
																733	734.3182	$ \begin{cases} c \\ c$	
0-	599.22137	701.3967 70	05.1346.7	06.150	8,707.1	1556	711.5759	715.406	9716.175	7 72	1.5046	725.167	4_726	.1675	732.2408	22.5	735.3209	754 2945 755 2982 8 741 1995743 3510 746 3277,747 3343 751 3214 758 2249,759 2255 740 0 742 5 745 0 747 5 750 0 750 750 750 750 750 750 750 75	m/z

4-Ethyl-3,5-bis[4-(thiantren-1-yl)phenyl]-4H-1,2,4-triazole (7k).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 103 formula(e) evaluated with 21 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N	S	
678.1166	100.00	678.1166	0.0	0.0	28.5	C40 H28 N3 S4	537.1	0.300	74.08	40	28	3	4	
		678.1132	3.4	5.0	33.5	C43 H24 N3 S3	538.7	1.829	16.05	43	24	3	3	
		678.1099	6.7	9.9	38.5	C46 H20 N3 S2	539.7	2.827	5.92	46	20	3	2	
		678.1065	10.1	14.9	43.5	C49 H16 N3 S	540.4	3.577	2.80	49	16	3	1	
		678.1283	-11.7	-17.3	47.5	C54 H16 N	541.3	4.467	1.15	54	16	1		

E

3,5-Bis[4'-(N,N-diphenylamino)biphenyl-4-yl]-4-propyl-4H-1,2,4-triazole (8a).

4-Butyl-3,5-bis[4'-(N,N-diphenylamino)biphenyl-4-yl]-4H-1,2,4-triazole (9a).

 Multiple Mass Analysis: 2 mass(es) processed

 Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0

 Element prediction: Off

 Number of isotope peaks used for i-FIT = 2

 Monoisotopic Mass, Even Electron Ions

 62 formula(e) evaluated with 13 results within limits (up to 5 closest results for each mass)

 Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	н	Ν	
764.3749	100.00	764.3753	-0.4	-0.5	34.5	C54 H46 N5	185.1	0.325	72.23	54	46	5	
		764.4005	-25.6	-33.5	33.5	C56 H50 N3	186.6	1.739	17.57	56	50	3	
		764.3317	43.2	56.5	39.5	C59 H42 N	188.2	3.361	3.47	59	42	1	
		764.4256	-50.7	-66.3	32.5	C58 H54 N	188.1	3.240	3.92	58	54	1	
		764.3066	68.3	89.4	40.5	C57 H38 N3	188.4	3.570	2.81	57	38	3	
765.3790	57.76	765.3957	-16.7	-21.8	33.5	C55 H49 N4	120.4	1.236	29.04	55	49	4	
		765.3521	26.9	35.1	38.5	C60 H45	120.9	1.742	17.52	60	45		
		765 / 200	-/11 0	-54.7	32.5	C57 H53 N2	120.8	1 554	21.15	57	52	2	

MO109 326 (0.717) Cm (325:328) 1: TOF MS ES+

*

Ξ

•

÷

4-Butyl-3,5-bis[4-(naphthalen-1-yl)phenyl]-4H-1,2,4-triazole (9b).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
93 formula(e) evaluated with 20 results within limits (up to 5 closest results for each mass)
Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	Ν	0	
530.2596	100.00	530.2596	0.0	0.0	24.5	C38 H32 N3	257.7	0.187	82.98	38	32	3		
		530.2556	4.0	7.5	20.5	C33 H32 N5 O2	264.8	7.214	0.07	33	32	5	2	
		530.2484	11.2	21.1	24.5	C39 H32 N O	259.6	2.058	12.77	39	32	1	1	
		530.2808	-21.2	-40.0	19.5	C35 H36 N3 O2	263.5	5.983	0.25	35	36	3	2	
		530.2345	25.1	47.3	25.5	C36 H28 N5	260.8	3.240	3.92	36	28	5		

•

4-Butyl-3,5-bis[4-(naphthalen-2-yl)phenyl]-4H-1,2,4-triazole (9c).

*

Ξ

÷

4-Butyl-3,5-bis[4-(quinolin-3-yl)phenyl]-4H-1,2,4-triazole (9d).

