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Abstract: Electrical resistivity is an important physical property of concrete, directly related to
the chloride-induced corrosion process. This paper analyses the surface resistivity (SR) and bulk
resistivity (BR) of structural lightweight waste aggregate concrete (SLWAC). The studied concrete
mixture contained waste material—red ceramics fine aggregate and artificial expanded clay coarse
aggregate. Red ceramic is a frequent waste material remaining after the demolition of buildings
or unsatisfactory building material production and is among the least used construction waste.
Therefore, its use is desirable in terms of sustainability; in some cases, it can reliably replace the
conventional aggregate in a concrete mixture. The relationship between SR and BR was determined in
the case of standard specimens and mechanically damaged specimens (to 50% and 100% of ultimate
strength capacity—USC). Two different instruments were utilised for the investigation—a 4-point
Wenner probe meter and an RCON tester. The results of standard specimens support the theoretically
derived correction ratio, but in the case of mechanically damaged specimens, the ratio is more
scattered, which is related to the mechanical damage and the amount of fibre.
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1. Introduction

The durability of concrete is defined as its ability to resist a harsh environment (weathering
action, chemical attack, abrasion, or any other deterioration process) while retaining its original
form, quality, and serviceability [1]. The concrete structure durability is directly linked to a design of
sustainable construction, which can also involve the reuse of the waste material. Therefore, to specify
the knowledge about usage of waste material is of high interest by many research groups because it is
generally known that the amount of waste increases while the natural resources of commonly used
aggregates are dwindling [2–4].

In this case, the red ceramic waste aggregate was used as a fine fraction of a mixture. It remained
after the crushing and grinding of airbricks, which were low quality and could not be sold to customers.
The original product was unused, and therefore, the waste aggregate was clean, without any remains
of mortar. The studied structural lightweight waste aggregate concrete (SLWAC) designed and tested
in [5] consisted of the waste red ceramic fine aggregate (WRCFA), expanded clay coarse aggregate
(ECCA), Portland cement, and copper coated crimped steel fibre (CCCSF). Fibre was added to improve
the mechanical characteristics, mostly the flexural strength. The influence of crimped steel on the
properties of concrete has been studied, e.g., in [5,6]. The mixture was designed to experimentally test
the effect of the fine red ceramic aggregate on mechanical characteristics. The used aggregates were
pre-soaked, and it was also investigated whether it is possible to design a mixture using the water
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trapper only in the aggregate. Afterward, the research about SLWAC durability related to chloride
ingress was conducted [7]. The diffusion coefficient of chloride penetration was determined by the
surface electrical resistivity measurements and the immersion method NT Build 443 [8]. The evaluation
of the mechanical and chloride related durability characteristics of the mixture without reinforcement
was the aim of the article [7]; the properties of SLWAC were also compared to the ordinary concrete
mixture to observe its quality in terms of chloride diffusion.

The effect of mechanical loading on the durability of the concrete has been a subject of many
research groups, e.g., [9–20]. The relationship between damage and transport properties of concrete has
been investigated for more than two decades. In one study [10], an experiment was performed on the
chloride migration into the ordinary concrete, which was damaged by different levels of compression
and the chloride diffusion coefficient of unloaded concrete was determined by NT Build 492 [21].
The chloride diffusion coefficient is a crucial material parameter for the modelling of realistic behaviour
and computation of the service life of concrete structures exposed to chloride penetration. The diffusion
of chloride ions into concrete may be influenced by several factors (concrete material properties,
temperature, age, moisture content and environmental conditions), which were investigated in the
undamaged concrete [22–27]. It was proven that chloride transport properties are directly connected to
the porosity of undamaged concrete. When the concrete is damaged by the applied load and subjected
to a chloride environment, the chloride ingress into concrete is a rapid process, which is significantly
influenced by the extent of the damages in the concrete. This process is analogous to the fact that the
permeability of damaged concrete increases by several orders of magnitude, which was described and
proven in [28]. The effect of mechanical load on the diffusivity of concrete was investigated in the
reinforced concrete beam subjected to flexural load in research [11], and similar studies were conducted
in [12–14].

