

Supplementary information Advances and Challenges in the Creation of Porous Metal Phosphonates

Bharadwaj Mysore Ramesha * and Vera Meynen

Laboratory for Adsorption and Catalysis (LADCA), Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; vera.meynen@uantwerpen.be * Correspondence: bharadwaj.mysoreramesha@uantwerpen.be; Tel.: +32-(0)3-265-23-53

Received: 26 October 2020; Accepted: 24 November 2020; Published: 26 November 2020

Metal Precursor	Phosphonic Linker	Synthesis Method	Final Morphology	References
ZrOCl2	Mono-alkyl phosphonic acids and their dialkyl ester	Direct precipitation in HF (aqueous media)	Lamellar hexagonal particles (10–100 µm)	[1]
Th(NO3)4 ZrOCl2	Mono-terphenyl and bis-terphenylene PA	Direct precipitation in HF (dioxane/water)	Lamellar particles	[2]
ZrOCl ₂	α,ω-bis(phosphonic acid) alkyl or aryl linker	Direct precipitation in HF	Lamellar thin films	[3]
ZrOCl2	Butane DPA, benzene DPA,bis(phosphono methyl) DPA, diphenyl DPA with H3PO4	Direct precipitation in HF (DMSO/water)	Lamellar structure with mesoporosity	[4]
Zr (IV) fluoro complexes	3,3′, 5,5′-TMBPDA	Direct precipitation in HF	Lamellar structure with inter-layer microporosity	[5]
ZnCl ₂	Phenyl-DPA Biphenylyl-DPA	Co-condensation in water Co-condensation in	Lamellar structure	[6]
CuSO4 5H2O & CuNO3 2.5H2O	Phenyl-DPA and Biphenylyl-DPA	water under reflux or hydrothermal conditions	Lamellar structure	[7]
CuSO4 5H2O & ZnCl2	Ethylene-DPA and Propylene-DPA	Co-condensation in water	Lamellar structure	[8]
ZrOCl ₂	Benzene DPA + H3PO4	Direct precipitation in HF	Lamellar particles with micro/mesoporosity	[9]
Zn(NO3)2 & Cd(NO3)	Bis(methylene) phenyl-PA	Co-condensation in water	Lamellar structure	[10]
ZnCl ₂	Phenyl DPA with H3PO4	Hydrothermal in water	Lamellar with slit- shape pores 6.6 nm Lamellar structure	[11]
Mn(ac)2 & Zn(ac)2	NMIB-DPA	Hydrothermal in EtOH/water	with 3D porous framework	[12]
Co(ac)2	Octyl DPA	Co-condensation & Hydrothermal in water (HF)	1D polymeric network and Layered structure	[13]
SnCl ₄	Phenyl PA	Hydrothermal in HF	Micro and mesoporous	[14]
Sn(CO ₂) ₂	Phenyl DPA	Hydrothermal in water	3D non-porous layered structure	[15]

Table S1. Synthesis Protocol for Porous Metal Phosphonates.

Materials 2020, 13, 5366; doi: 10.3390/ma13235366

www.mdpi.com/journal/materials

SnCl ₄	Phenyl PA Methyl PA	Hydrothermal in HF	Layered spherical globules with micro/mesoporosity	[16]
SnCl ₄	PPPA	Direct precipitation followed by hydrothermal in HF	Supermicroporous layered particles	[17]
SnCl ₄ ZrOCl ₂	PPPA PPA	Direct precipitation in HF	Layered micro and mesoporous structure	[18]
SnCl ₄	Phenyl-PA Biphenyl-PA	Hydrothermal in HF	Layered nano-sized particles with micro/mesoporosity	[19]
SnCl ₄ ZrOCl ₂	bpyBPAE + Methyl PA	Hydrothermal in DMSO (HF)	Small nanoparticles (<15 nm) with micro/mesoporosity	[20]

Abbreviations: PA = Phosphonic acid; DPA = Diphosphonic acid; 3,3',5,5'-TMBDPA = Tetramethylbiphenyldiphosphonic acid; NMIB = N-methyliminobis(methylenephosphonic acid); PPPA = 4-(4'-phosphonophenoxy)phenyl phosphonic acid; PPA = Phenylphosphonic acid; and bpyBPAE = Tetraethyl 2,2'-bipyridinediyl-5,5'-bis(phosphonate).

