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Abstract: The comparison of shear stress determination methods in tubular specimens under torsion
is presented in this paper. Four methods were analyzed: purely elastic solutions, purely plastic
solutions, the midsection approach, and the Chaboche nonlinear kinematic hardening model.
Using experimental data from self-designed and conducted fatigue experiments, an interesting
insight on this problem was obtained that is not often tackled in the literature. It was shown that
there are differences in determined shear stress values, and their level depends on a few factors.
The midsection approach and purely plastic solution gave values of surface shear stress very close to
the values obtained using the Chaboche nonlinear kinematic hardening model for high strain levels.
The purely elastic solution gave proper results for the low strain ranges, close to the cyclic yield
limit. Since none of the methods can be trusted in the full range of loading, an important conclusion
from these analyses regards the formulated ranges of their applicability. It was also shown that the
calculated values of shear stress and plastic and elastic strain energy density determined on this basis
have a strong impact on fatigue life predictions. Finally, the influence of predicted values of shear
stresses on the interpretation of cyclic hardening phenomena was also presented.
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1. Introduction

Usually, fatigue cracks originate on a free surface due to the stress concentration on a micro and
macro scale. Given polycrystalline materials, plastic deformation is also higher on a surface as a result
of lower constraints from neighboring grains [1]. In the case of elements that are loaded with bending
moment or torque, stresses are additionally higher on a surface due to their gradient [2,3]. These types
of loading are often studied [4,5], also in an elastic–plastic strain range [6,7]. Considering this, it is
clear that the proper analysis of stress and strain on the surface of elements undergoing fatigue loading
is an important issue. On the other hand, a compromise between the accuracy and simplicity of the
solution is usually desired.

In the present study, the focus is placed on the analysis of shear stress in thin-walled tubular
specimens, which are most often used in strain-controlled multiaxial fatigue tests [8,9]. The problem of
elastic–plastic torsion has already been studied by other authors. Usually, some advanced mathematical
models are made regarding this issue, together with proposals of numerical solutions devoted to the
determination of the twist angle or accumulated energy [10–16]. Other papers concern an application
of the Finite Elements Method or the Finite Differences Method to model the torsion of different
profiles [17–19]. Sometimes, the topic of the study is very narrow, e.g., it concerns only a selected
issue related to the yield point, which the authors term the “small corrugations of the elastic–plastic
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boundary” [20]. Unfortunately, quite often such works do not provide practical solutions and
explanations on how to correctly determine the surface shear stress for tubular specimens subjected to
cyclic torsion, based on experimental data like torque and shear strain on the surface of the specimen.
If any cyclic plasticity models are involved, they assume perfectly elastic or perfectly plastic material
behavior. More practical considerations regarding the cyclic torsion of cylindrical specimens have
previously been performed by Miller and Chandler [21] and Brown [22].

In fatigue analysis, authors use various approaches to solve the problem of shear stress
determination in tubular specimens under torsion. Shamsaei and Fatemi [23] used midsection shear
stress values, which were further fitted with a Ramberg–Osgood-type function and extrapolated on the
surface. However, this method can be used only for materials that exhibit Masing behavior (the upper
branches of hysteresis loops form one common curve) and do not show significant differences in
stress history depending on the loading level. Furthermore, the fit and extrapolation procedure
must be separately repeated for each loading case. The midsection approach was also used by
Socie [24], Zhong et al. [25], Wu et al. [26], Zhang and Jiang [27,28], and in other works by Fatemi
and coauthors [29,30]. Dey et al. used an elastic solution, even though they applied relatively high
strain values [31]. There are also several papers where the shear stress determination method was not
mentioned [32–35].