In the case of modelling of the construction’s service life and assessing the bearing capacity of
the concrete structure, it is also necessary to consider the cracking and changes in the pore structure
of the concrete. Some research has presented the models for analysing the simultaneous effects of
mechanical and environmental loads of concrete structures [15]. One of the main inputs into the model
is a diffusion coefficient, which should involve the effect of mechanical damage [16,17]. Therefore,
finding a sufficient methodology to determine the diffusion coefficient of damaged concrete is necessary
to ensure proper modelling and prediction of the service life.

The diffusion coefficient can be determined by many methods, e.g., immersion methods [8,29,30],
rapid chloride permeability test [21,31,32], or resistivity techniques [33,34]. NT Build 443 [8] is recommended as
a reference test method for chloride penetration into concrete [35], but its highly labour- and time-demanding
process of testing has led to the development of more effective procedures, such as the electrical resistivity
measurements [36].

Electrical resistivity can be measured on the surface of the concrete (SR, [33]), or as the bulk
electrical resistivity (BR, [34]) on a concrete core. The results of bulk resistivity should be more precise,
but in practice, it is not always possible to drill a core out of the structure for testing of the bulk
resistivity; therefore, the measurement of surface electrical resistivity comes in handy. However,
the accuracy of surface resistivity may be influenced by the amount of pressure on the concrete and the
location of the measurements on the surface.

In this study, one of the main aims was the identification of the relationship between the addition
of fibre to the SLWAC and its consequent change in the electrical resistivity obtained by the two
methods (surface and bulk electrical resistivity) on the standard cylindrical specimens. A correlation
may be found between these two methods, which may depend on the composition and volume of fibre.
The determined correction ratio may be used to convert SR to BR for the calculation of the diffusion
coefficient. Afterwards, mechanically damaged specimens were tested to determine the electrical
resistance of the loaded concrete. The influence of partial and full loading on the electrical resistance of
SLWAC was investigated. Two non-destructive testing instruments were used in this project to measure
the electrical resistivity of concrete to ensure the accuracy of the data; the four-point Wenner Probe
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was used to measure SR according to [33], and the RCON tester [37] was utilised according to [34]
to measure BR at a wide range of frequencies to assess the influence on the results of BR. Although
measuring the bulk electrical resistivity by RCON is considered non-destructive, one should note that,
in practice, the core needs to be drilled out of the structure.

Based on the information mentioned above, the objectives of the article have been set as:

• Evaluation of the application and the precision of two advanced non-destructive tests (NDT) on
the new types of specimens and comparison to the standard cylindrical specimens;

• Investigation of SLWAC electrical properties related to a different amount of steel fibre;
• Investigation of SLWAC electrical properties of differently loaded samples;
• Investigation of SLWAC electrical properties in the combination of those two groups (different

amount of fibre and different mechanical damage);
• Evaluation of the experimental correlation of the bulk and surface resistivity of concrete on all

types of the SLWAC mixtures.

2. Materials and Preparation of Specimens

2.1. Used Materials and Mixture Composition

The waste red ceramic fine aggregate (WRCFA, Figure 1a), with a loose density of 1183.8 kg·m−3

and absorptivity of 46%, and expanded clay coarse aggregate (ECCA, Figure 1b), with a loose density
of 318.8 kg·m−3 and absorptivity of 36%, were used for creating the mixture. These aggregates were
pre-soaked, and no additional water was used in the mixture. Another component of the mixture
was Portland Cement I 42.5 (Warta cementownia, Trebaczew, Poland). As a reinforcement, the copper
coated crimped steel fibre (CCCSF, Figure 1c) was added in various percentages of the volume of
the mixture. The amounts of specific components are given in Table 1. The process of selecting the
material, design and testing of the aggregates, fibre, and resulting mechanical characteristics of the
mixture are described in detail in [5]; therefore, it is not further presented in this article.

Figure 1. Waste red ceramic fine aggregate (a); expanded clay coarse aggregate (b); copper coated
crimped steel fibre (c).

Table 1. Mixture proportions of a cubic meter of mixture [5].

Composition Quantity (kg·m−3) Absorbed Water (kg·m−3)

WRCFA-dry 378.38 322.33
ECCA-dry 247.07 138.98

Cement 320.49 -
CCCSF, Vf = 0.0% 0.0 -
CCCSF, Vf = 1.0% 78.0 -
CCCSF, Vf = 1.5% 117.0 -

Based on Table 1, one should note that three types of concrete were evaluated, one which does not
contain any fibre and two with fibre reinforcements of 1.0% and 1.5%. The volumes of added fibre
represent the most common amount of fibre added to concrete, because adding less than 0.5% does not
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noticeably influence the concrete characteristics, and adding more than 1.5% requires changes of the
mixing procedure or adding an admixture to provide good workability.