Table S2.	Phosphonate-	-MOFs
1 4010 020	inoopnonate	101010

Metal Precursor	Phosphonic Linker	Synthesis Method	Final Morphology	References
Hydrous TiO ₂	Methylene DPA	Hydrothermal in HF/water	3D framework with layered structure— Non-porous	[21]
CoCl2 & Co(ac)2 NiCl2 & Ni(ac)2	N,N'-PBMDPA	Hydrothermal in water	Hexagonal array of channels with 10 Å pores	[22]
Hydrous TiO2 AlCl3	N,N'-PBMDPA	Hydrothermal in HF/water	3D framework with microporosity	[23]
Zn(ClO ₄) ₂	DHBP	Co-condensation in water & reflux with DMF	3D porous structure with microporosity (10 Å pores)	[24]
Pb(ac)2 ZnCl2	EDTP	Hydrothermal in water/EtOH	Open-framework with tunnels & microporous	[25]
Pb(NO ₃) ₂	N,N'-PBMDPA	Hydrothermal in water	3D supramolecular framework	[26]
ZrOCl ₂	РВМРА	condenastion/Precipi tation in water (NH4F or HF)	Layered framework	[27]
Zn(NO3)2	BDPEt	Co-condensation (THF/water)	3D network with channels of ~4.5A°	[28]
CuCl ₂	BDPEt BDPMe	Co-condensation (EtOH/water)	Layered pillar structure with VdW interaction	[29]
CuCO ₃ ·Cu(OH) ₂	BDPA Amino triazole	Co-condensation (MeOH/water)	Pillared interlayer architecture with apparent pores	[30]
Ni(ac)2	N,N'-PBMDPA	Hydrothermal in water	3D frameworks with 0.9 nm pores	[31]
Co(ac) ₂	N,N'-BPBMDPA	Hydrothermal in water	3D honeycomb architecture with pores of 1.8 nm	[32]
BaBr2·2H2O	Octaethyl pyrene- 1,3,6,8- tetraphosphonate	Hydrothermal in EtOH/water	3D framework made up by crosslink of 1D chains	[33]
SnCl ₄	BTBP	Hydrothermal in MeOH	Amorphous microporous (~8.5 Å)	[34]
CuSO4, NiO, NiSO4, & MnSO4	BTTMT TMB-BTTMT	Hydrothermal in water	2D double-layered structure with 1D	[35]

_

.

			tunnel with aperture	
			of 3.5 Å × 7.0 Å	
ZrOCl ₂	BTBP	Direct precipitation	Non-porous	[36]
		in HF	honeycomb-like	
			motif	
ZrOCl ₂	TTBMP	Direct precipitation	Permanent	[37]
		in HF	microporosity &	
			channels of (~5–10 Å)	
Al2(SO4)3	TMB-TTMT	Hydro(solvo)thermal	3D framework with	[38]
		in EtOH/water	hexagonal channels	
			(1.2 nm width)	
$ZrCl_4$	BTBP	Direct precipitation	3D amorphous and	[39]
		& Hydrothermal	semi-crystalline	
		(HF)	framework with	
			microporosity (10 Å	
			pores)	
ZrOCl ₂	TTBMP	Direct precipitation	2D layered structure	[40]
		in HF	with no porosity	
Abbreviations: DPA	= Diphosphonic acid;	N,N'-PBMDPA = N,N'	-piperazine bis(methyle	enephosphonic acid);
DHBP =	1,4-dihydroxy-2,5	-benzenediphosphonate	; EDTP	= N,N,N',N'-
ethylenediaminetetra	kis(methylenephosph	onic acid): PBMPA =	Piperazine-N.N'-bis(m	nethylenephosphonic

ethy onic 1); 5(11 iiyi epi sp uyı εpi acid); BDPEt = 1,4-benzenediphosphonate bis(monoethyl ester); BDPMe = 1,4-benzenediphosphonate bis(monomethyl ester); BDPA = Benzene-1,4-diphosphonic acid; BTTMT = Benzene-1,3,5-(2,4,6-trimethylbenzene-1,3,5triyltris(methylene)triphosphonic acid; TMB-BTTMT = triyl)tris(methylene)triphosphonic acid; BTBP = 1,3,5-tris(4-phosphonophenyl) benzene; TTBMP = 2,4,6-tris(4-(phosphonomethyl)phenyl)-1,3,5-triazine; TMB-TTMT = 2,4,6-trimethylbenzene-1,3,5-triyland tris(methylene)triphosphonic acid.

Table S3. Mesoporous Metal Phosphonates-Templated.

