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Abstract: This paper presents, for the first time, the mechanical model and theoretical analysis
of free vibration of a spinning functionally graded graphene nanoplatelets reinforced composite
(FG-GPLRC) porous double-bladed disk system. The nanocomposite rotor is made of porous
metal matrix and graphene nanoplatelet (GPL) reinforcement material with different porosity and
nanofillers distributions. The effective material properties of the system are graded in a layer-wise
manner along the thickness directions of the blade and disk. Considering the gyroscopic effect,
the coupled model of the double-bladed disk system is established based on Euler–Bernoulli beam
theory for the blade and Kirchhoff’s plate theory for the disk. The governing equations of motion
are derived by employing the Lagrange’s equation and then solved by employing the substructure
mode synthesis method and the assumed modes method. A comprehensive parametric analysis is
conducted to examine the effects of the distribution pattern, weight fraction, length-to-thickness ratio,
and length-to-width ratio of graphene nanoplatelets, porosity distribution pattern, porosity coefficient,
spinning speed, blade length, and disk inner radius on the free vibration characteristics of the
FG-GPLRC double-bladed disk system.
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1. Introduction

Spinning bladed disk rotor systems are the core components in many rotary machines in helicopter
rotor, ship power propulsion system, engineering agitator, and so on [1–6]. By adopting the finite
element method, Ma et al. [7] studied the vibration characteristics of bladed disk structure subject to
rubbing force at the blade tip. Battiato et al. [8] experimentally investigated the vibration response of
the spinning bladed disk system. Bai et al. [9] employed an extremum response surface method-based
improved substructural component modal synthesis to study the vibration behavior of a mistuned
bladed disk structure. These previous studies showed that a continuous increase in the spinning speed
frequently leads to excessive vibration of the system.

It has been well accepted that the use of advanced materials is one of the effective ways to improve
the mechanical performance of the bladed disk rotor system to avoid undesired vibration. Owing to its
superior mechanical properties, graphene and its derivatives such as graphene nanoplatelets have
attracted huge attention from both research and industry communities with numerous efforts on the
applications of graphene-based nanomaterials in different fields. Rafiee et al. [10] experimentally found
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that GPLs have distinct advantages as reinforcing nanofillers over carbon nanotubes at a very low
content, which has also been theoretically confirmed [11–14]. Compared with single-layer graphene,
GPLs has comparable elastic modulus, less agglomeration, better dispersion, and much lower cost;
hence, they have been widely used in many high-performance composite structures with greatly
enhanced structural stiffness. Feng et al. [15] investigated the nonlinear free vibration of GPL reinforced
beams. By using the finite element method, Tam et al. [16] and Zhao et al. [17] studied the vibration
characteristics of GPL-reinforced beams, with a particular focus on the effects of open edge cracks
and trapezoidal plates, respectively. Guo et al. [18] presented a theoretical study on the nonlinear
bending of GPL-reinforced plates by employing the element-free IMLS-Ritz method. Wu et al. [19]
and Song et al. [20] investigated the vibration behavior of FG annular plates and cracked beams
reinforced by GPLs in thermal environments. The in-plane and out-of-plane free vibration performance
of an FG-GPLRC arch was discussed by Yang et al. [21].

Due to its light weight and low density, porous metal foam is one of the most promising advanced
engineering materials [22–24]. Based on the sinusoidal shear deformation theory, Wang et al. [25]
investigated free vibrations of FG porous cylindrical shells. Ebrahimi et al. [26] studied the nonlinear
vibration of FG porous Timoshenko beams. Wang et al. [27] conducted the vibration analysis of
FG porous plates in thermal environments. Both the classical and first-order shear deformation
plate theories are used by Kim et al. [28] to study the vibration behavior of FG porous microplates.
Recent studies [29,30] also showed that incorporating GPLs into FG porous structures is another avenue
for the development of advanced composite structures that are lightweight yet very strong.

It should be noted that all of the existing research works available in the open literature are for a
single FG-GPLRC beam, plate, or shell only; no research work has been conducted on the mechanical
performance of an FG-GPLRC assembly consisting of two or more structural elements. This paper
makes the first attempt to model and analyze the free vibration of a spinning FG porous double-bladed
disk system reinforced with GPLs. Based on Euler–Bernoulli beam theory and Kirchhoff’s plate
theory, the equations of motion governing the coupled vibration are derived by employing Lagrange’s
equation. Then, the substructure mode synthesis method and the assumed modes method are adopted
to solve the equations of motion. Special attention is given to the effects of the spinning speed,
GPL distribution pattern, GPL weight fraction, length-to-thickness ratio and length-to-width ratio of
GPLs, porosity distribution pattern, porosity coefficient, blade length, and disk inner radius on the free
vibration of the rotor. The obtained results are of practical significance for the design of FG-GPLRC
porous double-bladed disk systems.

2. Theoretical Formulations

2.1. Modeling

The theoretical model of a double-bladed disk system is shown in Figure 1. The two same blades
are connected at Qk (k = 1, 2) on the outer edge of the disk in opposite directions with the inner edge of
the disk clamped. As can be seen, the inner radius, outer radius, and thickness of the disk are a, b and
hD, respectively; the length, width, and thickness of the blades are LB, WB, and hB, respectively.
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To describe the motion and deformation of the coupled rotor, four different coordinate systems as
shown in Figure 2 are defined, where O-xyz is the global system fixed at O; O0-x0rθ is a cylindrical
coordinate system spinning at Ω along the x0-axis; O1-x1y1z1 is a rectangular coordinate system
spinning at Ω along the x1-axis; O2-x2y2z2 is a rectangular coordinate system fixed at Qk spanned by a
deflection angle along the y1-axis with respect to O1-x1y1z1.
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Figure 2. Coordinate systems: (a) for the disk, (b) for the kth blade.