2.2. Characteristics of the Mixture

The concrete was designed to observe the characteristics of a mixture made of fine red ceramic waste
aggregate. The composition was created based on the requirements of limited density (1800 kg·m−3),
using only the pre-soaked aggregate and no more additional water, limited amount of cement, good
workability of the mixture, and closed structure of the specimen. These requirements were fulfilled,
the density of concrete was determined to be 1366.63 kg·m−3 for 0% of fibre, 1450.29 kg·m−3 for 1.0% of
fibre, and 1484.89 kg·m−3 for 1.5% of fibre. The consistency of concrete was determined according
to [38] as S2, for 0% and 1.0%, and S1 for 1.5%. The compressive strength was tested on standard
cubes [39], and it was measured as 15.4 MPa for 0% of fibre, 14.7 MPa for 1.0% of fibre, and 17.1 MPa
for 1.5% of fibre. Additionally, other characteristics, namely splitting tensile strength, static modulus of
elasticity, dynamic modulus of elasticity, flexural characteristics and shear strength, were tested and
can be found in [5], but these characteristics are not so important for this research.

2.3. Preparation of Specimens

The specimens in the form of three cylinders of every type of mixture with a diameter of
approximately 100 mm and a height of 220 mm, and one plate of every kind of mixture with dimensions
of approximately 90 × 600 × 600 mm were cast (see Figure 2), and after unforming they matured in
water for 28 days. Afterward, the cylinders were kept in water for the whole time, but the plates were
cut into 4 pieces with dimensions of 90 × 300 × 300 mm and dried in a dryer for three days, because
the intention was to test their thermal characteristics in a machine that requires these dimensions and
dried specimens. The specimens were prepared and loaded in laboratories of Koszalin, University
of Technology and cut and tested in the laboratories of VSB—Technical University of Ostrava—as a
part of projects SGS SP2019/120 and SGS SP2020/126. Before the resistivity testing, the plates were
also saturated.

Figure 2. Cylinders (a); plate (b); how the plate was cut in 4 pieces (c).

2.4. Loading and Cutting of Samples

The plates were mechanically damaged 120 days after casting, with loadings of 0%, 50% and 100%
of their ultimate strength capacity (USC). The reason for the black and white staining of the plates in
Figure 3a is for the use of a method based on optical measurements of strains with the digital image
correlation system [40]; however, the resulting strains of the plates were not used in terms of electrical
resistivity testing, and therefore are not listed in this article.



Materials 2020, 13, 5501 5 of 13

Figure 3. Loading of the plate (a); how the loaded plate was cut into 3 pieces (b).

The loading of the sample is shown in Figure 3a. After the loading, the specimens were cut
vertically into three pieces, as shown in Figure 3b. The reason for this last cut is the limited dimensions
of the sample for the bulk resistivity measurements. After the final cutting, all of the samples were
measured, and the dimensions are given in Table 2, where L is the length, w is the width, and h is
height of the specimen. The resistivity measurements were conducted after almost a year after the
loading; therefore, the specimens were definitely matured when they were tested. The dimensions of
cylinders are given in Table 2 as well, and L is the length and d is the diameter of the cylinder.

Table 2. Dimensions of the cylindrical and plate specimens.

Amount of
Fibre 0% of USC 50% of USC 100% of USC Cylinders

Vf - L
(mm)

w
(mm)

h
(mm)

L
(mm)

w
(mm)

h
(mm)

L
(mm)

w
(mm)

h
(mm)

L
(mm)

d
(mm)

0.0%
X 297 100 87 301 99 90 296 99 89 223 104
Y 297 99 88 299 99 90 297 99 89 222 103
Z 297 89 89 299 89 89 297 99 89 222 104

1.0%
X 294 99 95 296 99 94 296 99 93 224 102
Y 295 99 94 296 99 94 298 99 94 221 103
Z 296 95 90 297 93 90 297 94 90 223 104

1.5%
X 298 96 89 295 98 88 295 101 88 222 104
Y 297 96 89 296 99 88 296 94 88 222 103
Z 297 93 82 296 88 88 296 91 88 223 103

