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Abstract: While the intensity, complexity, and specificity of robotic exercise may be supported by
patient-tailored three-dimensional (3D)-printed solutions, their performance can still be compromised
by non-optimal combinations of technological parameters and material features. The main focus of
this paper was the computational optimization of the 3D-printing process in terms of features and
material selection in order to achieve the maximum tensile force of a hand exoskeleton component,
based on artificial neural network (ANN) optimization supported by genetic algorithms (GA).
The creation and 3D-printing of the selected component was achieved using Cura 0.1.5 software
and 3D-printed using fused filament fabrication (FFF) technology. To optimize the material and
process parameters we compared ten selected parameters of the two distinct printing materials
(polylactic acid (PLA), PLA+) using ANN supported by GA built and trained in the MATLAB
environment. To determine the maximum tensile force of the exoskeleton, samples were tested using
an INSTRON 5966 universal testing machine. While the balance between the technical requirements
and user safety constraints requires further analysis, the PLA-based 3D-printing parameters have
been optimized. Additive manufacturing may support the successful printing of usable/functional
exoskeleton components. The network indicated which material should be selected: Namely PLA+.
AI-based optimization may play a key role in increasing the performance and safety of the final
product and supporting constraint satisfaction in patient-tailored solutions.

Keywords: 3D printing; exoskeleton; mechanical requirements; material properties; material selection;
computational intelligence; artificial neural networks

1. Introduction

The use of robotic exoskeletons based on the principles of motor learning can constitute an
important part of rehabilitation. It offers increased efficiency due to the generation of complex,
controlled, multisensory stimulation of the patient, useful in modifying the plasticity of the neural
connections through the experience of movement [1]. Innovative solutions in assistance robotics may
be achieved thanks to both the analysis of patient-generated bioelectrical signals, artificial intelligence
applied to their classification and control, and novel materials used, especially to personalize the
features of the exoskeleton [2]. Constraint satisfaction in patient-tailored solutions is difficult to achieve
due to the many factors influencing the ultimate results, which moreover change depending on patient
health status, functional abilities, support requirements, and body dimensions [3]. Further studies
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on the technological aspects of the material involved in three-dimensional (3D) printing in the broad
context are of significant importance in the development of patient-tailored rehabilitation devices.
Personalized solutions are especially important in neurorehabilitation (in stroke survivors, patients after
traumatic brain injury, spinal cord injury, etc.) and in care for elderly patients with neurodegenerative
diseases (aMCI—amnestic Mild Cognitive Impairment), Alzheimer’s disease, Parkinson’s disease,
etc.). Their number is increasing in developing and developed countries, and despite early diagnosis
the intervention level and type of resulting dysfunction may significantly vary and thus require
adaptive forms of therapy, rehabilitation, and care. There is a need to highlight continuously why such
solutions are important, especially within interdisciplinary therapeutic teams incorporating such novel
technologies as 3D printing and reverse engineering. Reverse engineering is defined here as scanning,
examining, and analyzing, in detail, a body component, product, or device in order to discover the rules
of production, usually with the aim of achieving a better fit (here, for example, an exoskeleton to the
hand) or of producing something similar, often with improved properties (here, for example, from other
material). Such solutions should also define their purpose and significance [3]. The limited number of
specialists (including engineers) and relatively long duration of their education results in the current
high cost of personalized therapy, suggesting the need for novel solutions, mostly technical [4]. There is
a need for more advanced technologies, combining semi-automated (based on artificial/computational
intelligence, respectively AI/CI) design systems, novel multi-material 3D printing technologies,
and advanced materials with features that are easily adaptable to the needs of patients and the features
of their bodies, their nervous systems, and their type and level of dysfunction [5]. A careful review
of the current state of research shows that the majority of these assistive technologies have several
limitations precluding their widespread use, including high energy demand, lengthy donning and
doffing time, and poor movement patterns [6].

The most important hypothesis is that the intensity, complexity, and specificity of robotic exercise
may be supported by patient-tailored 3D-printed solutions [7]. Three-dimensional printing, also called
additive manufacturing, is characterized by the computer-controlled processes used to create 3D
products (objects) with precise geometric shapes by depositing material(s), usually in layers in contrast
to traditional manufacturing requiring machining or other ways of removing surplus material [8,9].
Their use is suitable for biomedical applications, although they still do not cover all possible clinical areas
and associated requirements. There is a need for further research, development, and commercialization,
including in the field of advanced technologically 3D-printed exoskeletons [10].

The method proposed by the authors introduces into the area of research an innovative approach
to computational intelligence (CI) used in the rare subject of three-dimensional printed exoskeletons.
There are only a few similar studies that have been carried out on the basis of artificial neural network
(ANN), so the direct added value of this study compared to other researchers in the methods used may
be its novelty and complexity.