2.2. Material Properties

The double-bladed disk system is made of a porous metal matrix and GPL reinforcement.
Three porosity distribution patterns are considered as shown in Figure 3 for the disk (XPD, UPD, OPD)
and two blades (XPB, UPB, OPB). According to the open-cell scheme [31], the specific expressions of
material properties are determined by:

Porosity Pattern XPD (XPB) :



ED(B)

(
x0(2)

)
= ED0(B0)

[
1− eD0(B0) cos

(
πx0(2)
hD(B)

)]
ρD(B)

(
x0(2)

)
= ρD0(B0)

[
1− eDm(Bm) cos

(
πx0(2)
hD(B)

)]
µD(B)

(
x0(2)

)
= µD0(B0)

(1)

Porosity Pattern UPD (UPB) :


ED(B)

(
x0(2)

)
= ED0(B0)αD(B)

ρD(B)

(
x0(2)

)
= ρD0(B0)α

′

D(B)

µD(B)

(
x0(2)

)
= µD0(B0)

(2)

Porosity Pattern OPD (OPB) :



ED(B)

(
x0(2)

)
= ED0(B0)

{
1− e∗D0(B0)

[
1− cos

(
πx0(2)
hD(B)

)]}
ρD(B)

(
x0(2)

)
= ρD0(B0)

{
1− e∗Dm(Bm)

[
1− cos

(
πx0(2)
hD(B)

)]}
µD(B)

(
x0(2)

)
= µD0(B0)

(3)

where subscripts D and B stand for the disk and blades, respectively; ED(B), ρD(B), and µD(B) are the
effective Young’s modulus, mass density, and Poisson’s ratio, respectively; ED0(B0), ρD0(B0), and µD0(B0)

are the Young’s modulus, mass density, and Poisson’s ratio of the GPL-reinforced material without
pores, respectively; eD0(B0), e*

D0(B0), and αD(B) are the porosity coefficients with respect to the three
porosity distributions, respectively; eDm(Bm), e*

Dm(Bm), and α′D(B) are the mass density coefficients with
respect to the three porosity distributions, respectively.
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Applying the typical mechanical property relationship

ED(B)

ED0(B0)
=

(
ρD(B)

ρD0(B0)

)2

(4)

gives the relations of the porosity coefficients and mass density coefficients:
1− eDm(Bm) cos

(
πx0(2)
hD(B)

)
=

√
1− eD0(B0) cos

(
πx0(2)
hD(B)

)
1− e∗Dm(Bm)

[
1− cos

(
πx0(2)
hD(B)

)]
=

√
1− e∗D0(B0)

[
1− cos

(
πx0(2)
hD(B)

)]
α′D(B) =

√
αD(B)

. (5)

Due to the equal mass in different distributions, it can be obtained as:
∫ hD(B)

2
0

√
1− e∗D0(B0)

[
1− cos

(
πx0(2)
hD(B)

)]
dx0(2) =

∫ hD(B)
2

0

√
1− eD0(B0) cos

(
πx0(2)
hD(B)

)
dx0(2)∫ hD(B)

2
0

√
αD(B)dx0(2) =

∫ hD(B)
2

0

√
1− eD0(B0) cos

(
πx0(2)
hD(B)

)
dx0(2)

(6)

Thus, the porosity and mass density coefficients can be given as listed in Table 1.

Table 1. Variation of porosity coefficients.

e0 e1 e2

0.1 0.1738 0.9361
0.2 0.3442 0.8716
0.3 0.5103 0.8064
0.4 0.6708 0.7404
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Moreover, according to the modified Halpin–Tsai model [32], ED0(B0) can be expressed as:

ED0(B0)

(
x0(2)

)
= 3

8 EM

 1+
EGPL/EM−1

EGPL/EM+ξlD(lB)
ξlD(lB)VGPLD(GPLB)

1−
EGPL/EM−1

EGPL/EM+ξlD(lB)
VGPLD(GPLB)


+ 5

8 EM

 1+
EGPL/EM−1

EGPL/EM+ξwD(wB)
ξwD(wB)VGPLD(GPLB)

1−
EGPL/EM−1

EGPL/EM+ξwD(wB)
VGPLD(GPLB)


(7)

in which EGPL and EM are the Young’s modulus of GPLs and the matrix, respectively. The geometry
factors ξlD(lB) and ξwD(wB) of GPLs in the disk and blades are given as:

ξlD(lB) =
2lD(B)
tD(B)

ξwD(wB) =
2wD(B)
tD(B)

(8)

where lD(B), wD(B), and tD(B) are the GPL’s average length, width, and thickness in the disk and
blades, respectively.

Based on the rule of mixture, ρD0(B0) and µD0(B0) are: ρD0(B0)

(
x0(2)

)
= VGPLD(GPLB)ρGPL +

(
1−VGPLD(GPLB)

)
ρM

µD0(B0)

(
x0(2)

)
= VGPLD(GPLB)µGPL +

(
1−VGPLD(GPLB)

)
µM

(9)

in which ρGPL and ρM are the Young’s modulus of GPLs and the matrix, respectively; µGPL and µM are
the Poisson’s ratio of the GPLs and the matrix, respectively.