In the present paper, three different approaches based on the measured value of torque were
applied to determine shear stress in tubular specimens made of PA38-T6 (AW-6060) aluminum alloy
subjected to torsion. They were further compared to values calculated using the Chaboche kinematic
hardening model. This thorough approach to the problem makes it possible to become aware of
differences in shear stress values obtained using various methods and to find their dependence on
factors such as specimen size and loading level. The results of this work also give an idea of the
order of magnitude of these differences, the impact on the interpretation of cyclic hardening, and on
the prediction of fatigue life. Considering these factors, the guidance was provided according to the
applicability of these methods. Furthermore, it is worth noting that all analyses were conducted based
on a self-designed and conducted experiment. The adopted research methodology of the experiment
assumed continuous recording of all signals from the testing system with a high sampling frequency.
This enabled accurate calculations and detailed analyses.

2. Theoretical Background

2.1. Shear Stress Distribution under Elastic–Plastic Torsion

Nonuniform shear stress distribution occurs in every specimen subjected to torsion if the stress is
higher than the yield limit [19]. Such distributions make it dubious to apply simple elastic solutions
for accurate determination of shear stress since they assume a linear relationship between stress and
strain. Furthermore, several other phenomena influence the shear stress value on the surface of the
specimen. For example, the torque can be high enough to induce yielding of the outer layers of the
material, but at the same time small enough to remain elastic at internal layers [12]. The boundary
between elastic and elastic–plastic deformation also moves along the radius during the cyclic loading
and unloading processes [21]. The torque, which is a measured quantity, depends on the stresses
acting in the whole cross-section of the specimen; thus, the stress–strain and torque–twist angle
relationship differ (Figure 1). These relationships become even more complicated when considering
cyclic loadings [36]. When twisting right (conventionally) and subsequent unloading, the stress in the
outer layer is not yet zero, while the stress in the internal layer exceeds zero, so it is already compressed
(stressed left) [18] (Figure 2). Therefore, when the torque being measured equals zero, the value of
shear stress in the external layer differs from zero (points 3 and 7). This influences the shape of the
hysteresis loop and the calculated plastic strain energy density. If the material hardens or softens
cyclically, the amount of hardening/softening depending on strain level varies for different layers
(in the radial direction) of the specimen. This hardening or softening is difficult to consider during the
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analysis of data that is only recorded from the testing system. All the abovementioned phenomena
depend further on the level of loading, on internal and external diameters of the specimen, and on the
specimen’s thickness.
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Figure 1. An example of shear-stress–shear-strain (τ-γ) and torque–twist angle (T-θ) curves.

−42
−35
−28
−21
−14
−7
0
7
14
21
28
35
42

−0.015 0 0.015
−150

−100

−50

0

50

100

150
T, N·m

�

τ, MPa

τ

T

5 6.5

τ
, M

Pa

r, mm

a) b)

1

2

3

4

5

6

7

8

5

4
6

3

7

2
8

1

Figure 2. An example of (a) shear-stress–shear-strain (τ-γ) and torque–shear-strain (T-τ) hysteresis
loops and (b) shear stress distribution through the wall thickness for 8 selected points.

2.2. Selected Methods of the Shear Stress Determination in Case of Tubular Specimens

The first of the considered approaches for determining shear stress in tubular specimens is based
on a purely elastic solution. The relationship between torque T and shear stress τ is given by [37]

T =
∫

A
τ(r)rdA = 2π

∫
r

τ(r)rdr = 2π
∫ ro

ri

τ(r) · r2dr, (1)

where ri and ro are internal and outer radii of the specimen, respectively. By the assumption that the
shear stress is a linear function of radius, τ(r) = ar, where a is the slope of function, after integration
and substitution of a by τo, we get

T =
πτo(r4

o − r4
i )

2
. (2)

The shear stress on the surface is then given by
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τo =
T
J0

ro =
2roT

π(r4
o − r4

i )
, (3)

where J0 is the polar moment of inertia. The resulting distribution of shear stress along the radial
direction is presented in Figure 3a.
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Figure 3. Shear stress distribution along the radius of a tubular specimen for (a) elastic solution,
(b) midsection approach, (c) plastic solution, and (d) Chaboche model.