*

Ξ

÷

4-Butyl-3,5-bis[4-(quinolin-6-yl)phenyl]-4H-1,2,4-triazole (9e).

3,5-Bis[4-(dibenzothiophen-4-yl)phenyl]-4-butyl-4H-1,2,4-triazole (9f).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 103 formula(e) evaluated with 23 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	Н	N	S	
642.2034	100.00	642.2038	-0.4	-0.6	28.5	C42 H32 N3 S2	153.6	0.040	96.10	42	32	3	2	
		642.2004	3.0	4.7	33.5	C45 H28 N3 S	158.1	4.623	0.98	45	28	3	1	
		642.2071	-3.7	-5.8	23.5	C39 H36 N3 S3	157.2	3.678	2.53	39	36	3	3	
		642.1970	6.4	10.0	38.5	C48 H24 N3	160.1	6.571	0.14	48	24	3		
		642.2105	-7.1	-11.1	18.5	C36 H40 N3 S4	159.5	5.977	0.25	36	40	3	4	

.

Ξ

3,5-Bis[4-(dibenzofuran-4-yl)phenyl]-4-butyl-4H-1,2,4-triazole (9g).

```
Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions

62 formula(e) evaluated with 14 results within limits (up to 5 closest results for each mass)

Elements Used:
```

Mass	KA	Calc. Mass	mDa	PPM	DRF	Formula	1-F11	I-FII Norm	Fit Conf %	C	н	N	0	
610.2491	100.00	610.2495	-0.4	-0.7	28.5	C42 H32 N3 O2	309.4	0.171	84.29	42	32	3	2	
		610.2535	-4.4	-7.2	32.5	C47 H32 N	313.4	4.119	1.63	47	32	1		
		610.2283	20.8	34.1	33.5	C45 H28 N3	312.8	3.482	3.07	45	28	3		
		610.2746	-25.5	-41.8	27.5	C44 H36 N O2	311.7	2.386	9.20	44	36	1	2	
		610.2171	32.0	52.4	33.5	C46 H28 N O	313.3	4.010	1.81	46	28	1	1	

.....

Ξ

4-Butyl-3,5-bis[4-(9-methyl-9H-carbazol-3-yl)phenyl]-4H-1,2,4-triazole (9h).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 93 formula(e) evaluated with 19 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N	0	
636.3123	100.00	636.3127	-0.4	-0.6	28.5	C44 H38 N5	111.3	2.953	5.22	44	38	5		
		636.3015	10.8	17.0	28.5	C45 H38 N3 O	111.9	3.566	2.83	45	38	3	1	
		636.3266	-14.3	-22.5	27.5	C47 H42 N O	113.2	4.837	0.79	47	42	1	1	
		636.3339	-21.6	-33.9	23.5	C41 H42 N5 O2	108.4	0.110	89.62	41	42	5	2	
		636.2903	22.0	34.6	28.5	C46 H38 N O2	112.5	4.174	1.54	46	38	1	2	

.

н

4-Butyl-3,5-bis[4-(9-ethyl-9H-carbazol-3-yl)phenyl]-4H-1,2,4-triazole (9i).

4-Butyl-3,5-bis[4'-(9H-carbazol-9-yl)biphenyl-4-yl]-4H-1,2,4-triazole (9j).

4-Butyl-3,5-bis[4-(thiantren-1-yl)phenyl]-4H-1,2,4-triazole (9k).

Tolerance = 100.0 mDa / DBE: min = -10.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron lons 103 formula(e) evaluated with 21 results within limits (up to 5 closest results for each mass) Elements Used:

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N	S	
706.1474	100.00	706.1479	-0.5	-0.7	28.5	C42 H32 N3 S4	327.8	0.249	77.99	42	32	3	4	
		706.1445	2.9	4.1	33.5	C45 H28 N3 S3	329.5	1.954	14.17	45	28	3	3	
		706.1412	6.2	8.8	38.5	C48 H24 N3 S2	330.6	3.028	4.84	48	24	3	2	
		706.1378	9.6	13.6	43.5	C51 H20 N3 S	331.4	3.824	2.18	51	20	3	1	
		706.1596	-12.2	-17.3	47.5	C56 H20 N	332.4	4.805	0.82	56	20	1		

*

Ξ
4-Hexyl-3,5-bis[4'-(N,N-diphenylamino)biphenyl-4-yl]-4H-1,2,4-triazole (10a).