Since the manufacturing of an ideal FG-GPLRC with a smooth change in material composition
is impossible due to the limitation of current manufacturing technology, a multilayer structure with
both GPL and porosity distributions varying from layer to layer is adopted to achieve an approximate
gradient. Each layer has the same thickness and evenly distributed pores and GPLs. As shown in
Figure 4, the layer numbers of the disk and blades are ND and NB, respectively.

Materials 2020, 13, x FOR PEER REVIEW 5 of 22 

 

Table 1. Variation of porosity coefficients. 

e0 e1 e2 
0.1 0.1738 0.9361 
0.2 0.3442 0.8716 
0.3 0.5103 0.8064 
0.4 0.6708 0.7404 

Moreover, according to the modified Halpin–Tsai model [32], ED0(B0) can be expressed as: 

( )
( ) ( )

( )
0( 0) 0(2)

( )
( )

( ) ( )
( )

( )
( )

11
3

18 1

11
5+ 18 1

GPL M
lD lB GPLD GPLB

GPL M lD lB
D B M

GPL M
GPLD GPLB

GPL M lD lB

GPL M
wD wB GPLD GPLB

GPL M wD wB
M

GPL M
GPLD GPLB

GPL M wD wB

E E V
E E

E x E E E V
E E

E E V
E E

E E E V
E E

ξ
ξ

ξ

ξ
ξ

ξ

− + + = − − + 
− + + 

− − + 

 (7) 

in which EGPL and EM are the Young’s modulus of GPLs and the matrix, respectively. The geometry 

factors ξlD(lB) and ξwD(wB) of GPLs in the disk and blades are given as: 

( )
( )

( )

( )
( )

( )

2
=

2
=

D B
lD lB

D B

D B
wD wB

D B

l
t

w
t

ξ

ξ








 (8) 

where lD(B), wD(B), and tD(B) are the GPL’s average length, width, and thickness in the disk and blades, 
respectively. 

Based on the rule of mixture, ρD0(B0) and μD0(B0) are: 

( ) ( )
( ) ( )

0( 0) 0(2) ( ) ( )

0( 0) 0(2) ( ) ( )

1

1
D B GPLD GPLB GPL GPLD GPLB M

D B GPLD GPLB GPL GPLD GPLB M

x V V

x V V

ρ ρ ρ

μ μ μ

 = + −


= + −
 (9) 

in which ρGPL and ρM are the Young’s modulus of GPLs and the matrix, respectively; μGPL and μM are 
the Poisson’s ratio of the GPLs and the matrix, respectively. 

Since the manufacturing of an ideal FG-GPLRC with a smooth change in material composition 
is impossible due to the limitation of current manufacturing technology, a multilayer structure with 
both GPL and porosity distributions varying from layer to layer is adopted to achieve an approximate 
gradient. Each layer has the same thickness and evenly distributed pores and GPLs. As shown in 
Figure 4, the layer numbers of the disk and blades are ND and NB, respectively. 

  
(a) (b) 

Figure 4. Nanocomposite structures: (a) for the disk, (b) for the kth blade. Figure 4. Nanocomposite structures: (a) for the disk, (b) for the kth blade.

Three GPL distributions shown in Figure 5 are considered in the present study. It can be found
that Pattern X provides the maximum GPL volume fraction around the surfaces of the disk and blades,
while Pattern O gives the minimum one. Meanwhile, Pattern U is the uniform distribution of GPLs.
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where q = 1, 2, and 3 are corresponding to the porosity pattern XPD(PB), UPD(PB), and OPD(PB); sq1D(q1B),
sq2D(q2B), and sq3D(q3B) are the coefficients of GPL volume fraction in the disk and blades, which can be
calculated from:
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ρD(B)(x0 j(2 j))

ρD0(B0)

] (11)

in which:

x0 j(2 j) =

(
1
2
+

1
2ND(B)

−
j

ND(B)

)
hD(B), j = 1, 2, 3, · · · , ND(B). (12)

The total GPL volume fraction VT
GPLD(GPLB) is determined by:

VT
GPLD(GPLB) =

WGPLD(GPLB)

WGPLD(GPLB) + ρGPL
(
1−WGPLD(GPLB)

)
/ρM

(13)

where WGPLD(GPLB) is the GPL weight fraction.

2.3. Energy Functions

The energy method is adopted to obtain the equations of motion. Thus, the kinetic energy and
potential energy need to be given in the first place.
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The velocity of an arbitrary point in the disk is:
vx =

.
uD(r,θ)

vy = Ωr cos(Ωt + θ)

vz = −Ωr sin(Ωt + θ)
. (14)

Thus, the kinetic energy of the disk can be obtained as:

TD = 1
2

∫
V ρD

(
vx

2 + vy
2 + vz

2
)
dV

= π
4

(
b4
− a4

)
Ω2

∫ hD
2

−
hD
2

ρDdx0 +
1
2

∫ 2π
0

∫ b
a

∫ hD
2

−
hD
2

ρD
.
uD

2rdx0drdθ
. (15)

Considering the gyroscopic effect, on the basis of Kirchhoff’s plate theory, the total potential
energy of the disk is:

VD =
1
2

∫ 2π

0

∫ b

a

∫ hD
2

−
hD
2

EDx0
2

(1− µD2)


(
∇

2uD
)2
− 2(1− µD)

∂2uD
∂r2

(
1
r
∂uD
∂r + 1

r2
∂2uD
∂θ2

)
+2(1− µD)