Metal Precursor	Phosphonic Acid	Template	Synthesis Method	Final Morphology	References
Al(OiPr)3	MDPA	ODTMACI	Co-condensation at RT in water	Amorphous, Mesoporous (1.8 nm pores)	[41]
Al(OsBu)3	EDPA	CTAB	Atrane route, Co- precipitation in water	Amorphous, Mesoporous (hexagonal)	[42]
AlCl3	MDPA	Brij-56/58 F68, F127 P123	Co-condensation in EtOH/water followed by EISA	Amorphous Mesoporous (p6m)	[43]
Al(OiPr)3 AlCl3	MDPA EDPA PDPA	СТАВ	Co-condensation in water and EtOH/water	Amorphous with Mesoporosity	[44]
SnCl ₄	PPA	SDS	Hydrothermal	Semi-crystalline, Micro and mesoporous	[45]
ZrOCl ₂	PPA	-	Hydrothermal in water	Amorphous, Inter- particle mesoporosity	[46]
Al(OsBu)3	H3PMP	СТАВ	Atrane route, Co- precipitation in water	Amorphous with mesoporosity	[47]
Ti(OiPr)4	TPPhA	-	Non-hydrolytic condensation in THF	Amorphous with inter-particle porosity	[48]
V(O)(OiPr) ₃	TPPhA	-	Non-hydrolytic condensation in DMSO	Amorphous with inter-particle porosity	[49]

Ti(OBu)4	HEDP (β-CD)	PS beads	Hydrothermal in EtOH/water	Amorphous, Inter- particle mesoporosity & macroporous	[50]
Ti(OBu)4	HEDP EDTMP	-	Hydrothermal in EtOH/water	Amorphous, plate- like particles & slit shaped inter- particle mesoporosity	[51]
Ti(OBu)4	HEDP	F127 P123	Co-condensation in EtOH followed by EISA	Amorphous, Inter- particle mesoporosity	[52]
TiCl4	EDTMP	Brij-56	Cryogenic condensation in EtOH followed by hydrothermal and EISA	Amorphous, p6mm Mesophase	[53]
TiCl4	HEDP	СТАВ	Cryogenic condensation in EtOH followed by hydrothermal treatment	Amorphous, la3d cubic mesophase	[54]
Ti(OBu)4	HEDP EDTMP	-	Hydrothermal in EtOH/water	Amorphous with hierarchical meso/macroporosit y	[55]
Ti(OBu)4	EDTMP DTPMP	-	Hydrothermal in EtOH/water	Crystalline (anatase domains) with phosphonate cap and hierarchical meso/macroporosit y	[56]
AlCl ₃	BDPA	F127	Co-condensation in EtOH/water	Amorphous, Cubic mesoporous (Im3m)	[57]
AlCl ₃	DEPT DPAEP DPEP	F127	Co-condensation in EtOH/water	Amorphous, mesoporous thin film	[58]
Ti(OiPr)4	bBzP bPyP	-	Non-hydrolytic sol gel hydrothermal in toluene	Anatase crosslinked bisphosphonates with inter-crystal mesopores	[59]

Abbreviations: MDPA = Methylenediphosphonic acid; EDPA = Ethylenediphosphonic acid; PDPA = Propylenediphosphonic acid; PPA = Phenylposphonic acid; H3PMP = 1-phosphonomethylproline; TPPhA = Tetrakis-1,3,5,7-(4-diethylphosphonatophenyl) adamantane; HEDP = 1-hydroxyethane 1,1-diphosphonic acid; EDTMP = Ethylenediamine tetra(methylene phosphonic acid); DTPMP = Diethylenetriamine penta(methylene phosphonic acid; DEPT = 2,5-bis(diethoxyphosphoryl) thiophene; DPAEP = Diethyl (N-diethylphosphonomethylcarbonyl)aminoethyl phosphonate; DPEP = Diethyl 2-(2'-diethylphosphonoethoxy)ethylphosphonate; bBzP = 4,4'-bis(diethylphosphonomethyl)biphenyl; and bByP = tetraethyl 2,2'-bipyridine-5,5'-bisphosphonate.