3. X-ray crystallography data

Crystal structure determination

X-ray intensity data of compounds **8a**, **9a**, and **10a** were collected at 100.0(1) K, on a Rigaku Synergy Dualflex automatic diffractometer equipped with Pilatus 300K detector and micro-focus sealed PhotonJet X-ray tube. The mirror monochromated Cu*Ka* ($\lambda = 1.54184$ Å) radiation and shutterless ω scan mode was used. Lorentz, polarization and numerical absorption (based on gaussian integration over a multifaceted crystal model) corrections were applied during the data reduction. The structure was solved by dual-space algorithm. All non-hydrogen atoms were refined anisotropically using full-matrix, least-squares technique on F². All hydrogen atoms were refined as "riding" on the adjacent atom with geometric idealization after each cycle of refinement. Individual isotropic displacement factors of nonmethyl and methyl H atoms were set to be equal 1.2 and 1.5 times the value of equivalent displacement factors of the parent atoms, respectively. The SHELXT,¹ SHELXL² and SHELXTL³ programs were used for all calculations. Atomic scattering factors were taken from International Tables for Crystallography.⁴ Details concerning crystal data and refinement are given in Table S1.

The solvent molecules of 8a and 9a are disordered over three and two positions of asymmetric unit, respectively. The presence of one solvent atom in special position d of $P2_1/c$ space group (with site symmetry -1 and multiplicity 2) causes that one void containing a disordered solvent occupies two asymmetric units. Some atoms of three disordered ethanol molecules of 8a occupy the same position of crystal net, causing formal presence of six atom sites in the refinement model (three sites contain atoms belonging to two molecules; Figure S5). The occupancy of individual molecules is 0.40, 0.25, 0.10, what totally gives 0.75 solvent molecule per 8a molecule. The ethanol molecule in 9a is simply disordered over two positions (with 0.5 participation of each domain) and form 1:1 solvate. Due to disorder and partial occupancy the positions of hydrogen atoms of solvent molecules could not be reliably determined thus these hydrogen atoms were not included into refinements. To asses influence of solvents electron density on results of refinement, structures of 8a and 9a were refined against squeezed data.⁵ The convergence and fit parameters of squeezed and non-squeezed data (taken as measured) are similar (Table S1) what proves that solvent refinement models (including sites occupancy) were reasonable. The slightly larger values of difference Fourier synthesis global local peaks (smaller than 0.4 e•Å⁻³) originate mainly from absence of solvents hydrogen atoms in refinement. Beside the solvent molecules, the part of alkyl substituents of compounds 9a and 10a are also disordered over two positions. In case of compound 9a two terminal atoms are disordered with 0.6:0.4 participation of domains, while in compound **10a** five terminal atoms are disordered with 0.5:0.5 participation over domains.

CCDC 1999468-1999472 contain the supplementary crystallographic data for compounds 8a, 9a, 10a. These data can be obtained free of charge and via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk

- (2) G.M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8
- (3) G.M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2008, 64, 112-122

⁽¹⁾ G.M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3-8

⁽⁴⁾ International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables, ed. E. Prince, Kluwer Academic Publishers, Dordrecht, 3rd edition, 2004

⁽⁵⁾ A. L. Spek, Acta Crystallogr., Sect. E: Crystallogr. Commun., 2020, 76, 1-11

Figure S1. Complete asymmetric units of the structures of compounds 8a, 9a, and 10a, with atom numbering scheme, plotted with 50% probability of displacement ellipsoids of non-hydrogen atoms. Hydrogen atoms are plotted as spheres of arbitrary radii.

Figure S2. Solvent accessible voids within crystal structure of 8a

Figure S3. Solvent accessible voids within crystal structure of 9a

Figure S5. Disorder model of solvent in 8a.