The second method is recommended by the ASTM standard [57] for the low-cycle fatigue regime.
It is assumed that the shear stress distribution is uniform through the wall thickness (Figure 3b) and is
equal to the midsection value τm. The torque is given by the following simplified Equation (1):

T = τmrm A, (4)

and τm by

τm =
T

Arm
=

16T
π(d2

o − d2
i )(do + di)

, (5)

where rm is the mean radius. The standard also specifies the criterion for a thin wall, for which the
shear stress variation in the radial direction is negligible. Specimens that do not meet the criterion of a
thin wall are examined in the work of Brown [22].

The next approach is based on a purely plastic solution. The assumption is the same as in the case
of the midsection method (Figure 3c), and the relationship between shear stress and the radius of the
specimen is given by

τ(r) = const. (6)

After substituting (6) into (1) and integration, the following formula is obtained:

T =
2
3

πτ(r3
o − r3

i ), (7)
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and after conversion, the shear stress on the surface is then given by

τo =
3T

2π(r3
o − r3

i )
. (8)

The shear stress distributions and values obtained by the previously presented approaches were
compared to the values calculated using the Chaboche nonlinear kinematic hardening model [38,39].
The set of applied equations is listed below. The yield surface according to Huber–Mises yield criterion
describes the formula:

f =

√
3
2
(s− α) : (s− α)− R, (9)

where s is a deviatoric stress tensor, R is cyclic yield stress, and α is a backstress tensor given by

dα =
m

∑
i=1

2
3

C(i)dεp − γ(i)α(i)dp, (10)

where C(i) and γ(i) (not to be confused with the shear strain) are material parameters and dεp is a
plastic strain tensor rate, given by the associated plastic flow rule:

dεp =
3
2

ds : n
H

n, (11)

where n is an outward unit tensor determining the direction normal to the yield surface:

n =
∂ f
∂s√

∂ f
∂s : ∂ f

∂s

. (12)

H is a plastic hardening modulus and dp is the accumulated equivalent plastic strain rate:

dp =

√
2
3

dεp : dεp. (13)

The value of H can be determined from the yield surface consistency condition:

∂ f
∂s

: ds +
∂ f
∂α

: dα = 0. (14)

Using the Chaboche model, a nonlinear distribution of the shear stress along the specimen’s
radius is achieved (Figure 3d).

2.3. Influence of Shear Stress on Fatigue Life Prediction

For fatigue of materials, the ability to determine the correct shear stress value is crucial.
The most popular multiaxial fatigue damage parameters, like Fatemi–Socie [40], generalized
Smith–Watson–Topper [24,41], Łagoda–Macha [42], Ince–Glinka [43], or Garud [44], depend directly
or indirectly on the determined value of this stress. Such a fatigue damage parameter is proposed by
Gołoś and Ellyin [45,46]:

∆Wp

ρ
+ ∆We+, (15)

where ∆Wp and ∆We+ are total plastic and positive elastic strain energy densities and ρ is a
multiaxiality coefficient given by

ρ = (1 + νeq)
ε1

γmax
, (16)
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where νeq is an equivalent Poisson ratio, ε1 is maximum principal strain, and γmax is the maximum
shear strain. The Gołoś–Ellyin parameter was further employed in the present work to analyze the
influence of the shear stress value on fatigue life prediction in an energy-based approach.

3. Materials and Methods

The experimental data used in this work comes from a broader research program [47,48].
The present work considers previous research regarding the cyclic torsion and axial loading of tubular
specimens made of PA38-T6 (AW-6060) aluminum alloy. The chemical composition of this material
is given in Table 1. Basic mechanical properties, Young’s modulus E, 0.2% offset yield stress σy02,
ultimate tensile strength σu and corresponding strain εσu , elastic Poisson ratio νe, cyclic strength
coefficient K′, and cyclic strain hardening exponent n′ are given in Table 2. The dimensions of the
specimens are presented in Figure 4. All fatigue tests were performed on an Instron 8874 servohydraulic
axial/torsional testing system. Axial and shear strains were measured and controlled using an Epsilon
3550 biaxial extensometer, and the axial force and torque were measured by the system’s load cell.
For further details of the experiment, the reader is referred to [47,48].