1.1. Literature Review of Clinical Applications of 3D Printing

3D printing is a promising technology, with a number of novel biomedical applications being
developed. It is regarded as a future alternative to the current clinical approach to preventive medicine,
diagnosis, treatment, rehabilitation, and care. It has the potential to cause a technological revolution
in materials engineering, especially in the area of patient-tailored therapies, including 3D printed
orthoses and exoskeletons.

Typically, for an exoskeleton, the 3D architecture of the device is designed using computer-aided
design (CAD) software, based both on 3D scans of the patient’s body parts and pre-programmed
template(s), and then printed with a classic polylactic acid (PLA) filament [6] or antimicrobial 3D
printing polymer to prevent skin infections during rehabilitation [11]. The details of the processes
are much more complicated, of course [12], mainly due to the combination within one process of
knowledge and experience from many scientific and engineering disciplines necessary to develop
a customized (tailor-made) product. Therefore, while the main rules of the process are repeated,
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the product can be unique each time, as can be the material parameters of the printout. Our approach
to a 3D printed hand exoskeleton is shown in [13] and is different from the existing methods; the main
differences are due to the complexity of the whole procedure including:

• Assessment of the patient’s functional capabilities,
• identification and analysis of functional needs,
• required support from the exoskeleton,
• the implementation of these arrangements in the template of the exoskeleton,
• tests and amendments,
• transfer of exoskeleton operation from a controlled environment to the patient’s home environment [13].

The range and method of hand movements as well as the natural reflexes protecting the fingers of
the hand (e.g., reversing when feeling heat or pressure) make interaction between the hand and the
exoskeleton on the hand crucial when performing reflexes. The use of an exoskeleton in activities of
daily living must not deprive the user of the natural reflexes that are necessary, e.g., when the hand’s
function returns and hand is used without an exoskeleton or using another, less supportive model of
hand exoskeleton. In this study effort has been made to check the risks that occur more frequently,
i.e., when carrying or grasping objects. In this case, natural torsional forces are much less frequent
(in patients) and are planned to be tested in subsequent stages of our hand exoskeleton research as part
of a comprehensive approach.

Mechanical and manufacturing problems are complex, but, here, they are only part of a larger
manufacturing process, so their automation would significantly speed up the patient’s supply of
exoskeletons. Currently produced exoskeletons are too complicated, heavy, and expensive. Change in
patient’s state of health makes it necessary to replace individual parts of the exoskeleton. In addition,
significant proportion of users of such exoskeletons are children, who, as they grow and develop,
require even more frequent replacement of the entire exoskeleton or parts of it, because regulations do
not allow for all changes. Exoskeletons and other rehabilitation supplies are an opportunity for them
to learn, work, and live independently.

Despite the rapid development of material engineering, the number of materials available for the
3D printing of medical devices and the associated possibilities of shaping their required mechanical
and material characteristics are still limited by the following main 3D printing material features:

• Dimensional properties: Accuracy and volumetric shrinkage,
• production speed or (in smaller parts) number of production cycles per minute,
• mechanical properties,
• thermal properties,
• properties of chemicals and their ability to be used in direct contact with the human body [9].

Further research is necessary on the development of the current and novel generations of 3D
printing materials dedicated primarily to biomedical applications in order to eventually meet all
requirements, particularly:

• Required ranges of shaping the characteristics,
• very high repeatability of mechanical parameters,
• anti-allergic properties and biocompatibility,
• no changes in mechanical parameters in contact with living tissues,
• resistance to processes related to ageing under the influence of, for example, Ultraviolet (UV)

radiation (not always fully known),
• resistance to moisture, body fluids, etc.,
• biodegradability,
• recyclability,
• possibility of certification as medical materials.
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Some of the material aspects of orthoses have been introduced in papers by Górski et al. In their
first paper, a two-part orthosis was printed based on a 3D scan of the patient’s upper limb, where each
part was formed from different materials due to the need to fulfill different functions. The 3D printing
was done as a single process without additional assembly operations, using double-head fused
deposition modeling (FDM), one of the most widespread 3D printing technologies [14]. The second
paper presented an algorithm for the optimization of FDM process parameters using finite element
analysis (FEA), where the optimization influenced the characteristics of the final product, especially in
terms of strength [15]. The model was created in an STL (stereolithography) file using a design
program such as AutoCad. It was then imported into a printer program equipped with slicer function,
which mathematically (in order of X, Y, and Z coordinates) divided the data from the STL file into
horizontal layers, generating the required supports (if needed) and planning the paths required for
the extrusion head. The filament (here: Acrylonitrile butadiene styrene (ABS) material) goes to the
temperature-controlled FFF extruder head, where it was heated to a semi-fluid state. The extruder
head and sets the material in layers on clutchless base, one layer at a time in X and Y coordinates.
When the layer was ready, the head moves in the Z direction to the next layer. The layers were joined
and fixed, and the printed object became a permanent three-dimensional printout.