[
∂
∂r

(
1
r
∂uD
∂θ

)]2
+ N′r

(
∂uD
∂r

)2
+ N′θ

(
1
r
∂uD
∂θ

)2

rdx0drdθ (16)

in which: 
∇

4uD = ∇2
(
∇

2uD
)
,∇2 = ∂2

∂r2 +
∂

r∂r +
∂2

r2∂θ2

N′r =
ρDΩ

2

8

[
−(3 + µD)r2 + C1 + C2

1
r2

]
N′θ =

ρDΩ
2

8

[
−(1 + 3µD)r2 + C1 −C2

1
r2

] (17)

where: 
C1 =

(1+µD)(3+µD)b4+(1−µD
2)a4

(1+µD)b2+(1−µD)a2

C2 = b2a2 (1−µD)(3+µD)b2
−(1−µD

2)a2

(1+µD)b2+(1−µD)a2

. (18)

Similarly, the velocity of an arbitrary point in the kth blade (k = 1, 2) is:

vx =
.
uD(Qk) −

∂
.
uD(Qk)
∂r (x2 + uBk) sin(u′D|b ) +

∂
.
uD(Qk)
∂r z2 cos

(
∂uD(Qk)

∂r

)
vy = −Ω(y2 + vBk) sinΩt +

.
vBk cosφ cosΩt

+Ω
[
z2 cos

(
∂uD(Qk)

∂r

)
+ (x2 + uBk) sin( ∂uD(Qk)

∂r ) + b
]

cosΩt

+


.
uBk sin

(
∂uD(Qk)

∂r

)
+

∂
.
uD(Qk)
∂r uBk cos

(
∂uD(Qk)

∂r

)
−z2

∂
.
uD(Qk)
∂r sin

(
∂uD(Qk)

∂r

)
 cosΩt

vz = Ω(y2 + vBk) cosΩt +
.
vBk sinΩt

+Ω
[
z2 cos(u′D|b ) + (x2 + uBk) sin

(
∂uD(Qk)

∂r

)
+ b

]
sinΩt

−


.
uBk sin

(
∂uD(Qk)

∂r

)
+

∂
.
uD(Qk)
∂r uBk cos

(
∂uD(Qk)

∂r

)
−z2

∂
.
uD(Qk)
∂r sin

(
∂uD(Qk)

∂r

)
 cosΩt

(19)

in which: 
.
uD(Qk) =

.
uD

∣∣∣
r=b,θ=(k−1)π

∂
.
uD(Qk)
∂r = ∂

.
uD
∂r

∣∣∣∣
r=b,θ=(k−1)π

, k = 1, 2. (20)
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Therefore, the kinetic energy of the kth blade can be derived as:

TBk = 1
2

∫
V ρB(vx

2 + vy
2 + vz

2)dV

= WLB
2

.
uD

2(Qk)
∫ hB

2

−
hB
2

ρBdx2 +
WLB

2

2
.
uD(Qk)

∂
.
uD(Qk)
∂r

∫ hB
2

−
hB
2

ρBdx2

+WLB
2

[
∂

.
uD(Qk)
∂r

]2∫ hB
2

−
hB
2

ρBx2
2dx2 +

WLB
3

3

[
∂

.
uD(Qk)
∂r

]2∫ hB
2

−
hB
2

ρBdx2

+WLB
2 Ω2

[
∂uD(Qk)

∂r

]2∫ hB
2

−
hB
2

ρBx2
2dx2 + W

.
uD(Qk)

∫ hB
2

−
hB
2

ρBdx4
∫ LB

0
.
uBkdz2

+W ∂
.
uD(Qk)
∂r

∫ hB
2

−
hB
2

ρBdx2
∫ LB

0 z2
.
uBkdz2 +ΩW ∂

.
uD(Qk)
∂r

∫ hB
2

−
hB
2

ρBdx2
∫ LB

0 z2vBkdz2

+W
2

∫ hB
2

−
hB
2

ρBdx2
∫ LB

0
.
uBk

2dz2 +
W
2

∫ hB
2

−
hB
2

ρBdx2
∫ LB

0
.
vBk

2dz2 +
W
2 Ω

2
∫ hB

2

−
hB
2

ρBdx2
∫ LB

0 vBk
2dz2

+Ω2 ∂uD(Qk)
∂r W

∫ hB
2

−
hB
2

ρBdx2
∫ LB

0 uBkdz2

. (21)

The total kinetic energy of the blades is:

TB = TB1 + TB2. (22)

According to Euler–Bernoulli beam theory, the strain of the kth blade is:

εz2k = −x2
∂2uBk

∂z22 − y4
∂2vBk

∂z22 . (23)

The deformation potential energy of the kth blade can be written as:

UBk1 = 1
2

∫
V EBεz2k

2dV

= W
2

∫ hB
2

−
hB
2

EBx2
2dx2

∫ LB
0 (

∂2uBk
∂z22 )

2
dz2 +

W3

24

∫ hB
2

−
hB
2

EBdx2
∫ LB

0 (
∂2vBk
∂z22 )

2
dz2

. (24)

The centrifugal force of the kth blade is:

Fz2k =
∫ LB

z2
Ω2ρB(b + z2)dz2

= Ω2ρB
[
b(LB − z2) +

1
2

(
LB

2
− z2

2
)] . (25)

Thus, the centrifugal potential energy of the kth blade is

UBk2 = 1
2

∫
V Fz2k

[(
∂uBk
∂z2

)2
+

(
∂vBk
∂z2

)2]
dV

= 1
2Ω

2
∫ hB

2

−
hB
2

ρBdx2
∫ LB

0

[
b(LB − z2) +

1
2

(
LB

2
− z2

2
)](

∂uB
∂z2

)2
dz2

+ 1
2Ω

2
∫ hB

2

−
hB
2

ρBdx2
∫ LB

0

[
b(LB − z2) +

1
2

(
LB

2
− z2

2
)](

∂vB
∂z2

)2
dz2

. (26)

