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Abstract: The electrochemical behaviors of the Ni-base superalloy CMSX-4 were carried out in
3.5 wt.% NaCl solution using electrochemical technique. The electrochemical corrosion process was
divided into four stages, and reactions at the alloy surface and corrosion morphology at each stage
were analyzed. The passivity mechanism at the stable passivation stage and the occurrence of pitting
corrosion at the transpassivation state were discussed especially. The corrosion parameters including
Ecorr, Epass, ipass and Epit were compared at different temperatures to reveal the relationship between
the temperature and the corrosion resistance properties. The corrosion products were investigated
by the aid of X-Ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). By designing
different preoxidation procedures, the corrosion mechanism of oxide scales was analyzed for the
preoxidized samples.

Keywords: electrochemical corrosion; Ni-base superalloy; corrosion products; SEM; preoxidation

1. Introduction

Ni-base superalloys have the ability to resist a wide variety of corrosive environments and loads
over extended periods of time, becoming unique high-temperature materials used in turbine blades of
industrial processes [1–4]. The CMSX-4 superalloy is a versatile alloy which has excellent corrosion
resistance characteristics, and is widely applied in the fields of aircraft, marine engineering, and some
military equipment [5–7]. In order to prolong the using life of the CMSX-4 superalloy, considerations
should be given to its corrosion behaviors, together with their strong dependence on temperature and
preoxidation procedures.

A variety of research on superalloys focus on the high-temperature oxidation and hot corrosion.
The oxidation behavior of the single-crystal PWA 1438 at 950 ◦C in flowing air is characterized by the
formation of a multi-layered oxide scale [8]. Oxidation of Co-base superalloys at high temperatures in air
happens in two stages: a transient period and a subsequent steady-state period in which several oxides

Materials 2020, 13, 5478; doi:10.3390/ma13235478 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-1241-1574
https://orcid.org/0000-0002-7458-4729
http://dx.doi.org/10.3390/ma13235478
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/23/5478?type=check_update&version=2


Materials 2020, 13, 5478 2 of 11

coexist in different layers [9]. The K52 alloy forms mainly chromia scale that exhibits poor adhesion to
the substrate during oxidation in air at 800–1000 ◦C [10]. The high-temperature oxidations of superalloys
show the formation of multi-layered oxides [9–13]. The K40S superalloy suffers from accelerated
corrosion and forms non-protective layer with poor adhesion beneath the salt mixture deposit [14].
The corrosion products of the Ni-base superalloys by Na-Salts at high temperatures are porous and easily
spalled with laminar structure [15,16]. The high-temperature oxidation and hot corrosion in traditional
studies refer to chemical corrosion, failing to reflect the chemical and electrochemical reactions between
the alloys and corrosive electrolyte under complex service environment. Recently, several groups
tended to study the corrosion mechanism of nickel-based superalloys using electrochemical methods.
Electrochemical dissolution behavior of Nickel-based superalloy revealed that the presence of M23C6

carbides in the grain boundaries lead to the formation of a number of preferred sites for micro-corrosion
cracks at low current densities [17]. Electrochemical technique was also used to study the effect of the
amount of P phase in microstructure on corrosion properties of the UNS N26455 Superalloy due to its
selective dissolution [18]. Corrosion properties of the UNS N26455 Superalloy decreased as the TCP
phase concentration increased in the microstructure [19].

There are two problems in the research on the corrosion behaviors of the CMSX-4 superalloy.
(1) Though the CMSX-4 superalloy has high corrosion resistance, some issues including pitting
corrosion [5,20], intergranular corrosion [21], and stress corrosion [7,22] are studied in a very few
papers. Compared with general corrosion, local corrosion is more likely to happen and to induce
local failure of superalloys. (2) Practically, the corrosion process of the CMSX-4 superalloy is an
electrochemical process during service. Most papers about the electrochemical corrosion behaviors of
the CMSX-4 superalloy focused on low temperature and pressure [23,24].

In this work, the electrochemical behaviors of the CMSX-4 superalloy in 3.5 wt.% NaCl solution
were investigated to reveal its electrochemical corrosion process and the evolution from local pitting
corrosion to general corrosion. The relationship between the corrosion resistance properties and
the temperature was studied, together with the oxide films on the surface of the corroded samples.
The influence of preoxidation on the electrochemical behaviors of the CMSX-4 superalloy was discussed
to indicate the growth process and failure mechanism of oxide films.