Compound			9	9a	
Refinement data	as measured	squeezed	as measured	squeezed	as measured
CCDC number	1999469	1999471	1999470	1999472	1999468
Empirical formula	$C_{54.5}H_{43}N_5O_{0.75}$	$C_{53}H_{43}N_5$	$C_{56}H_{45}N_5O$	$C_{54}H_{45}N_5$	$C_{56}H_{49}N_5$
Formula weight	779.94	749.92	803.97	763.95	792.00
Crystal system	Mon	oclinic	Mono	clinic	Monoclinic
Space group	$P2_{1}/n$	(No. 14)	$P2_{1}/n$ ($P2_1/n$ (No. 14)	
Temperature (K)	100	0.0(1)	100.	0(1)	100.0(1)
Wavelength (Å)	λ (Cu $K\alpha$) 1.54184	$\lambda(CuK\alpha)$	$\lambda(CuK\alpha)$ 1.54184	
Unit cell dimensions					
a (Å)	21.12	286(2)	21.18	79(2)	26.7716(3)
b (Å)	9.61	19(1)	9.748	31(1)	8.6434(1)
c (Å)	23.00	090(2)	22.96	43(2)	18.7186(2)
α (°)	(90	9	0	90
β (°)	115.	057(1)	115.7	160(1)	100.406(1)
γ (°)	90		9	90	
Volume (Å ³)	4233.03(8)		4273.31(8)		4260.20(8)
Z		4	2	1	4
Calculated density (Mg/m ³)	1.224	1.177	1.250	1.187	1.235
Absorption coefficient (mm ⁻¹)	0.569	0.535	0.583	0.538	0.557
F(000)	1644	1584	1696	1616	1680
Crystal size (mm)	0.226 x 0.	173 x 0.082	0.102 x 0.072 x 0.043		0.152 x 0.131 x 0.020
θ Range for data collection (°)	3.739 t	o 78.853	3.771 to	3.771 to 79.032	
Index ranges	$-26 \le h \le 26$,		-13 ≤ I	$-13 \le h \le 26$,	
	-12 ≤	$k \leq 10$,	$-12 \le k \le 11$,		$-10 \le k \le 8,$
	-29 <u><</u>	$1 \leq 27$	$-28 \le l \le 23$		$-23 \le l \le 21$
Reflections collected / unique	70333 / 8633		44845 / 8827		44854 / 8789
R _{int}	0.0329	0.0330	0.0294	0.0297	0.0484
Completeness (%) $\theta = 67^{\circ}$	100.0		10	100.0	
Min. and max. transmission	0.634 and 1.000		0.915 and 1.000		0.852 and 1.000
Data / restraints / parameters	8633 / 0 / 576	8633 / 0 / 525	8827 / 0 / 604	8827 / 0 / 553	8789 / 0 / 598
Goodness-of-fit on F^2	1.073	1.075	1.057	1.111	1.016
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0483,	R1 = 0.0423,	R1 = 0.0477,	R1 = 0.0434,	R1 = 0.0560,
	wR2 = 0.1504	wR2 = 0.1174	wR2 = 0.1303	wR2 = 0.1175	wR2 = 0.1372
R indices (all data)	R1 = 0.0525,	R1 = 0.0462,	R1 = 0.0574,	R1 = 0.0517,	R1 = 0.0716,
	wR2 = 0.1553	wR2 = 0.1196	wR2 = 0.1481	wR2 = 0.1339	wR2 = 0.1479
Largest diff. peak and hole (e•Å ⁻³)	0.685 and -0.230	0.315 and -0.223	0.449 and -0.268	0.261 and -0.255	0.359 and -0.252

Table S1. Crystal data and structure refinement details for 8a, 9a, and 10a. The structures of 8a and 9a were refined twice: against measured and squeezed data.