Table 1. Chemical composition of PA38-T6 aluminum alloy according to EN 573-3 standard.

Element Si Fe Cu Mn Mg Cr Zn Ti Other Al

Share (%) 0.3–0.6 0.1–0.3 0.1 0.1 0.35–0.6 0.05 0.15 0.1 0.15 Balance

Table 2. Basic mechanical properties of PA38-T6 aluminum alloy determined experimentally.

E, GPa σy02, MPa σu, MPa εσu , mm/mm νe, - K′, MPa n′, -

68.3 191.5 229.1 0.094 0.35 288.1 0.051

Figure 4. Dimensions of PA38-T6 specimens, given in millimeters.

The values of the Chaboche model material parameters were determined by using the
Interior-Point optimization algorithm to find the best fit of the plastic strain–stress curve for the
experimental data recorded for axial loading at midlife [49]. The value of m = 3 decomposition parts
of the backstress tensor was found to be optimal. Determined material parameters are given in Table 3.
All the calculations were further performed analytically, using own-developed Matlab code, employing
the tensor algebra. The strain tensor was used as a controlled quantity and the stress tensor increments
were determined for the corresponding strain tensor increments.

The results of the cyclic stress–strain response calculations for fully reversed axial straining are
shown in Figure 5. The Chaboche model with correctly determined parameters resulted in accurate
modeling of the stress response for several strain amplitudes.

Table 3. Chaboche model material parameters determined for PA38-T6 aluminum alloy.

C1, MPa C2, MPa C3, MPa γ1, - γ2, - γ3, - R, MPa

1.3723× 105 5.3704× 104 1.6667× 104 7.8078× 103 1.9759× 103 459.3 141.1
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Figure 5. A comparison of experimental and calculated cyclic midlife axial stress–strain response of
PA38-T6 aluminum alloy.

4. Results

4.1. Shear Stress Distribution Comparison

The shear stress distributions along the radial direction, according to the different shear strain
levels determined by the aforementioned approaches, are shown in Figure 6. For this purpose, twice the
theoretical thickness of the real specimen (Figure 4) was assumed to best show the differences in shear
stress distribution. In the first step, the shear stress distribution for a given shear strain level on the
surface was calculated using the Chaboche model. Based on this distribution, the torque was calculated
using Equation (1), and then the shear stress distribution was determined using other approaches for
the same torque value. This procedure was applied since, in the case of the Chaboche model, the shear
stress value is calculated based on the shear strain. With other methods, the shear stress value is
determined based on torque. It should be noted that the most important quantity is the shear stress on
the specimen’s surface. In reality, it falls between the values resulting from purely elastic and purely
plastic solutions.

Based on the similarity between experimental values of stress under axial loading and values
calculated using the Chaboche model (Figure 5), it was assumed that when torsion occurs, the shear
stress determined using the Chaboche model is closer to the actual values than when it is obtained using
other selected approaches. It was then concluded that for high levels of plastic strain, the midsection
approach and the purely plastic solution reflect the real values of the shear stress quite well (Figure 6a,b).
However, as the strain level decreases and approaches the purely elastic state of deformation, the elastic
solution gives better results (Figure 6c,d). Generally, the elastic solution overestimates shear stress
with higher strain levels. On the contrary, the midsection approach and the purely plastic solution
underestimate shear stress. The underestimation is very small for high levels of strain (Figure 6a,b),
while it is higher for small strain levels (Figure 6c,d).
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Figure 6. A comparison of the shear stress distribution for the specimen’s theoretical, oversized
thickness for (a) γ = 0.0139, (b) γ = 0.0069, (c) γ = 0.0052, (d) γ = 0.0035.