2. Materials and Methods

2.1. Materials and SPECIMEN Preparation

The ingots of the alloys were prepared by vacuum induction melting (VIM) and the compositions
were measured by inductively-coupled plasma-optical emission spectroscopy (ICP-OES) at NCS
Testing Technology Co., Ltd., Changsha, China. Single crystal rods, with 13 mm in diameter and
170 mm in length, were directionally solidified using a conventional Bridgman method in a high rate
solidification furnace (ALD furnace, Hanau, Germany). The melting temperature was 1500 ◦C and
the withdrawal rate of the mold was 3.0 mm/min. The chemical composition of the chosen Ni-base
superalloy CMSX-4 is Ni-9.0Co-6.5Cr-6.0W-6.5Ta-5.6Al-3.0Re-1.0Ti-0.6Mo-0.1Hf (wt.%). Specimens for
electrochemical tests with a diameter of 13 mm and a thickness of 3 mm were machined from cast
bars with their longitudinal axis parallel to the <001> direction. They have the same microstructural
orientation. Before the tests, the surface of the samples was grinded with sandpaper (600#, 1000#, 2000#),
then polished to the mirror with Al2O3 polishing paste (1.0 µm). Prior to the tests, specimens were
rinsed with acetone, ethanol, and deionized water, and then dried in a drying oven.

2.2. Electrochemical Measurements

Electrochemical tests were performed using the aerated 3.5 wt.% NaCl solution which were
prepared with deionized water. Electrochemical tests were carried out using a standard three-electrode
system. The three-electrode system contained the specimen as working electrode, a saturated calomel
electrode (SCE) reference electrode, and platinum counter electrode. In order to study the influence of
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temperatures on the electrochemical behaviors of the CMSX-4 superalloy, the anodic polarization tests
were carried out using the Ag/AgCl electrode reference electrode in saturated KCl solution.

The specimens were immersed in the NaCl solution for 3 h to attain a relatively stable value of
open-circuit potential (OCP). Potentiodynamic polarization tests were performed using the PARSTAT
4000+ (AMETEK, Princeton, NJ, USA). The potential swept from the OCP value towards the anodic
direction at a scanning rate of 1.0 mV/s.

2.3. Specimen Characterization

The microstructure of the corroded specimens was examined by the S-3400N Scanning Electron
Microscopy (SEM, HITACHI, Hitachi, Japan). The corrosion products were analyzed using Energy
Dispersive Spectroscopy (EDS, mounted at the above SEM, HITACHI, Hitachi, Japan) and X-Ray
Diffraction (XRD, Rigaku Cooperation, Tokyo, Japan, D/max-3C X-ray diffraction operating at 40 kV
and 30 mA with Cu Kα radiation (λ = 0.15406 nm) from 10 ◦C to 80 ◦C).

3. Results and Discussion

3.1. Electrochemical Behavior of the CMSX-4 Superalloy

The anodic potentiodynamic polarization curves of the CMSX-4 superalloy in 3.5 wt.% NaCl
solution at 20 ◦C, 50 ◦C and 80 ◦C are shown in Figure 1. The potential was applied on the working
electrode at a scan rate of 0.167 mV/s starting from −0.1 mV to 1.0 V with respect to self-corrosion
potential. The electrochemical corrosion process included active dissolution region, stable passivation
region, transpassivation region, uniform oxygen evolution region.
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Figure 1. Anodic polarization curves of the CMSX-4 superalloy obtained at 20 ◦C, 50 ◦C, and 80 ◦C in
3.5 wt.% NaCl solution.

The anodic polarization curve at 20 ◦C was taken for an example. The CMSX-4 superalloy had
an OCP close to −285 mV (vs saturated Ag/AgCl), and as the potential became positive, the current
density increased rapidly. Anodic dissolution of alloying elements was controlled by activation
polarization [25]. The surfaces of the samples were smooth to the naked eye.

When the potential reached 198 mV, the value of current density was nearly 7.27 µA/cm2 and the
surface of the samples was in a passive state. Then the current density was almost constant within a
range of 198 mV to 331 mV, forming a passivation plateau. The formation of passive film layers for the
CMSX-4 superalloy started with the formation of the two-dimensional membrane structure in which
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H2O molecules and OH- ions can accelerated the dissolution of alloying elements, especially Ni, Al, Ti,
Cr, W and Ta. The principle reactions included:

n/2M + n/2H2O→ n/2MO + nH+ + ne− (1)

In which, M stands for metal elements including Ni, Al, Ti, Cr, W, and Ta. The produced H+ ions
entered the solution and the discharged anodic ions replaced the positions of the O2− ions on sample
surface. Or the active dissolution reactions of the alloying elements (Ni, Al, Ti, Cr, and Ta) occurred
simultaneously according to:

M→Mn+ + ne− (2)