Due to the almost 24 h, 7 days a week use of a hand exoskeleton, we are fully convinced that the
safety precautions of a hand exoskeleton should be similar to those of gloves, hand orthoses, or elements
of wheelchairs. Thus, similar restrictions concerning material use should be incorporated [16].
Unfortunately, the current studies on hand exoskeletons concerning the technological issues have
taken into consideration only the design, simulation, and control of such devices, without paying
particular attention to material requirements and restrictions [17]. However, recent developments
may change this situation. A relatively novel solution comprises stimuli-responsive polymer
systems—functional materials that can change their physical and/or chemical properties in response to
external stimuli (mechanical stress, temperature, humidity, radiation, chemical agents, pH, and electric
and magnetic fields). Such micro- and nanoscale structures adapted for use as artificial muscles,
soft sensors and actuators, smart textiles, and soft robots would significantly increase the range of
possibilities for the whole area of 3D-printed exoskeletons [18]. The aforementioned (r)evolution
also concerns the use of silk fibroin (SF) based bioinks in 3D-printing applications, demonstrating
unique physical properties, chemical components, and bioactivities [19]. A novel rubber composite
features shape memory (i.e., shape recovery and fixity) with a tailorable transition temperature [20].
Soft robotic actuators developed with 3D-printing technology use polyelectrolyte hydrogels, but still
require sophisticated computational models to estimate their behavior. Soft actuators containing
Takagi-Sugeno fuzzy sets (T-S) are useful as voltage-controlled devices, reacting to a wide range of
input voltage changes. Moreover, the proposed modeling method, after modification, works with
other polymer systems with 3D imprint reacting to stimuli [21] (gelatin and interpenetrated polymers).
The above-mentioned stimulus-responsive materials allow one to measure at the same time RH (Relative
Humidity), furthermore, water vapor is used to change the film thickness and its refractive index [22].
Four-dimensional (4D) systems of stimulus-responsive polymers can be used as self-morphing
structures, such as shape-memory polymers (self-bending/morphing/rolling). A simple computational
tool (based on a commercial finite element (FE) software package, Abaqus) is required to understand
and control their thermo-mechanical behaviors [23]. Synergy between the explained methods is needed
to fully exploit opportunities for 3D printed patient-tailored medical devices. There are many new and
emerging solutions that are hopeful. Their complexity requires the use of new CI methods in order to
shorten the procedures for the development of final products and avoid possible erroneous paths.

There is no doubt also a need for more AI-based tools that can be implemented to engineer practical
3D-printed parts, including advanced shapes, moving parts, and self-morphing/rolling structures.
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1.2. Aim of the Study

The main aim of the work was to computationally optimize the 3D-printing process in terms of
features and material selection, to achieve the maximum tensile force of the exoskeleton sample based
on artificial neural network optimization supported by genetic algorithms (GA). The use of neural
network combined with genetic algorithm is an innovative approach to material selection, allowing the
maximization of material strength. Another problem that these AI methods solve is the optimization
of the parameters related to the 3D printing technological process. The authors have experience in
using AI methods to solve technical problems (e.g., in creating classifier and prediction models [24,25]
and in selecting materials in ecodesigning [26,27] in the form of decision trees and neural networks).

2. Materials and Methods

In achieving the ability to operate high technologies, it is essential not to ignore the need to
educate the required technological specialists and to create an organization capable of managing the
high level of production complexity. Modern economies are built around the so-called technology
complex—a system of synergy between the competences and components of a complex solution. It is
necessary to use concurrent design, i.e., the simultaneous creation of complementary solutions based
on uniform architecture, and decentralized system of cooperation. The prerequisite for achieving these
levels of ability is to break the communication barriers, to use management methods based on task
mapping and the freedom of data exchange, and to establish common areas of cooperation within
process management. If this fails, then it may significantly limit the transparency and understanding
of the dependencies and hence productive team cooperation. CI solutions can provide an easier and
quicker way to achieve specific properties of the printed object.

The current pandemic situation requires developed economics, involving the process of change
and rapid application of innovations (technological and organizational), where both people and
processes need to participate in this change preferably as team/community to feel that they play a part
in transforming our way of life and approach to emerging technologies and associated novel processes.
This can be done from practical point of view, for example, by responding directly to the needs of the
public and healthcare professionals for 3D printed protection measures, reacting immediately to their
comments, adapting more quickly to changing needs, and increasing the volume of products produced.

Process management optimizes processes toward the goals established by the strategy, through more
efficient processes that provide increased and longer-lasting success. Process management is supported
by clear process organization, responsibility for pending processes, and the motivation system:

1. Process identification (based on reference models or benchmarking)

• top-down approach,
• bottom-up approach.

2. Process modeling (diagnostic or prognostic approach)

• manual,
• computational (including AI/CI-based).

3. Process introduction
4. Process control (continuous or cyclic)

• goal planning,
• resource organization,
• control,
• motivation or stimulation (where available).