4.2. Application of the Selected Methods to Experimental Data Analysis

In Figure 7, experimental fatigue life was presented against applied shear strain amplitudes.
Results were fitted with a power curve. Shear stress was calculated using the midsection method for
the purpose of the presentation only. For four selected levels of strain, midlife hysteresis loops were
presented to show the plastic-to-total strain ratio with respect to loading level. The applied loading
ranges resulted in various stress–strain responses, from almost perfectly elastic to having a high share
of plastic strain.

Figure 8 presents the shear stress distribution along the specimen radius obtained using the
selected methods for different shear strain levels. The difference compared to the data shown in
Figure 6 is that in the case of elastic, plastic, and midsection solutions, the shear stress was calculated
directly from the torque measured during the fatigue tests using a load cell. The actual specimens’
diameters were considered as well. Using the Chaboche model, the shear stress was calculated based
on the measured shear strain, regardless of the real torque value. It can be seen that for the highest
level of loading, i.e., γ = 0.0139 (Figure 8a), the surface shear stress determined from torque using the
midsection and a perfectly plastic solution was very close to the surface shear stress calculated using
the plasticity model. The elastic solution gave higher values. The same observation was made for
other relatively high levels of loading, namely, γ = 0.0121, 0.0104, and 0.0087 (black dots in Figure 7).
A noticeable discrepancy between the results obtained from the plasticity model, midsection and the
plastic solution began from γ = 0.0069 (Figure 8b). For that level of shear strain amplitude, the surface
shear stresses determined using the Chaboche model were higher than those calculated using the
midsection and plastic methods. Similarly, so was the stress obtained from using the elastic solution.
In the case of γ = 0.0052, the surface shear stress calculated from the plasticity model, midsection,
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and plastic solution was nearly the same (Figure 8c). However, the whole shear stress distribution
curve based on the Chaboche model is below the midsection and plastic solution. Again, the elastic
approach gave higher values. For the lowest examined level of loading (γ = 0.0035), the surface shear
stress from the midsection and purely plastic solution is considerably higher than the stress calculated
by the Chaboche model (Figure 8d).

50,000

Figure 7. Shear strain amplitudes vs. fatigue life given in reversals for fully reversed torsion of PA38-T6
tubular specimens with midlife hysteresis loops presenting plastic strain level for selected levels of
total strain.

In general, it is worth noting that if the shear stress distribution curve resulting from the
application of the Chaboche model lies above the midsection and plastic values (Figure 8a,b),
the experimental torque value was lower than expected from the plasticity model and vice versa.
The purely elastic approach always resulted in surface shear stress higher than stress obtained using
other applied methods, which seems to be obvious. Although the PA38-T6 aluminum alloy was
found to be isotropic, quite cyclically stable, and to follow the Masing behavior, the application of
the plasticity model did not offer a significantly better solution than other, much simpler methods.
Stress evolution during the experiments can be given here as an explanation.

In Figure 9, the Huber–Mises midsection equivalent stress histories are presented. Stresses from
the beginning of the test to midlife were more stable for high strain amplitudes. The least stability can
be seen in the loading levels that result in stress values close to the cyclic yield stress (the curves with
black dots). The consequence of this instability is differences in midlife stress values for low levels
of loading, as shown in Figure 10 (black hysteresis loops). Similar behavior was also found by other
authors [50,51]. A much more sophisticated and complicated cyclic plasticity model would have to be
used to describe this phenomenon, which would make its application less practical.
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Figure 8. A comparison of the shear stress distribution obtained using selected methods for (a) γ = 0.0139,
(b) γ = 0.0069, (c) γ = 0.0052, (d) γ = 0.0035.
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Figure 10. Right-upper quarters of hysteresis loops for (a) axial and (b) torsional loading; for torsion,
the midsection stresses are presented.