Finally, the total potential energy of the blades is:

UB = UB11 + UB12 + UB21 + UB22. (27)
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2.4. Equations of Motion

The motion of each structure component in the double-bladed disk system is approximated by
the weighted superposition of admissible functions. The displacements of the disk can be expressed as

uD(r,θ, t) = cosθΦD(r)[QD(t)]
T (28)

in which QD(t) and ΦD(r) are the generalized coordinate vector and mode function vector of the
disk, respectively:  ΦD(r) =

[
R1(r) · · · R j(r) · · · RM(r)

]
QD(t) =

[
qD1(t) · · · qDj(t) · · · qDM(t)

] (29)

where M is the total mode number of the disk; the specific mode function Rj(r) is:

R j(r) = A j J1
(
β jr/b

)
+ B jN1

(
β jr/b

)
+ C jI1

(
β jr/b

)
+ D jK1

(
β jr/b

)
(30)

in which J1 and N1 are Bessel functions of the first kind and second kind; I1 and K1 are modified Bessel
functions of the first kind and second kind; Aj, Bj, Cj, Dj and βj are the coefficients determined by the
boundary conditions of the disk, respectively.

In addition, the displacements of the kth blade are:J uBk(z3, t) = ΦUk(z3)[QUk(t)]
T

vBk(z3, t) = ΦVk(z3)[QVk(t)]
T (31)

where (QUk, QVk) and (ΦUk, ΦVk) are the generalized coordinate vector and mode function vector of
the kth blade, respectively. Their specific expressions are: QUk(t) =

[
qUk1(t) · · · qUkj(t) · · · qUkNk

(t)
]

QVk(t) =
[

qVk1(t) · · · qVkj(t) · · · qVkPk
(t)

] (32)

 ΦUk(z3) =
[

Yk1(z3) · · · Ykj(z3) · · · YkNk
(z3)

]
ΦVk(z3) =

[
Yk1(z3) · · · Ykj(z3) · · · YkPk

(z3)
] (33)

in which Nk and Pk are the total mode numbers of the kth blade along the x3-axis direction (uB)
and y3-axis direction (vB); the specific mode function Ykj(z3) is:

Ykj(z3) = cosαkjz3 − chαkjz3 −
cosαkjz3+chαkjz3

sinαkjz3+shαkjz3

(
sinαkjz3 − shαkjz3

)
(34)

and αkj can be calculated from:
cosαkjchαkj + 1 = 0. (35)

Substituting the energy expressions in Section 2.3 into the Lagrange equation

d
dt

(
∂L
∂

.
qi

)
−
∂L
∂qi

= 0 (36)

gives the governing equations of coupled motion of the FG-GPLRC blade–disk system:

M
..
q(t) + G

.
q(t) + Kq(t) = 0 (37)
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where

M =


(MD + MT

D
)/2 MDU 0 −MDU 0

MDU
T MU 0 0 0

0 0 MV 0 0
−MDU

T 0 0 MU 0
0 0 0 0 MV


(38)

G =


0 0 GDV 0 GDV

0 0 0 0 0
GDV

T 0 0 0 0
0 0 0 0 0

−GDV
T 0 0 0 0


(39)

K =



KD1 +
(
KD2 + KD2

T
)
/2 KDU 0 −KDU 0

KDU
T KU1 + KU2 0 0 0

0 0 KV1 + KV2 + KV3 0 0
−KDU

T 0 0 KU1 + KU2 0
0 0 0 0 KV1 + KV2 + KV3


.

(40)
The specific expressions of each element in the mass matrix M, gyroscopic matrix G, and stiffness

matrix K are given in Appendix A.
Due to the gyroscopic matrix G caused by rotation, the coupled governing equations cannot

be solved directly by the eigenvalue method. For free vibration analysis, Equation (37) needs to be
converted into the state form by introducing:

.
p(t) = Bp(t) (41)

in which the state vector p(t) and state matrix B can be determined by:

p(t) =
{

q(t)
.
q(t)

}
, B =

[
0 E

−M−1K −M−1C

]
(42)

where E is the unity matrix.
Setting

p(t) = peiωt (43)

and substituting Equation (43) into Equation (41) yields:

(B− iωE)p = 0 (44)

where i = (−1)0.5.
Thus, the natural frequencies ω of the blade–disk system can be obtained by solving the

eigenvalue problem.
In addition, the backward travelling wave frequency ωb and forward travelling wave frequency

ωf can be obtained as: {
ωb = ω+Ω
ω f = |ω−Ω|

(45)

3. Results and Discussion

In this section, the free vibration behavior of the spinning FG-GPLRC porous double-bladed
disk system is studied comprehensively. Unless otherwise stated, the structural parameters
are a = 0.4 m, b = 0.8 m, hD = 0.03m, lB = 0.4 m, W = 0.02 m and hB = 0.01 m; the material
parameters are EGPL = 1010 GPa, EM = 130 GPa, ρGPL = 1062.5 kg/m3, ρM = 8960 kg/m3, µGPL = 0.186,
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µM = 0.34, WGPLD = WGPLB = 1%, LD/tD = LB/tB = 100 and LD/BD = LB/BB = 2, e0D = e0B = 0.1. Moreover,
the porosity distributions pattern XPD, XPB and GPL distribution patterns XGD and XGB are considered
in the following analysis.