The aforementioned requirements for the hand exoskeleton fall very generally within the
goal-oriented requirement engineering (GORE) paradigm (use of the various tools):
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• Mechanical features should be combined with control techniques to follow the users’
movements transparently,

• the system must be able to reproduce human movements at functional level (a certain number of
degrees of freedom to be controlled, etc.),

• intervening in a particular desired way with the subjects’ movement must be possible (control of
the interaction force between user and robot),

• wearability,
• usability,
• low cost,
• other non-functional requirements aimed at improving user acceptance (see user experience

methods and tools) [28].

Requirements concerning material and 3D-printing issues are only indirectly mentioned above.
A review of the main databases shows that 3124 scientific articles were published between 1963

and 2020, being focused on the topic of the construction and application of medical exoskeletons,
while only 322 (10.31%) covered the issue of the hand exoskeleton [29]. There are very few studies
concerning 3D-printed hand exoskeletons [13], all since 2015, but none have covered the issue of
material [30].

We are aware that the parameters of materials used to build the exoskeleton may be the result of a
compromise as an exoskeleton may have to fulfill many functions and ensure a suitable balance between
weight, stiffness, dexterity, and safety [31], described by many mechanical and material parameters,
such as the filling factor (constraint satisfaction effect). We selected a part of the exoskeleton to analyze
its parameters and then optimized them to achieve better mechanical parameters, which were checked
under laboratory conditions [12].

To create and 3D-print the selected part of the hand exoskeleton we used Cura 0.1.5 software
(3D Ultimaker, Utrecht, The Netherlands) with SLICER and fused filament fabrication (FFF)
technology. The 3D printers BCN Sigma (BCN3D, Barcelona, Spain) and MakerBot Replikator 2X
(MakerBot, New York, NY, USA) were used as hand scanners, and a set of the sport cameras were used.

To determine the maximum tensile force of the exoskeleton samples, they were each mounted in
the grips of an INSTRON 5966 universal testing machine (Instron, High Wycombe, UK).

The choices of material (between PLA and PLA+) and optimal process parameters (using ANN
and GA) were made in the MATLAB environment (R2020a, MathWorks, Natick, MA, USA).

3. Procedures

Our optimization algorithm influenced the characteristics of the final product: An element of an
exoskeleton, especially in terms of the strength and durability of the part, reflected in its further safe
use (e.g., by children).

3.1. Material Factors

To create the exoskeleton, we used reverse engineering procedures based on 3D-scans of the
patient’s hand and pre-programmed templates related to the exoskeleton. Such an approach offers the
ability to quickly create or recreate objects despite their complex shapes and internal structures.

The main physical properties required of exoskeleton parts include durability,
elasticity, hardness, compressibility, resilience, and response to temperature. Fifty printed samples of
exoskeleton parts were chosen for the final assessment.

To create the part of the exoskeleton from a 3D-scan based CAD file (.STL, GCodes), FFF, also called
fused deposition modeling, technology was used, with two kinds of 2.85 mm diameter filament:
(PLA and PLA+); infill rate: 100%; and retraction: Enabled. The temperatures selected depended on
the features of each filament (Table 1).
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Table 1. Selected process parameters for three-dimensional (3D) printing using polylactic acid (PLA)
and PLA+ (before optimization) (own work based on [32]).

Parameter
Value Range

PLA PLA+

Density (g/cm3) 1.2–1.3 1.2–1.3
Diameter (mm) 2.85 ± 0.02 2.85 ± 0.02
Layer height (mm) 0.04–0.32 0.04–0.32
Shell thickness (mm) ≥0.15 ≥0.15
Bottom thickness (mm) ≥1 ≥1
Top thickness (mm) ≥1 ≥1
Fill density (%) 10–100% 10–100%
Print speed (mm/s) 30–70 30–70
Bed temperature (◦C) 50–60 50–60
Printing temperature (◦C) 205–225 205–225
Maximum extrusion temperature (◦C) 225 225
Printer power consumption (W) 80 80
Relative tensile strength 100 108.5
Relative bending strength 100 134.4
Relative modulus of elasticity in bending 100 114

The values of the printing process parameters are usually chosen based on recommendations
by the equipment manufacturer, scholarly papers, experience, and their implication and significance
according to the pilot investigations. Thus, it was our intention to optimize and objectivize the process
of parameter fitting using CI tools and methods.

We selected PLA, an aliphatic polyester of organic origin that is fully biodegradable, due to its
well-known general characteristics:

• Slight material shrinkage,
• a heated bed is not necessary,
• good durability (but lower than in the case of ABS),
• higher production and processing costs,
• the possibility of deformation under the influence of high temperatures
• limited flexibility,
• relatively low printing temperature: 180–220 ◦C,
• insolubility,
• does not emit harmful fumes.

PLA is produced from natural raw materials and, due to its inferior physical properties, is used
less frequently in industry, but more often in biomedical applications, including the production
of dental implants, surgical threads, disposable packaging, dishes, and low-cost 3D printing.
Moreover PLA-printed objects have a smoother, shiny surface with full color saturation, which may be
important in everyday applications (external, visible orthoses, exoskeleton) as an attractive form may
help avoid stigmatization, e.g., in children.