3. Methodology of Resistivity Measurements

Electrical resistivity is a characteristic of a concrete’s ability to withstand the passage of an
electric current. It can be used for various types of problems—to identify early age characteristics
of fresh concrete, to determine the moisture content and the connectivity of the micropores in the
concrete, to detect and monitor the cracks in concrete, etc. [41]. Moreover, the specific resistivity is
an indirect measuring method of the degree of chloride ion diffusion. The factors that may affect the
concrete electrical resistivity are w/c ratio, aging, pore structure and specimen geometry, moisture
content, temperature, electrode spacing and presence of reinforcement. There are several terms
related to the resistivity methods, namely resistance and conductivity, which may cause confusion.
Conductivity represents the conductivity of concrete and the inverse equivalent of resistance. Resistance
is theoretically defined similarly to resistivity, but resistivity is normalised to unit cross-section and
length [42].
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As has been mentioned above, the chloride diffusion coefficient can be indirectly determined by
the resistivity measurements by the Nernst–Einstein equation—Equation (1). The procedure of the
measurement and calculation process has been described in several papers [23,24,43].

D =
R·T

Z2·F2 ·
ti

γi·Ci·ρBR
(1)

where D is the diffusivity of the chloride ion (m2
·s−1); R is the universal gas constant (J/K·mol); T is

the absolute temperature (K); Z is the ionic valence (-); F is the Faraday constant (C/mol); ti is the
transfer number of chloride ion (-); γi is the activity coefficient for chloride ion (-); Ci (C/mol) is the
concentration of ions i in the pore water, and ρBR is the bulk electrical resistivity (Ω·m).

3.1. Surface Resistivity

The Wenner probe (Proceq, Schwerzenbach, Switzerland), used for measuring of the SR
(see Figure 4a), consists of four electrodes with a spacing of approx. 50 mm. External electrodes
applied electric current, and the internal electrodes measure the difference in electric potential [33].
In standard procedures, the method is used on continuously saturated concrete cylindrical samples;
in this study, the procedure was also undertaken for concrete plate specimens, which were dried and
then saturated. The surface resistance was measured on all four longer sides, after which the mean
and standard deviation were evaluated.

Figure 4. Testing of the surface resistivity (SR) with the Wenner probe (a); bulk resistivity (BR) with
RCON (b).

3.2. Bulk Resistivity

RCON is a non-destructive testing tool for measurment of the BR [37] (see Figure 4b). The impedance
Z (Ω) was calculated from the measured values of voltage and applied current. The impedance phase can
be calculated by determining the difference between the voltage and current phases. During the experiment,
the impedance phase was obtained at almost zero, which means that the measured impedance was in fact
the resistance of the concrete.

3.3. Correlation Between the Surface and Bulk Resistivity

It was derived in [44] that the ratio of two different resistivity types is equal to 2.63 for the cylinder
with a diameter of 100 mm, length of 200 mm and probe spacing of 50 mm. The theoretical ratio of
surface and bulk resistance was calculated in [45] as 0.33. The correlation between bulk and surface
resistivity data has been studied by many research groups, e.g., [25,27,46] and it was observed that in
the case of different groups of binary and ternary mixtures, the coefficient of determination (R2) for
linear trend line was higher than 0.8 and sometimes close to 1.

In this project, the correlation between surface and bulk resistivity of undamaged SLWAC without
reinforcement was determined based on the undamaged standard cylindrical specimens. Then, the influence
of the amount of fibre on SR and BR was obtained. The last correlation related to the effect of mechanically
damaged concrete with and without reinforcement was studied related to the two methods of measuring
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the electrical resistivity. Based on the research [44], the theoretical ratio of two different types of resistivity
for the analysed cylinders was calculated as 2.53 and this value was also used for the evaluation in this
paper. New ratios for the reinforced and damaged specimens are determined in the next section.

4. Results and Discussion

4.1. Results of Surface Resistivity

For evaluation of the results, the standard cylinder specimens were considered as the reference
samples. The results of the surface resistivity of cylinders and plates can be seen in Figure 5. The results
of measured surface resistivity in the form of mean value and standard deviation for all samples are
given in Table 3. The variance of the measured values displayed through the standard deviation was
two to three times smaller for the cylinders than for the plates. This is likely caused by the geometry of
electric wave propagation and is reflected in both surface and bulk resistivity measurements.