3.1. Convergence and Comparison Study

Before parametric analysis, the convergence regarding the vibration mode number and GPL layer
number used in the analysis is investigated firstly. As displayed in Tables 2 and 3, convergent results
for the first three frequencies can be achieved at (M = 5, N1 = N2 = 16, P1 = P2 = 13) and (ND = NB = 16),
which will be adopted in the following calculations.

Table 2. Frequencies ω (rad/s) of the functionally graded graphene nanoplatelets reinforced composite
(FG-GPLRC) porous double-bladed disk system with different mode numbers (Ω = 0 rad/s).

Frequency
M = 4

N1 = N2 = 14
P1 = P2 = 11

M = 5
N1 = N2 = 16
P1 = P2 = 13

M = 5
N1 = N2 = 16
P1 = P2 = 15

M = 5
N1 = N2 = 18
P1 = P2 = 13

M = 6
N1 = N2 = 16
P1 = P2 = 13

First 342.50824 342.41852 342.41852 342.41842 342.41559
Second 606.54032 606.39077 606.39076 606.39077 606.39077
Third 1021.84498 1021.61920 1021.61920 1021.61920 1021.61826

Fourth 2149.98662 2149.78629 2149.78629 2149.78492 2149.78629
Fifth 3801.04613 3800.18608 3800.18590 3800.18608 3800.18608

Table 3. Frequencies ω (rad/s) of the FG-GPLRC porous double-bladed disk system with different layer
numbers (Ω = 0 rad/s).

Frequency ND = NB = 4 ND = NB = 8 ND = NB = 16 ND = NB = 100

First 333.419 340.665 342.418 342.982
Second 605.834 606.284 606.390 606.424
Third 995.799 1016.59 1021.61 1023.23

Fourth 2093.27 2138.77 2149.78 2153.33
Fifth 3796.69 3799.51 3800.18 3800.40

Since there are no suitable data in the open literatures for direct comparison, the finite element
method using commercial software ABAQUS is employed to further verify the present modeling and
vibration analysis. Table 4 and Figure 6 show the comparison of frequencies and vibration modes
between theoretical (MATLAB) and FE (ABAQUS) results with different spinning speeds, respectively.
Here, GPL distributions UGD and UGB and porosity distribution patterns UPD and UPB are considered.
Very good agreement is observed, which indicates that the present analysis is accurate.

Table 4. Frequencies ω (rad/s) of the FG-GPLRC blade–disk system: comparison between theoretical
and finite element results.

Frequency Ω (rad/s) Present Finite Element Error

First
0 301.7845 296.1836 1.84%

100 604.6508 594.0126 1.74%
200 904.2086 900.3008 0.38%

Second
0 365.8797 167.3024 1.51%

100 432.1137 425.2251 1.62%
200 918.1062 914.1168 0.39%

Third
0 509.8145 503.8130 1.14%

100 705.8883 695.0076 1.51%
200 959.1757 958.6897 0.44%
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ABAQUS, (b,d,f) First three mode obtained by MATLAB.

3.2. Free Vibration Analysis

In what follows, the effects of the material and structural parameters on the free vibration of the
double-bladed disk are examined in detail. Figure 7 depicts the changes of first three traveling wave
frequencies of the double-bladed disk system with spinning speed for different distributions of GPLs
and porosity in the disk, where the distributions of GPLs and porosity in the blades remain XGB and
XPB; different color lines stand for different GPL distributions; different type lines stand for different
porosity distributions; two different marks in the lines stand for backward and forward traveling wave
frequencies. As can be seen, the first forward traveling wave frequency decreases first and then rises,
while the first backward traveling wave frequency increases monotonously. The second and third
forward traveling wave frequencies are decreased continuously, while the second and third backward
traveling wave frequencies grow on and on. Another observation is that the porosity distribution
XPD and GPL distribution XGD provide the largest frequencies compared to other porosity and GPL
distributions. It indicates that dispersing more GPLs around the surfaces of the disk is effective to
improving the mechanical performance of the double-bladed disk system. Meanwhile, the non-uniform
porosity distribution XPD can help to achieve the highest structural stiffness. It can be found that the
GPL distribution patterns in the disk have a greater influence on the traveling wave frequencies than
porosity distribution patterns. Moreover, the third traveling wave frequency is affected markedly
by the GPL and porosity distribution in the disk, while the first two traveling wave frequencies are
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impacted little. This is because the vibration mode corresponding to the third frequency contains
obvious disk vibration, as shown in Figure 6.
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Figure 7. Effects of graphene nanoplatelet (GPL) and porosity distribution in the disk on the
traveling wave frequencies of the double-bladed system: (a) First frequency, (b) Second frequency,
(c) Third frequency.

Figure 8 plots the changes of first three traveling wave frequencies of the double-bladed disk
system with spinning speed for different distributions of GPLs and porosity in the blades, where the
distributions of GPLs and porosity in the disk remain XGD and XPD. It can be seen that the rotor system
with porosity distribution XPB and GPL distribution XGB has largest traveling wave frequencies.

This implies that adding more GPLs around the surfaces of the blades has an obvious advantage
to enhance the rotor stiffness. It can be told that the non-uniform pattern XPB is the best candidate
among the presented porosity distributions. The traveling wave frequencies are more sensitive to
the GPL distribution patterns in the blades than porosity distributions. In addition, the GPL and
porosity distribution in the blades mostly affect the first traveling wave frequency, which is because the
vibration mode corresponding to the first frequency is mainly reflected by the blades’ displacements
along their thickness direction.