PLA must be stored in dry conditions, since moistened PLA, even after thorough drying, may lose
its properties during 3D printing as the heating process causes reactions with any remaining water.
These problems with PLA (for ABS) filaments concern places having a higher air humidity i.e., above 50%
RH (relative humidity, air humidity). Water particles penetrate the material, causing it to swell and
slightly enlarging the wire diameter. This may severely deteriorate the quality of the printed items,
rendering them unusable. Drying of PLA (for ABS and nylon) is possible but risky, requiring a suitable
container exposed to the sun or heated with a bulb and containing a moisture absorber. The material
should also be protected against the problem of air pollution, e.g., dust particles, cat hair, or sanding
dust settling on the filament.
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There are commercially available filaments that offer the possibility of steam sterilization as well
as antibacterial filaments that include copper particles.

In addition to the basic properties of PLA, the PLA+ filament is additionally characterized by:

• Increased tensile strength (by 8.5%),
• increased bending strength (by 34.40%),
• increased modulus of elasticity in bending (by 14%).

3.2. Optimization Procedures

3D-printing by FFF technology with selected types of filaments was carried out at a temperature
of 22 ± 2 ◦C (these values were downloaded directly from the 3D printer software) and RH of 50 ± 10%.
Fifty exoskeleton part samples were printed (Figure 1b).
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Figure 1. (a) INSTRON 5966 and (b) test samples of the exoskeleton parts.

The aim of the research was to determine the maximum tensile force of the exoskeleton samples
under various material conditions. The tests consisted of mounting each sample in the grips of an
INSTRON 5966 testing machine (Figure 1a) and subjecting them to monotonically increasing tensile
load at piston velocity of 0.2 mm/s. The tests were carried out at temperature of 22 ± 2 ◦C and air
humidity (RH) of 50 ± 10%. The registration test included the instantaneous values of the load and
the displacement of the testing machine grip. The tests continued until the sample cracked and
separated completely.

An artificial neural network (feed-forward neural network with back-propagation algorithm)
written in MATLAB 16.0 was used for training and optimization purposes. These are often used
to solve problems where the complete formulation is unknown (i.e., lack of model or mathematical
representation). Several ANN models were built on the basis of three different configurations of input
data and how they were defined. It was investigated how far it was possible to simplify the description
in order to reduce the number of input variables and thus shorten the time necessary to build and
train the network. The parameters were optimized more efficiently using ANN: While optimizing the
number of input variables during the construction of the ANN model, a genetic algorithm was used to
reduce the number of variables. Only 3D printing parameters included in Table 1 read directly from
the same FFF printer’s control software were used. Conditions for the selection of input parameters
were as follows:
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• Their numerical values had to be homogeneous,
• the process of obtaining the above parameters (Table 1) from the 3D-printer software could not

be time-consuming,
• they had to enable calculation of the required output variables of ANN (angle of rotation of the

table and the head).

The learning and mapping abilities of ANN are often used to address the non-linear nature of 3D
printing processes. Scaling the values of the input variables was performed during the construction of
the ANN to maintain the uniformity of interpretation of all the signals within the network and the
weights related to them. The ANN input variables were normalized, as the collected variables (Table 1)
were characterized by a large and diverse range. This was done to prevent ANN input variables with
very high values (e.g., in the range 10–100) to be considered by the network to be more significant than
those with lower values (e.g., in the range 0–1).

Multiple ANN topologies were developed by researchers and reported in the literature,
including feed-forward, recurrent, and functional links with varying levels of forecast precision.

The ANN structure is normally selected on the basis of:

• Developers’ prior knowledge,
• hit and miss trial approaches.

A genetic algorithm is a directed heuristic search technique that mimics the biological processes
to perform a random search in a defined, N-dimensional set of possible solutions [19]. GA can seek
and locate the best solution in a given search space (optimization problem), which it has proved very
effective, including computational problems where solutions are multiple and non-deterministic.

GA allowed the automatic optimization of the ANN structure, since GA applies an original fitness
function. According to the adopted fitness function, the networks were assessed after 1000 epochs.
The error achieved after this number of epochs constituted one component of the evaluation, while the
other was the penalty for the complexity of the web. To find the optimal ANN topology with
genetic manipulation of chromosomes, the mean square error (MSE) of the model was used as the
fitness function.

The fitness evaluation function was defined as:

F = MSE + (1 − α) × (w/wn) × 10−5 + α × (n/nn) × 10−5 (1)

where:

• MSE—mean square error of the neural network (NN) model,
• α—weight constant, which is set to 0.8,
• w—number of weighted interconnections between the input and the hidden layer,
• wn—maximum number of all interconnections,
• n—number of neurons in the network,
• nn—maximum number of neurons in network,
• 10−5—synaptic weight constant.

MSE after certain number of training epochs is calculated as:

MSE =
∑p

i=1

|if − ia|2

p

where:

• p is the number of samples used during the training processes,
• if and ia are the forecasted output and the actual output.
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The following parameters for GA were adopted:

• Population size: 15,
• number of iterations of the algorithm: 10,
• selection method: Tournament,
• maximum number of neurons in the layer: 70 [33].