Then the metal ions (Al3+, Ti4+, Cr3+ and Ta5+ etc.) reacted with the O2− ions to form metallic
oxides. The superalloys which can be resistant to severe corrosion must have a high Cr content,
in order to develop a Cr2O3 protective layer [26–29]. The effect of Cr on improving the corrosion
resistance of nickel-based superalloy is not only the formation of Cr2O3 is relatively stable, not prone
to catastrophic acid fluxing, but also the inhibition and stabilization effect on the formation of NiO [30].
The combination of electrostatic interaction and diffusion motion of molecules and ions caused the
redistribution of their positions and the formation of continuous, dense, even, and protective layers.
The passive films gave good corrosion resistance for withstanding extreme corrosive environment.

Above 331 mV to 650 mV, the CMSX-4 superalloy went into the transpassivation state, and the
current density increased with the increase of the potential again. Some corrosion pits developed in the
local areas of the samples at this stage, as shown in Figure 2. The existence of fine particulate matter or
the local depletion of alloying elements usually induce the formation of corrosion pits [25,31]. The pits
were found to occur randomly at dendrite core and interdendritic region by the aid of SEM, as shown
in Figure 3.
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The potential went on sweeping above 650 mV at which oxygen anodic evolution occurred.
The superalloy suffered general corrosion since then. Numerous pits, voids, and cracks (Figure 4) were
generated on the sample surface.
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In order to verify the above analysis, three-hour polarization have been tested respectively at
five potentials: 50 mV, 200 mV, 250 mV, 600 mV, and 900 mV. Current densities versus time during
polarization were recorded in Figure 5, and the initial and the final current densities were listed in
Table 1. The 50 mV was the potential at which the current density was very low and the dissolution of
metal surface hardly happened. Therefore, no oxides formed on the sample surface. At 200 mV and
250 mV, the final current density pertained to the same order of magnitude as the initial one which
evidenced the protective layers on the corroded surface. Of the two, 200 mV was more suitable for the
CMSX-4 superalloy to reach the passive state. Their current densities at each potential were very close
to the values measured in Figure 1. The current densities at 650 mV and 900 mV were high due to
serious corrosion.
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Table 1. The initial and final current densities during 3-h polarizations.

E vs. SCE (mV) Initial i (µA/cm2) Final i (µA/cm2)

50 0.74 0.006
200 20.14 28.97
250 43.35 17.22
600 963.25 248.92
900 7021.66 603.39

3.2. Influence of Temperature on the Electrochemical Behaviors of the CMSX-4 Superalloy

Electrochemical parameters that were used to describe the corrosion resistance, such as
self-corrosion potential (Ecorr), initial passive potential (Epass), passive current density (ipass),
critical pitting potential (Epit) at 20 ◦C, 50 ◦C, and 80 ◦C were obtained from Figure 1 and listed
in Table 2. The ipass was defined as the current density, which fluctuated in a narrow scope when the
potential swept the passivation plateau. The Epit was defined as the potential at which the current
density increased significantly immediately following the stable passivation region. In the polarization
test, almost all metal elements were active and initiated pitting when the potential was higher than the
pitting potential.

Table 2. Electrochemical parameters obtained from polarization curves at 20 ◦C, 50 ◦C, and 80 ◦C
(the E value referred to the Ag/AgCl electrode).

Temperature Ecorr (mV) Epass (mV) ipass (µA/cm2) Epit (mV)

20 ◦C −285 198 7.27 331
50 ◦C −301 43 7.87 288
80 ◦C −325 −10 11.55 169

In general, with the temperature increases, the anodic polarization curves moved towards the
negative direction, which evidenced the degeneration of the anti-corrosion properties of the CMSX-4
superalloy at higher temperatures. Figure 6 shows the morphologies of corroded samples at 20 ◦C,
30 ◦C, 40 ◦C, 50 ◦C, and 80 ◦C, respectively. At 20 ◦C, no corrosion products were removed from the
sample surface. The higher temperature, the more corrosion products, the deeper and larger corrosion
pits. Therefore, the corrosion resistance properties of the CMSX-4 superalloy exhibited the sensitivity
to the service temperature.
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As shown in Figure 4, different regions including the non-peeling tubers A, deciduous position B,
and position C were analyzed by using SEM-EDS, as shown in Table 3. The non-peeling tubers which
were actually the corrosion products were composed of more O, Ni, Ta, W and less Al, Ti, Cr, Co, Mo.
Then to centrifuge and dry the precipitates in the NaCl solution, corrosion products consisted mainly
of TaO2, WO3, and NiO and a small amount of Cr2O5, CoO, and Al2O3 by combining the EDS results
(Table 4) and the XRD spectra (Figure 7).