Since the variations of forward and backward traveling frequencies exhibit quite a similar trend,
only the backward traveling frequencies under two typical spinning speeds—0 rad/s and 100 rad/s—are
listed in Tables 5–8.
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Figure 8. Effects of GPL and porosity distribution in the disk on the traveling wave frequencies of the
double-bladed system: (a) First frequency, (b) Second frequency, (c) Third frequency.

Table 5. Effect of GPL weight fraction on the backward traveling frequencies (rad/s) of the double-bladed
system at different spinning speeds (rad/s).

Frequency Ω
WGPLD = p
WGPLB = q f = 0% f = 0.33% f = 0.67% f = 1%

First

0
p = 0, q = f 240.683 278.0561 311.9853 341.7586
p = f, q = 0 240.683 240.7882 240.8503 240.8894
p = q = f 240.683 278.2255 312.3795 342.4185

100
p = 0, q = f 417.1995 446.2748 473.9031 498.9130
p = f, q = 0 417.1995 417.4847 417.6507 417.7542
p = q = f 417.1995 446.6563 474.6823 500.1056

Second

0
p = 0, q = f 475.4040 522.0961 566.3625 606.3908
p = f, q = 0 475.4040 475.4040 475.4040 475.4040
p = q = f 475.4040 522.0961 566.3625 606.3908

100
p = 0, q = f 609.1708 653.0075 694.9589 733.1512
p = f, q = 0 609.1708 609.1910 609.2009 609.2066
p = q = f 609.1708 653.0347 695.0128 733.2381

Third

0
p = 0, q = f 724.8524 725.4668 726.0604 726.6336
p = f, q = 0 724.8524 834.5594 933.3375 1019.349
p = q = f 724.8524 835.2214 934.7485 1021.619

100
p = 0, q = f 842.1417 842.7876 843.4427 844.0990
p = f, q = 0 842.1417 949.6112 1046.8747 1131.864
p = q = f 842.1417 950.2492 1048.1906 1133.928
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Table 6. Effect of GPL length-to-thickness ratio on the backward traveling frequencies (rad/s) of the
double-bladed system at different spinning speeds (rad/s).

Frequency Ω
lD/tD = p
lB/tB = q f = 10 f = 40 f = 70 f = 100

First

0
p = 10, q = f 320.7607 337.5028 340.8724 342.3215
p = f, q = 10 320.7607 320.8224 320.8336 320.8383

p = q = f 320.7607 337.5763 340.9623 342.4185

100
p = 10, q = f 481.7063 495.8319 498.6986 499.9337
p = f, q = 10 481.7063 481.8224 481.8435 481.8523

p = q = f 481.7063 495.9637 498.8583 500.1056

Second

0
p = 10, q = f 578.3558 600.044 604.4773 606.3908
p = f, q = 10 578.3558 578.3558 578.3558 578.3558

p = q = f 578.3558 600.044 604.4773 606.3908

100
p = 10, q = f 706.4411 727.1565 731.3988 733.2307
p = f, q = 10 706.4411 706.4463 706.4472 706.4476

p = q = f 706.4411 727.1622 731.4057 733.2381

Third

0
p = 10, q = f 957.0838 957.3238 957.3725 957.3935
p = f, q = 10 957.0838 1006.949 1016.991 1021.310

p = q = f 957.0838 1007.189 1017.28 1021.619

100
p = 10, q = f 1070.217 1070.468 1070.519 1070.541
p = f, q = 10 1070.217 1119.428 1129.346 1133.613

p = q = f 1070.217 1119.673 1129.640 1133.928

Table 7. Effect of GPL length-to-width ratio on the backward traveling frequencies (rad/s) of the
double-bladed system at different spinning speeds (rad/s).

Frequency Ω
lD/wD = p
lB/wB = q f = 2 f = 4 f = 6 f = 8

First

0
p = 1, q = f 342.4185 339.9449 337.7323 335.7413
p = f, q = 1 342.4185 342.4085 342.3992 342.3908
p = q = f 342.4185 339.9351 337.7139 335.7154

100
p = 1, q = f 500.1056 497.9969 496.1141 494.4228
p = f, q = 1 500.1056 500.0878 500.0715 500.0565
p = q = f 500.1056 497.9794 496.0812 494.3762

Second

0
p = 1, q = f 606.3908 603.1327 600.2314 597.6311
p = f, q = 1 606.3908 606.3908 606.3908 606.3908
p = q = f 606.3908 603.1327 600.2314 597.6311

100
p = 1, q = f 733.2381 730.1191 727.3429 724.8556
p = f, q = 1 733.2381 733.2374 733.2367 733.2361
p = q = f 733.2381 730.1184 727.3415 724.8537

Third

0
p = 1, q = f 1021.619 1021.584 1021.552 1021.524
p = f, q = 1 1021.619 1014.254 1007.666 1001.74
p = q = f 1021.619 1014.219 1007.6 1001.644

100
p = 1, q = f 1133.928 1133.891 1133.859 1133.830
p = f, q = 1 1133.928 1126.653 1120.147 1114.295
p = q = f 1133.928 1126.616 1120.078 1114.197
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Table 8. Effect of porosity coefficient on the backward traveling frequencies (rad/s) of the double-bladed
system at different spinning speeds (rad/s).