We used a three-layer feed-forward neural network (Figure 2). The back-propagation algorithm
(BP) was used, as the conventional and most popular gradient-based local search optimization
technique. Optimization of the connection weights of the multi-layer perceptron (MLP) was set to the
minimization of the error function (i.e., average mean square error between target and actual outputs
averaged over all training examples). The neural network weights were presented (instead of setting
the aforementioned scales to small random numbers) to avoid a slow error convergence rate and being
trapped at local minima. We used naive initialization techniques rather than more advanced solutions
(LeCun initialization, Xavier initialization, Kaiming initialization) due to the “nice region” being
unknown. In commercial applications many techniques are used to achieve this in a semi-automatic
way, such as artificial bee colony (ABC) and simulated annealing.
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Figure 2. Artificial neural network (ANN) structure: Inputs and outputs.

Initially, during the retrospective analysis of the parameters from 3D-printing, attempts were made
to obtain as much information about the influence of 3D printing parameters as possible. In subsequent
stages of the work, the information was selected for its impact on modeling the problem of dose
distribution optimization by networks.

Each layer of the network contained neurons with the same activation function (Table 2).
The models used the activation function of the sigmoidal type (the hyperbolic tangent) because
it is a very flexible nonlinear, continuous, and differential function.

Table 2. The best multi-layer perceptron (MLP) network models for diagnostic measures.

NS—ANN Structure AH—Activation Function
in the Hidden Layer

AO—Activation Function
in the Output Layer

5-10-10 Sigmoid Sigmoid
5-18-10 Sigmoid Sigmoid
5-27-19 Sigmoid Sigmoid

The number of inputs (n) and outputs (m), as well as the number of neurons in the hidden layer,
was set subsequently, experimentally, to find the minimum required number of inputs and outputs
(minimal workload). Tested ANNs based on the authors’ experience were collected in sets for the
number of neurons and weight and structure of connections and then tested for the speed of learning,
the speed of generalization of the result, and the minimization of the MSE. We should take into
consideration that some parameters (Table 1) may change over a relatively narrow range due to the
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technical requirements of the whole processes or due to limitations created by the particular type of
the material, 3D printer, and its software (e.g., ranges of adjustment). The number of neurons in the
hidden layer depends on the values n and m, reflecting the generalization capabilities of the network.

The learning processes required multiple presentation of the learning patterns and modification
of the weights. Each of the presented learning patterns took 10,000 iterations (repetitions) on average,
until the network reached the assumed level of MSE. The number of learning epochs ranged from 500
to 1000 (Figure 3).
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Figure 3. Values of mean square error (MSE) during learning.

The problem of optimizing the ANN structure is a key question for designers. An MLP type
of network performs the mapping of an n-dimensional vector into an m-dimensional input signal.
Such an approximation is possible using one hidden layer with 2n + 1 neurons, although the number
of neurons in the hidden layer usually varies between n and 3n (Table 2, Figure 4, MLP 5-18-10 is
the best).
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The proposed method of optimizing constitutes a step towards the standardization of the problem
of selecting the 3D printing parameters within Industry 4.0 through the use of AI methods.



Materials 2020, 13, 5437 12 of 19

4. Results

Manufacturing suitable ready-to-use exoskeleton parts based on FFF is a challenging task. As we
mentioned above, a key condition for our study replication may constitute suitable PLA or PLA+

material choice, storage, and preparation, and the same procedures as for the 3D-printed objects.
Prior to 3D printing, slicing software determines how to break the 3D digital model into the layers

required for printing by the FFF printer. In order to print a particular pattern:

• The nozzle (or the print bed or both—depending on the type of printer) moves while the plastic is
being extruded,

• a simultaneously heated nozzle which ejects molten plastic, depositing it in thin layers, one on top
of another, initially onto the print bed, layer-by-layer forming the whole 3D printed part,

• the filament layers that are fused together, due to the thermal fusion bonding that occurs between
individual layers, to create a solid object [34].

Manufacturing processes parameters not mentioned in Table 3, along with the configuration
and filament color (grey in both PLA and PLA+), did not affect the assessed printed part
properties significantly.

Table 3. Optimal parameters for 3D printing using PLA and PLA+.

Parameter
Optimal Value

PLA PLA+

Layer height (mm) 0.2 0.2
Shell thickness (mm) 1.5 1.2
Bottom thickness (mm) 2 2
Top thickness (mm) 2 2
Fill density (%) 40 40
Print speed (mm/s) 35 70
Bed temperature (◦C) 60 55
Printing temperature (◦C) 220 215
Second nozzle temperature (◦C) 220 220
Maximum tensile force—weak part (N) 1523.6 1640.2
Maximum tensile force—optimal part (N) 2054.8 2218.3
Maximum tensile force—strong but heavy part (N) 1988.7 2163.1

ANN was used to optimize the tensile load, which was then validated experimentally. The results
for selected samples of PLA and PLA+, including optima for PLA+, are shown in Figure 5a–f and
Table 3. The results shown in Figure 5 are better for PLA+ than for PLA, which was definitely due to
its greater elasticity. Thus, the selection of PLA and PLA+ depends on the required stiffness of the
entire exoskeleton part and should be taken into account in the exoskeleton project.