Table 3. EDS results of the sample surface after anodic polarization at 20 ◦C.

O Al Ti Cr Co Ni Mo Ta W Re

A 32.5 6.3 4.2 4.1 2.6 18.8 2.1 16.8 11.98 0.3
B 8.5 6.7 1.8 5.2 6.6 49.3 1.2 10.8 9.1 0.8
C 10.94 7.21 1.92 4.28 4.333 43.382 1.73 11.34 13.238 0

Table 4. EDS results of the corrosion products in the NaCl solution.

Ta Ni O Co Cr Cl Al W Mo

Content (wt.%) 80.93 15.04 1.694 1.414 0.307 0.27 0.171 0.08 0.049
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3.3. Influence of Preoxidation on the Electrochemical Behavior of the CMSX-4 Superalloy

Preoxidation treatment was conducted in air at 900 ◦C following two procedures and then the
oxidized samples were cooled down inside the furnace to room temperature. Heat treatment went
through three stages: heating, heat preservation, and cooling. The heating speed, cooling speed,
and heat preservation time have been illustrated in Figure 8. The “two procedures” differ from the
holding time of heat preservation. The elemental distribution on the surface of the oxidized samples
was listed in Table 5. The content of Cr increased obviously with the increase of preoxidation time.
SEM results showed that the oxides produced during preoxidation procedure 1 were more uniform,
dense, and continuous than that produced during preoxidation procedure 2.
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Table 5. EDS results of the sample surface after procedure 1 and procedure 2.

Preoxidation O Al Ti Cr Co Ni Mo Ta W Re

Procedure 1 19.5 8.0 1.31 9.42 7.28 41.8 0.49 4.04 2.138 0.941
Procedure 2 24.2 7.03 1.9 11.63 7.34 40.83 0.32 4.40 0.646 0.583

The anodic polarization curves of the CMSX-4 superalloy without and with surface preoxidation
(procedure 1 and procedure 2) in 3.5 wt.% NaCl solution are shown in Figure 9. The bare alloy showed
a stable passivation stage while the preoxidized alloys showed weak passivity. Moreover, the pitting
potential of the bare alloy (331 mV) was more positive than that of the alloy with the preoxidation
procedure 2 (317 mV), but more negative than that of the alloy with the preoxidation procedure 1
(442 mV). The alloy with the preoxidation procedure 1 had the best resistance to pitting corrosion.
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Figure 9. Anodic polarization curves of the bare CMSX-4 sample and the samples obtained following
the preoxidation procedures (1 and 2).

After peroxidation treatment following procedure 1, a protective oxide layer formed on the sample
surface, which improved its corrosion resistance in 3.5 wt.% NaCl solution. However, the oxides
formed during preoxidation procedure 2 were porous, leading to degradation of corrosion resistance
properties. As shown in Figure 10, the oxide layer spalled significantly after the anodic polarization.
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Once the oxide layer was damaged, the corrosion rate increased rapidly, accompanied by obvious
spallation of corrosion products.
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Pitting corrosion is very destructive. When the pitting occurs, the high dissolution rate of the
metal is due to the high density of corrosion current flowing over the metal surface. Metal equipment
can be perforated in case of serious pitting. Pitting corrosion can also aggravate intergranular
corrosion, denudation, stress corrosion cracking, and corrosion fatigue [32,33]. Therefore, for the
CMSX-4 superalloy in the paper, once the pitting occurred, the current density rapidly increased and
metal surface was destroyed. The failure and spallation of the oxide scales played a more important
role for the preoxidized superalloys.

4. Conclusions

The electrochemical behaviors of the Ni-base superalloy CMSX-4 have been investigated and the
corroded surface and corrosion products have been studied using SEM (equipped with EDS) and XRD.
The following conclusions can be yielded:

1. The electrochemical corrosion process contains active dissolution stage, stable passivation stage,
transpassivation stage, uniform oxygen evolution stage. The passive film forms within the
potential range of 198 mV to 331 mV, causing good corrosion resistance. Pitting corrosion occurs at
the transpassivation stage when the potential reaches above 331 mV, becoming the key corrosion
mode for the CMSX-4 superalloy.

2. With the increasing temperature, the electrochemical parameters including Ecorr, Epass, ipass, and Epit

shift in the negative direction. The higher temperature induces worse corrosion performance.
3. Corrosion products contain NiO, TaO2, WO3 and other oxides by the EDS and XRD analysis.
4. The failure and spallation of oxide scales becomes the key failure mode for the preoxidized alloys.
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