Figure 5. Surface resistivity of standard cylinders and plates with different amount of fibre (Vf) and
values of load (USC).

Table 3. Results of surface resistivity of structural lightweight waste aggregate concrete (SLWAC).

- Cylinders Plates

- Mean SD Mean (kΩ·cm) SD (kΩ·cm)

Vf (kΩ·cm) (kΩ·cm) 0% of
USC

50% of
USC

100% of
USC

0% of
USC

50% of
USC

100% of
USC

0.0% 28.00 0.71 26.41 23.33 12.16 2.59 2.59 1.77
1.0% 17.00 0.70 10.41 15.25 11.83 1.93 1.87 2.67
1.5% 17.25 0.82 17.83 16.91 14.50 3.38 3.09 2.59

It can be observed that SR in the case of standard cylinders decreases with the amount of fibre
(39% difference for 1.0% of fibre and 43% difference for 1.5% of fibre in comparison to 0% of fibre),
which can be caused by disruption of structure homogeneity or even the corrosion of the fibre.

In plates with 0.0% of loading, the resistivity also decreases. It is interesting that it is not a gradual
decline, because the specimens with 1.5% of fibre report 28% higher resistivity than specimens with
1.0% of fibre and 35% lower than specimens without reinforcement. The reason could be the pores in
the structure formed by the higher amount of fibre. A similar trend can be seen also in the 50% loaded
plates; SR in the case of 1.0% of fibre is 35% lower than 0.0% and 1.5% is only 28% lower than 0% of
fibre. The plates loaded to 100% even have an opposite trend; the resistivity of specimens without
reinforcement is about 3% higher than specimens with 1% of fibre, but it is 20% lower than in the case
of 1.5% of fibre, which indicates that when the SLWAC is more reinforced, the surface resistivity in the
case of full mechanical damage even increases.
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4.2. Results of Bulk Resistivity

The same approach for the evaluation of bulk resistivity results was used and the reference
standard cylinders and plates were tested. The results can be seen in Figure 6. It can be observed
that BR in standard cylinders decreases about 46% for 1% of fibre and then slightly increases (45% in
comparison to 0.0% of fibre) for 1.5% of fibre. The results of bulk resistivity in the form of mean value
and standard deviation are given in Table 4.

Figure 6. Bulk resistivity of standard cylinders and plates with different amount of fibre (Vf) and values
of load (USC).

Table 4. Results of bulk resistivity of SLWAC in the form of mean value and standard deviation.

- Cylinders Plates

Mean SD Mean (kΩ·cm) SD (kΩ·cm)

Vf (kΩ·cm) (kΩ·cm) 0% of
USC

50% of
USC

100% of
USC

0% of
USC

50% of
USC

100% of
USC

0.0% 12.60 0.12 11.09 9.45 5.75 0.75 0.85 0.25
1.0% 6.75 0.18 3.09 4.66 3.61 0.19 0.11 0.45
1.5% 6.93 0.24 5.61 4.19 4.38 0.65 0.57 0.74

In the case of plates with zero and full loading, the resistivity has the same trend as the standard
specimens; specimens with 1.0% of fibre report a reduction in BR as: 30% for zero loading and 20%
for full loading in comparison to unreinforced plate specimens. Specimens with 1.5% of fibre report
a reduction in 20% in the case of zero loading and 11% in the case of full loading in comparison to
unreinforced plate specimens. Gradual decline dependent on the amount of fibre can be seen in the
case of 50% of loading (about 20% for 1.0% of fibre and 23% for 1.5% of fibre).

4.3. Correction Ratio and Correlation of Results

The correction ratio was determined by a simple division of surface and volume resistivity [44].
The ratios for all three concrete mixtures in the case of standard cylindrical specimens are given in
Table 5.

Table 5. Mean correction ratio of surface and bulk resistivity.

Amount of Fibre Cylinders Ratio (-) Plates Ratio (-)

Vf - 0% of USC 50% of USC 100% of USC

0.0% 2.21 2.38 2.47 2.12
1.0% 2.56 3.36 3.27 3.27
1.5% 2.31 3.18 4.03 3.31
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It can be seen, that results of cylinder specimens are close to Morris’s 2.53 and the difference is
approximately 7% on average. One should note that the ratio increases for 1% of fibre in comparison
to 0% of fibre and then slightly decreases for 1.5% of fibre in comparison to 1% of fibre. Of course,
it is necessary to take the results with caution because the measurement of surface resistivity has a
relatively high inaccuracy, as has been proven, e.g., in [23]. While considering specific tolerances, it is
possible to declare these results as sufficient.