Frequency Ω
lD/wD = p
lB/wB = q f = 0 f = 0.1 f = 0.2 f = 0.3

First

0
p = 0, q = f 343.4377 342.4425 341.5784 340.8869
p = f, q = 0 343.4377 343.4126 343.3854 343.3555
p = q = f 343.4377 342.4185 341.5304 340.8149

100
p = 0, q = f 500.9792 500.1474 499.4285 498.8582
p = f, q = 0 500.9792 500.9357 500.8884 500.8366
p = q = f 500.9792 500.1056 499.3448 498.7324

Second

0
p = 0, q = f 615.0141 606.3908 597.4517 588.1804
p = f, q = 0 615.0141 615.0141 615.0141 615.0141
p = q = f 615.0141 606.3908 597.4517 588.1804

100
p = 0, q = f 741.5002 733.2395 724.6866 715.8272
p = f, q = 0 741.5002 741.4987 741.4970 741.4952
p = q = f 741.5002 733.2381 724.6838 715.8232

Third

0
p = 0, q = f 1024.607 1024.751 1024.905 1025.070
p = f, q = 0 1024.607 1021.471 1018.718 1016.468
p = q = f 1024.607 1021.619 1019.033 1016.975

100
p = 0, q = f 1136.880 1136.997 1137.122 1137.257
p = f, q = 0 1136.880 1133.809 1131.118 1128.928
p = q = f 1136.880 1133.928 1131.372 1129.338

Table 5 shows the first three traveling wave frequencies of the double-bladed disk system for
different GPL weight fractions, where (p = 0, q = f ), (p = f, q = 0), and (p = q = f ) stand for only
blades are reinforced, only disk is reinforced, and both blades and disk are equally reinforced by GPLs.
A considerable rise in the traveling wave frequencies is observed as the GPL weight fraction increases,
which indicates that dispersing more GPLs at a low total content can achieve better mechanical
performance of the double-bladed disk system. In addition, the first two frequencies are mainly
influenced by the GPL weight fraction in the blades, while the third frequency is mostly affected by
that in the disk.

Table 6 lists the first three traveling wave frequencies of the double-bladed disk system for different
GPL length-to-thickness ratios. A higher GPL length-to-thickness ratio leads to increased traveling
wave frequencies. For the same content of GPLs, larger values of GPL length-to-thickness ratio mean
thinner GPLs. Thus, it can be noted that adopting thinner GPLs is effective in improving the vibration
behavior of double-bladed disk system. Similar to the GPL weight fraction, the first two frequencies
are more sensitive to the GPL length-to-thickness ratio in the blades.

Table 7 gives the first three traveling wave frequencies of the double-bladed disk system for
different GPL length-to-width ratios, where GPL length remains constant. Actually, lower GPL
length-to-width ratios represent GPLs with larger surface areas. It is obvious that the traveling wave
frequencies decrease with the increase of the GPL length-to-width ratio. This is because larger surface
contact areas between the matrix and GPLs lead to better load transfer capacity. In addition, the first
two frequencies and third frequency are primarily impacted by the GPL length-to-width ratio in the
blades and disk, respectively.

Table 8 shows the first three traveling wave frequencies of the double-bladed disk system for
different porosity coefficients. It is seen that the traveling wave frequencies are reduced in general with
an increase in the porosity coefficient. A greater porosity coefficient means more and larger pores in the
matrix, which weaken the stiffness of the double-bladed disk system, and the first two frequencies and
third frequency are mainly determined by the porosity coefficient in the blades and disk, respectively.
However, an interesting phenomenon occurs in third frequency (p = 0, q = f ): the frequency has a slight
rise when the porosity coefficient in the blades increases solely.
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Figure 9 plots the changes of first three traveling wave frequencies of the double-bladed disk
system with spinning speeds for different disk inner radiuses and blade lengths, where the disk outer
radius keeps constant. Increasing the disk inner radius and decreasing the blade length results in the
rise of the traveling wave frequencies. It implies that a larger disk inner radius and shorter blade length
in comparison with the disk outer radius should be designed to achieve better structural stiffness.
Moreover, it can be found that the disk inner radius majorly influences the third frequency, while the
blade length chiefly affects the first two frequencies.
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Figure 9. Effects of disk inner radius and blade length on the traveling wave frequencies of the
double-bladed system: (a,b) First frequency, (c,d) Second frequency, (e,f) Third frequency.
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4. Conclusions

In this paper, the coupled free vibration behavior of a spinning FG-GPLRC porous double-bladed
disk system has been investigated for the first time. Based on Euler–Bernoulli beam theory and
Kirchhoff plate theory, the equations of motion are derived by adopting the Lagrange equation method,
which are solved by the substructure mode synthesis method and the assumed modes method. It is
found from numerical results that using non-uniform porosity patterns XPD and XPB and dispersing
more GPLs near the surfaces of the disk and blades are the most effective way to improve the structural
stiffness and mechanical performance of the double-bladed disk system. The first traveling wave
frequency is primarily influenced by the GPL and porosity distribution in the blades, while the third
traveling wave frequency is remarkedly affected by those in the disk. A better reinforcement effect
can be achieved when thinner GPLs with larger surface areas are used. In general, the traveling
wave frequencies become lower at a higher porosity. However, the third-order frequency increases
slightly when only the porosity in the blades increases. In addition, the first two frequencies are
considerably influenced by the weight fraction, length-to-thickness ratio, and length-to-width ratio
of GPLs, porosity coefficient, and the length of the blades, while the third-order frequency is mainly
affected by those factors and the inner radius of the disk.
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Appendix A

The specific expressions of each element in the mass matrix M, gyroscopic matrix G, and stiffness
matrix K.
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