Two quantities often used in fatigue analysis were further evaluated and compared, based on
selected approaches to shear stress determination. The first was the maximum surface shear stress.
The best-fit power-law shear-stress–fatigue life curves are presented in Figure 11. The curves for
the midsection approach and perfectly plastic solution are almost identical. The data points for the
Chaboche model are also very close, except for the lowest level of loading. In the case of an elastic
solution, the curve is located significantly above the others. If only stress values are considered, about a
10% difference exists between plastic or midsection and elastic solutions. However, due to quite small
slopes of the curves, that difference results in fatigue lives eight times higher. In the same figure,
a ”hybrid“ curve was also presented. It was fitted for midsection value points corresponding to the six
highest levels of strain and one elastic value point corresponding to the lowest level of strain, for which
an almost perfectly elastic response was observed. Such a curve seems to be the most adequate.

The second selected quantity was a sum of plastic and positive elastic strain energy density,
similar to the case of the Gołoś–Ellyin energy parameter (compare (15)). Calculated values of
energy are presented in Figure 12. This quantity turned out to be less sensitive for the shear stress
determination approach, even for the elastic solution. Differences between the best-fit curves for the
midsection approach or the plastic and elastic solutions in terms of fatigue life were approximately 15%.
The explanation can be seen in Figure 13, where shear strain hysteresis loops according to different
stress determination methods were plotted for γ = 0.0139. Compared to the hysteresis loop obtained
using the plasticity model, the hysteresis loop based on the elastic solution has stress underestimated
for the lower strain range and overestimated for the higher range. However, these differences even
each other out and the resulting energies are quite similar.
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Materials 2020, 13, 5583 13 of 16

Cyclic hardening is another phenomenon often investigated by researchers [52–54]. The interpretation
of the experimental results is strongly related to the applied method of shear stress determination.
To support this conclusion, the midlife Huber–Mises equivalent peak stresses from axial and torsional
fatigue tests are presented in Figure 14 with a superimposed fragment of the monotonic tension stress–strain
curve. For torsion, the equivalent stress was calculated based on the surface shear stress determined using
the selected methods. A moderate cyclic axial hardening can be observed. If the elastic solution was applied
for the shear stress determination, a higher amount of cyclic hardening under torsion could be found.
This observation may be further interpreted as anisotropy in yield stress and hardening [55,56]. However,
if the midsection or plastic solution were applied, the equivalent stresses under axial and torsional loading
would be quite similar.
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Figure 14. Cyclic midlife hardening analysis by application of different methods of shear
stress determination.

5. Summary

Based on the performed analyses of the experimental results of fatigue tests on thin-walled tubular
specimens of PA38-T6 aluminum alloy, the following conclusions can be drawn:

1. None of the considered approximate solutions can determine the exact value of surface shear
stress for tubular specimens under elastic–plastic cyclic torsional loading.

2. Using the midsection approach and purely plastic solution for high strain levels, it was found that
values of surface shear stress were very close to the values obtained using the Chaboche nonlinear
kinematic model, calibrated using the experimental data for the axial loading.

3. The largest differences between shear stress values calculated using the plasticity model and other
methods were found for the low strain ranges, close to the cyclic yield limit.

4. When the ratio of inner and outer diameters of tubular specimens is close to 1, the effect of the
nonuniform shear stress distribution through wall thickness is less pronounced.

5. It was confirmed that the recommendations of the ASTM standard can be successfully
implemented to approximately determine the surface shear stress under torsion; however, if the
applied loading levels cover the boundary between elastic and elastic–plastic deformation,
it should be carefully considered which loading levels justify choosing a purely elastic or
midsection approach.

6. The methods discussed are not valid for the full range of loadings. The selection of the approach
should be based on the applied loading level and observed material response.
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7. The calculated values of shear stress can have a strong impact on the fatigue life prediction,
depending on the selected fatigue damage parameter. Thus, it is recommended to clearly
indicate how the shear stress values are determined in a study when presenting the results
of an experiment.
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