Balancing the technical requirements with user safety constraints requires further analysis to
advance the project from the initial stages. Issues concerning materials are very important in the
construction and usefulness of an exoskeleton, especially a 3D-printed exoskeleton. It requires
achieving a balance between many exoskeleton features, including those reflecting the patient’s body
features. AI-supported optimization may play a key role in the paper, increasing the safety and
durability of the final product.

The maximum tensile force for selected exoskeleton samples was approximately 8–9% lower for
parts made from PLA than for those made of PLA+, compared to the 8.5% declared by the producer,
but the optimal part compromised between maximum tensile force and low weight of the part (Table 4,
optimal choice: (c)/(d), 2218.3, 2054.8).
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Weak part (a), optimal part (c), strong but heavy part (e), PLA: Weak part (b), optimal part (d), and strong
but heavy part (f).

Table 4. Maximum tensile force for selected exoskeleton samples.

Sample Part of the
Exoskeleton (PLA+/PLA)

Maximum Tensile Force for
PLA+ (N)

Maximum Tensile Force for
PLA (N)

(a)/(b) 1640.2 1523.6
(c)/(d) 2218.3 2054.8
(e)/(f) 2163.1 1988.7



Materials 2020, 13, 5437 14 of 19

The best results were achieved for n = 9, m = 9, and 18 neurons in the hidden layer (i.e., MLP 5-18-10,
Figure 3), but we observed that other ANN structures were also effective, such as MLP 5-10-10 and
MLP 5-27-10.

ANN was able to minimize the MSE for the data in the training set to very small values (0.001–0.01)
(Tables 5 and 6, the best choice: MLP 5-18-10, 0.9529, 0.9712, 0.001).

Table 5. Selected ANNs quality assessment.

Network Name Quality
(Learning)

Quality
(Testing)

MLP 5-10-10 0.8917 0.9189
MLP 5-18-10 0.9529 0.9712
MLP 5-27-10 0.9330 0.9545

Table 6. Root Mean Square Error (RMSE) values for three MLP neural network.

Network Name RMSE

MLP 5-10-10 0.01
MLP 5-18-10 0.001
MLP 5-27-10 0.02

ANN, unlike conventional modeling methods, allows the relatively simple and quick solution to
the 3D-printing optimization problem without the need to define an algorithm/function, based only
on ANN input and output variables. A key issue is the proper selection of data reflecting the actual
dependence of the problem under investigation and the method of their processing in such a way that
achieves appropriate correlations between the input and output variables. Thus, the key issue is not
a relatively simple ANN, but proposing such a set of parameters, that will make up a model set of
parameters for a 3D printer based on knowledge gleaned from previous experience in the printing of
the exoskeleton parts. The goal of the AI-based optimization is not to find the optimum of the objective
function, but to use it to determine the best set of 3D printing parameters in each case of a printed
exoskeleton part.

5. Discussion

The automation of the process of selecting the 3D printing parameters requires a one-time step
during the development of the proper tool (ANN). The long-term advantages of the above approach
include both improved quality of the 3D printing and the reduced time required to prepare such a
semi-automatically created set of parameters compared to the time that must be spent by an engineer
each time. Our solution may be easily adapted to other material/printer combinations and developed
to create a more universal tool, useful for Industry 4.0 purposes, thanks to quicker visualization of
concepts, rapid prototyping, and a novel way for rapid manufacturing of patient-tailored medical
equipment [35]. Our results confirm that the PLA- and PLA+-based 3D-printing process may be
optimized toward the successful printing of usable/functional elements of an exoskeleton. We believe
that the next step in the area of biomedical 3D printing is the development of specialized filaments
adapted to suit professional biomedical applications. In our opinion, the 3D printing of elements for
the needs of biomedicine is a complicated issue, and the materials, besides their specific mechanical
properties, must be biocompatible, as confirmed by appropriate certificates [11]. The presence of an
elevated temperature alters the biological properties of the material, or even make it impossible to use
it in conjunction with living tissue, body fluids, etc. [36].

The choice of hardware (3D scanner, 3D printer) and software (modeling software, etc.) may
significantly influence mitigation of the design, production costs, data accuracy, process efficiency,
and multifunctionality of the project [37]. Easier modification through the use of modifiable templates
and faster production achieved through direct 3D printing closer to the user home [38] are also of high
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importance as far as patient satisfaction is concerned [39]. Precise selection and fitting procedures may
vary between patients (e.g., according to age, dimensions, weight, and strength), even between healthy
people and those affected by various kinds and levels of deficit that compromise their upper limb
functionality [40]. Such an orthosis may provide greater flexibility in hand movement and stronger
support compared to a traditional, manually-formed orthosis [41]. Further steps should include
research into the manufacturing processes required to create ready-to-use exoskeletons or orthosis
parts that are carried out in a controlled environment, i.e., automatic design of patient-tailored objects
based on the 3D-scanned geometry of a patient [42]. Individualized training program speeds up the
fitting and learning time, while the parametric model shortens the complicated orthosis design process
to a few minutes [43].