More interesting are the resulting correlations between surface and volume resistivity in plate
specimens, where there are different values of the amount of fibre and specimens also partially and
fully loaded. These correlations are also listed in Table 5. In unreinforced plate specimens, the ratio is
similar to Morris’s even when the specimens were loaded. For 1.0% of fibre, the ratio is about 30%
higher than Morris’s as well, even in the case of loaded specimens, and it seems it is not highly related
to the loading. Plates with 1.5% of fibre report an increasing in the ratio by about 39% on average in
comparison to Morris’s, but the ratio is lower in the case of zero loading compared to 1.0% of fibre
but higher than 0.0% of fibre. In the case of half loading, the ratio increased gradually by about 23%
compared to 1.0% of fibre. For the full loading, the ratio increased only about 1% in comparison to
1.0% of fibre.

To evaluate the correlation between SR and BR, the coefficient of determination (R2) was chosen,
which is shown for all the cases in Figures 7–9.

Figure 7. Correlation of surface and bulk resistivity on the cylinder specimens with coefficient of determination.

Figure 8. Correlation of surface and bulk resistivity on the plate specimens with coefficient of determination.
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Figure 9. Correlation of surface and bulk resistivity on the plate specimens with coefficient of
determination on different groups according to the loading and the amount fibre.

Figure 7 shows that the cylindrical specimens report a coefficient of determination equal to 0.9898,
which demonstrates a high degree of correlation between the SR and BR tests. The plate specimens
report a coefficient of determination equal to 0.814 and it can be seen in Figure 8 that there are large
deviations from the linear regression. The degree of correlation agreement in the case of separate
groups can be observed in Figure 9. Its value is much smaller in the group with the plates loaded to
100% (0.0394) and the group with concrete reinforced by 1.5% of fibre (0.3683). The reason for such a
low coefficient of determination could be the fact that the surface resistivity is affected by the cracks
and displacement of the individual components of concrete and reinforcement, while in the case of
bulk resistivity, the electric current passes through the entire volume of the specimen, and the cracks
on the surface do not affect the results. The other groups show a coefficient of determination over 0.85.

5. Conclusions

1. Measuring the surface resistivity is indisputably very advantageous because the construction
does not need to be destroyed for the test. However, it is necessary to consider the correction ratio
between surface and bulk resistivity, namely for determining the diffusion coefficient, where the
bulk resistivity is an essential input into the calculation. The determination of the correction ratio
should be of high interest in the case of other concrete mixtures tested by the surface resistivity
method to predict their durability.

2. In this study, the correction ratio and correlation in terms of the coefficient of determination of
bulk and surface resistivity of the SLWAC were investigated, finding:

(a) The correction ratio of standard cylinder samples is in proper agreement with the previous
research study regardless of the volume of fibre.



Materials 2020, 13, 5501 11 of 13

(b) Correction ratios of plates with the different values of preliminary load and different
amount of fibre have more significant scattering (between 2.12 and 4.03), and it is related
to the load damage and the amount of fibre.

(c) The coefficient of determination of cylindrical samples between SR and BR is 0.9898. In the
case of the plates, the coefficient of determination is 0.814 without the consideration of
amount of fibre and the load value.

(d) Both bulk and surface electrical resistivity are well correlated for standard cylinders,
for non-loaded or 50% loaded plates samples, also for plates with 0% and 1% of fibre
content, as evidenced by the high value of the coefficient of determination.

(e) Conversely, for the plates containing 1.5% of fibre and plates loaded to 100%, the coefficient
of determination is very low and shows a very low correlation. These conclusions deserve
further research also in the case of other reinforced waste aggregate mixtures.

3. It can be observed that the resistivity is also correlated to the compressive strength. Based on
results found in [5], the compressive strength was lower in the case of 1.0% of fibre and the same
tendency can be seen in the case of resistivity. It would be desirable to evaluate the influence of
compressive strength to resistivity in the case of SLWAC and also other waste concrete mixtures.
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