: :	d _{ij} (Å)						
1—J	8a	9a	10a				
N1—N2	1.3893(16)	1.3932(17)	1.385(2)				
N1C2	1.3132(19)	1.314(2)	1.311(4)				
N2C1	1.311(2)	1.316(2)	1.317(4)				
N3—C1	1.3701(18)	1.3731(19)	1.376(3)				
N3—C2	1.3699(17)	1.3725(19)	1.382(3)				
N3—C51	1.4740(18)	1.470(2)	1.455(4)				
C1—C3	1.4801(18)	1.474(2)	1.473(3)				
C2—C27	1.4752(18)	1.472(2)	1.477(3)				
N4—C12	1.4156(17)	1.4169(19)	1.4222(19)				
N4—C15	1.416(2)	1.412(2)	1.421(2)				
N4-C21	1.420(2)	1.425(2)	1.412(2)				
N5—C36	1.4360(17)	1.433(2)	1.432(2)				
N5—C39	1.416(2)	1.412(2)	1.430(2)				
N5—C45	1.4102(19)	1.408(2)	1.416(2)				
: : 1.		$\alpha_{ijk}(^{\circ})$					
і—ј—к	8a	9a	10 a				
N1-C2-N3	110.63(12)	110.56(13)	110.96(18)				
C2-N1-N2	107.22(11)	107.34(13)	107.2(2)				
N1—N2—C1	107.07(12)	106.99(13)	107.5(2)				
N2-C1-N3	110.84(12)	110.69(13)	110.63(19)				
C1—N3—C2	104.24(12)	104.41(13)	103.7(2)				
C1—N3—C51	125.98(11)	126.08(12)	127.44(19)				
C2—N3—C51	127.65(12)	127.52(12)	127.04(19)				
N2-C1-C3	124.63(13)	124.76(14)	121.6(2)				
N3-C1-C3	124.49(13)	124.51(14)	127.8(3)				
N1-C2-C27	123.91(12)	124.04(14)	122.8(2)				
N3—C2—C27	125.46(13)	125.39(14)	126.3(3)				
C12—N4—C15	121.25(13)	121.35(14)	118.13(14)				
C12—N4—C21	119.19(12)	118.77(13)	119.29(13)				
C15—N4—C21	119.02(11)	119.28(13)	122.12(13)				
C36—N5—C39	116.77(12)	116.59(14)	115.53(14)				
C36—N5—C45	119.22(12)	119.36(14)	120.45(14)				
C39 - N5 - C45	123.44(12)	123.87(13)	122 10(13)				

Table S2. Selected structural data of 8a, 9a, and 10a.

				8 a				
	N1	C3	C9	C15	C21	C27	C33	C39
N1								
C3	54.83(5)							
C9	31.83(5)	23.01(8)						
C15	88.73(6)	40.45(6)	61.11(6)					
C21	84.44(6)	59.81(6)	74.27(6)	65.52(5)				
C27	42.78(5)	25.79(7)	20.77(8)	49.57(6)	85.55(5)			
C33	11.73(5)	47.94(5)	25.62(5)	81.28(6)	83.12(5)	31.95(6)		
C39	77.76(6)	71.15(5)	83.41(5)	38.51(5)	78.79(4)	63.67(5)	89.43(5)	
C45	81.09(6)	44.14(5)	67.09(6)	18.06(3)	48.78(6)	61.46(5)	89.02(6)	52.80(5)
				9a				
	N1	C3	C9	C15	C21	C27	C33	C39
N1								
C3	54.70(6)							
C9	29.44(5)	25.34(8)						
C15	88.84(7)	40.28(6)	62.83(7)					
C21	85.80(6)	60.01(6)	75.98(6)	66.52(6)				
C27	45.01(6)	26.30(8)	23.19(8)	47.79(7)	86.30(5)			
C33	17.11(5)	43.74(6)	19.91(6)	75.89(7)	85.08(6)	28.51(7)		
C39	74.57(6)	73.95(5)	87.22(6)	40.60(6)	76.67(5)	64.41(6)	88.68(6)	
C45	81.02(7)	44.36(6)	69.54(7)	17.31(3)	50.87(7)	60.15(6)	86.18(7)	53.10(5)
				10a				
	N1	C3	C9	C15	C21	C27	C33	C39
N1								
C3	36.3(1)							
C9	24.8(1)	12.3(1)						
C15	85.21(8)	63.32(7)	71.51(5)					
C21	84.22(7)	65.48(7)	77.22(5)	61.31(5)				
C27	40.8(1)	12.0(1)	16.7(1)	54.83(6)	70.26(6)			
C33	23.4(1)	17.7(1)	6.7(1)	71.47(6)	83.14(5)	17.8(1)		
C39	85.51(7)	67.75(7)	79.18(5)	65.62(5)	4.4(1)	73.23(6)	85.31(5)	
C45	88.76(8)	57.73(7)	67.03(5)	8.38(8)	54.06(5)	50.50(6)	67.90(6)	58.43(6)

Table S3. Dihedral angles (°) between ring least squares planes in **8a**, **9a**, and **10a**. Each ring is indicated by one atom, which belongs solely to this ring.