The mechanical, thermal and/or dimensional properties of the materials can also be unique and
not achievable in traditional manufacturing, even with the simultaneous application of multi-material
printing [44]. This situation may create a very good base for Industry 4.0 processes, due to:

• Integration of the physical and virtual processes thanks to the application of the software for
large-scale machine production,

• automation,
• use of digital twins,
• reliability and continuous detection of errors,
• cost reduction,
• resultant increased efficiency thanks to manufacturing optimization with the simultaneous increase

in the quality of the products.

It is difficult to discuss our findings in the context of the results achieved by other researchers in
this area. There are only a few similar studies [41,42]. The results achieved in our work are comparable
to those achieved by other authors in this area. Our study can be included among the first researches
performed in the field by other researchers. For the first time, this research focuses on the optimization
of materials used for three-dimensional printing of exoskeleton parts. It concerns such an advanced
device made with the 3D printing technique as an exoskeleton, while the brace can be built in a much
simpler way [41–43].

Future research directions include issues related to the required novel features (e.g., memory of
shape) and materials (e.g., those created specially for 3D printing of biomedical products) [45].
Despite the relatively good levels of current knowledge and experience within 3D-printing, there are still
many options for processes and improvements that must be taken into consideration, including creating
many sub-technologies (multi-material 3D printing, memory of shape) and opportunities to enable
novel and challenging product features [46]. Additional factors include accuracy and speed of
production, which can be often reduced by paying particular attention to the quality of the final product.
There is no doubt that future research should focus on multi-material technologies or materials where
the parameters or functions change or combine with various structural parameters, e.g., depth, as in
living tissue. Compartmental studies on various filaments such as the PLA and PLA+ covered in
the paper, but Thermoplastic polyurethane elastomers (TPU) (i.e., a copolymer consisting of hard
and soft segments, allowing the creation of 3D models that are flexible after printing) and BioFlex
(a biodegradable elastomer with good elastic properties and high impact strength) are also possible
options. Thus, the current study may be regarded as preliminary to further exploration of computational
optimization of the printed object parameters and control systems based on multi-material 3D-printers.

The solutions here are intended for the professional user. However, certain 3D-printing
processes may be simplified and made at home, such as in rural areas with resource-limited
healthcare [47]. The high number of open-source repositories may create novel occupations for
home-based improvements and inventions in many areas, from self-printed plastic mugs and spare
parts for toys through relatively advanced orthoses and exoskeletons to the most advanced full-color
objects made from composites and/or metals, and more.
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To optimize parameters using ANN more efficiently, a genetic algorithm was used to reduce the
number of variables. Moreover, the parameters read directly from the printer’s software, as defined
by the authors, can be used to accelerate the optimization process. The application of fuzzy sets,
especially ordered fuzzy numbers, constitutes another area that remains unexploited so far.

MLP and various other ANNs may meet the requirement of researchers optimizing 3D-printing
processes, such as radial networks (RBF), Hamming networks (MAGNET), or even self-organizing
Kohonen networks. However, as they require many more neurons, the required computational
power and thus their cost-effect factor are not so favorable. There are future limits to compromise
(e.g., between quality and price), but these should be tested in clinical applications

Due to the increasing numbers of advanced processes related to the production and material
features, 3D-printed exoskeletons require computational models to fully estimate and understand
their behavior made under different conditions (hospital, ambulatories, or home-based rehabilitation).
In our opinion, the application of AI-based models will play an important role within software used in
3D printers and settings for reverse engineering, especially in biomedical applications.

6. Conclusions

This paper presents a model based on ANN and GA used to optimize the materials and features
required of 3D-printed exoskeletons. From this study the following conclusions can be drawn:

• Optimization and automation of the process- and material-related factors improves access to the
material properties of objects required in everyday clinical practice, such as the components of a
hand exoskeleton described here.

• The network indicated PLA+ as the most appropriate choice of material reaching maximal tensile
force of 2218.3 N for part with optimal weight.

• Relatively simple combined ANN/GA solutions create a quick and reliable second opinion system,
useful in the processing and material optimization of 3D-printed medical devices. The selection
of the number of neurons in the hidden layer affects the effectiveness in predicting the output set
of 3D printing process parameters. Despite the complexity of the processes, the number of the
parameters taken into consideration within the optimization process can be reduced.

• By creating different structures of the ANN model, it was possible to demonstrate the most
effective prediction possibilities for the model MLP 5-18-10. The use of various measures produced
the best prediction results, (R)MSE = 0.001.
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