D-H•••A	d(D-H)	d(H•••A)	d(D•••A)	<(DHA)	$G_d^a(n)$
		8a			
C8—H8•••N1 ⁱ	0.95	2.59	3.492(2)	158	C(6)
C32—H32•••N2 ⁱ	0.95	2.76	3.702(2)	174	C(6)
C41—H41•••N2 ⁱⁱ	0.95	2.79	3.481(2)	130	C(16)
C51—H51B•••N1 ⁱ	0.99	2.80	3.575(2)	136	C(5)
		9a			
C8—H8••••N1 ⁱ	0.95	2.68	3.573(2)	157	C(6)
C32—H32•••N2 ⁱ	0.95	2.69	3.640(2)	175	C(6)
C41—H41•••N2 ⁱⁱ	0.95	2.90	3.572(2)	129	C(16)
C51—H51B•••N1 ⁱ	0.99	2.81	3.529(2)	130	C(5)
		10a			
C32—H32•••N1 ⁱⁱⁱ	0.95	2.55	3.470(2)	164	C(5)
C32—H32•••N2 ⁱⁱⁱ	0.95	2.43	3.163(2)	134	C(6)

Table S4. Non-classic hydrogen bonds and the first level graph motifs in the studied compounds (Å, °).

Symmetry transformations used to generate equivalent atoms: (i) -x+1.5, y-0.5, -z+1.5; (ii) -x+1, -y+1, -z+1; (iii) -x+1, y+0.5, -z+1.5.

Table S5. Stacking interactions in the studied compounds. Each ring is indicated by one atom, which belongs solely to this ring. The α is a dihedral angle between planes I and J, β is an angle between Cg(I)-Cg(J) vector and normal to plane I, d_p is a perpendicular distance of Cg(I) on ring J plane.

$R(I) \bullet \bullet \bullet R(J)$	d(Cg•••Cg) (Å)	α (°)	β (°)	$d_p(Å)$
		8a		
C15•••C45 ⁱ	4.8776(10)	5.60(8)	45.6	3.1070(7)
C45•••C15 ⁱⁱ	4.8776(10)	5.60(8)	50.4	3.4134(7)
C21•••C21 ⁱⁱⁱ	5.7439(11)	0.02(9)	56.6	3.1589(7)
C45•••C45 ^{iv}	4.7511(10)	0.00(8)	45.9	3.3089(7)
		9a		
C15•••C45 ⁱ	4.9048(11)	6.31(9)	44.4	3.1458(8)
C45•••C15 ⁱⁱ	4.9050(11)	6.31(9)	50.1	3.5026(8)
C21•••C21 ⁱⁱⁱ	5.7876(12)	0.00(10)	55.9	3.2444(8)
C45•••C45 ^{iv}	4.8010(11)	0.02(9)	45.0	3.3964(8)
		10a		
N1•••N1 ^v	5.4759(13)	0.00(13)	42.9	4.0097(9)
C21•••C39 ^{vi}	5.3990(10)	4.41(9)	47.0	3.9724(7)
C39•••C21 ^{vii}	5.3991(10)	4.41(9)	42.6	3.6798(8)

Symmetry transformations used to generate equivalent atoms: (i) -x+1.5, y+0.5, -z+1.5; (ii) -x+1.5, y-0.5, -z+1.5; (iii) -x+3, -y, -z+2; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z-1; (vii) x+1, y, z+1.

4. Absorption and emission spectrometry data

Figure S6. UV-Vis spectra of 7a-10a and 7b-7k.

Figure S7. UV-Vis spectra of 9b-9k.

Figure S8. Positions of global maxima for studied compounds (divided into groups containing 2 or 3 rings at the ends of 4-alkyl-3,5-bis(phenyl)-4*H*-1,2,4-triazole core). "1st max." and "2nd max." indicate the first (for smaller excitation wavelengths) and the second (for larger excitation wavelengths) maxima on three-dimensional fluorescence spectra.

Figure S9. Quantum yield of studied compounds as a function of fluorescence intensity at global and local maximum.

Figure S10. Quantum yield of studied compounds in relation to absorption at global and local maximum of fluorescence.