References

- 1. Dines, M.B.; Digiacomo, P.M. Derivatized lamellar phosphates and phosphonates of M (IV) ions. *Inorg. Chem.* **1981**, *20*, 92–97, doi:10.1021/ic50215a022.
- 2. Dines, M.B.; Griffith, P.C. Synthesis and characterization of layered tetravalent metal terphenyl mono- and bis-phosphonates. *Polyhedron* **1983**, *2*, 607–611, doi:10.1016/s0277-5387(00)81519-3.
- 3. Cao, G.; Hong, H.G.; Mallouk, T.E. Layered metal phosphates and phosphonates: from crystals to monolayers. *Accounts Chem. Res.* **1992**, *25*, 420–427, doi:10.1021/ar00021a007.
- 4. Alberti, G.; Costantino, U.; Vivani, R.; Zappelli, P. Preparation Of Zirconium Diphosphonate-Phosphites With A Narrow Distribution Of Mesopores. *MRS Proc.* **1991**, *233*, 101–106, doi:10.1557/proc-233-101.
- 5. Alberti, G.; Casciola, M.; Costantino, U.; Vivani, R. Layered and pillared metal(IV) phosphates and phosphonates. *Adv. Mater.* **1996**, *8*, 291–303, doi:10.1002/adma.19960080405.
- 6. Poojary, D.M; Zhang, B.; Synthesis and X-ray structures of covalently pillared zinc bis(phosphonates). *Inorg. Chem.* **1996**, *35*, 5254–5263.
- 7. Poojary, D.M.; Zhang, B.; Bellinghausen, P.; Clearfield, A. Synthesis and X-ray Powder Structures of Two Lamellar Copper Arylenebis(phosphonates). *Inorg. Chem.* **1996**, *35*, 4942–4949, doi:10.1021/ic960319d.
- 8. Poojary, D.M; Zhang, B.; Pillared layered metal phosphonates. Synthesis and X-ray powder structures of copper and zinc alkylenebis(phosphonates). *J. Am. Chem. Soc.* **1997**, *119*, 12550–12559.
- 9. Alberti, G.; Marmottini, F.; Vivani, R.; Zappelli, P. Preparation and Characterization of Pillared Zirconium Phosphite-Diphosphonates with Tuneable Inter-Crystal Mesoporosity. *J. Porous Mater.* **1998**, *5*, 221–226, doi:10.1023/a:1009630204407.
- Penicaud, V.; Massiot, D.; Gelbard, G.; Odobel, F.; Bujoli, B. Preparation of structural analogues of divalent metal monophosphonates, using bis(phosphonic) acids: a new strategy to reduce overcrowding of organic groups in the interlayer space. *J. Mol. Struct.* **1998**, *470*, 31–38, doi:10.1016/s0022-2860(98)00467-0.
- Zhang, B.; Poojary, D.M.; Clearfield, A. Synthesis and Characterization of Layered Zinc Biphenylylenebis(phosphonate) and Three Mixed-Component Arylenebis(phosphonate)/Phosphates. *Inorg. Chem.* 1998, 37, 1844–1852, doi:10.1021/ic9712380.
- 12. Mao, J.-G.; Wang, Z.; Clearfield, A. Synthesis, Characterization, and Crystal Structures of Two Divalent Metal Diphosphonates with a Layered and a 3D Network Structure. *Inorg. Chem.* **2002**, *41*, 2334–2340, doi:10.1021/ic011202e.
- 13. Bakhmutova, E.V.; Ouyang, X.; Medvedev, D.G.; Clearfield, A. Cobalt Phosphonates: An Unusual Polymeric Cobalt Phosphonate Containing a Clathrated Phosphonate Anion and a Layered Bisphosphonate. *Inorg. Chem.* **2003**, *42*, 7046–7051, doi:10.1021/ic0301425.
- 14. Subbiah, A.; Pyle, D.; Rowland, A.; Huang, J.; Narayanan, R.A.; Thiyagarajan, P.; Zoń, J.; Clearfield, A. A Family of Microporous Materials Formed by Sn(IV) Phosphonate Nanoparticles. *J. Am. Chem. Soc.* **2005**, 127, 10826–10827, doi:10.1021/ja052472p.
- 15. Subbaiah, A; Bhuvanesh, N; A novel inorganic-organic compound: synthesis and structural characterization of tin(II) phenylbis(phosphonate), Sn₂(PO₃C₆H₄PO₃), J. Solid. State. Chem., 2005, 178, 1321-1325.
- Huang, J.; Subbiah, A.; Pyle, D.; Rowland, A.; Smith, B.; Clearfield, A. Globular Porous Nanoparticle Tin(IV) Phenylphosphonates and Mixed Methyl Phenylphosphonates. *Chem. Mater.* 2006, *18*, 5213–5222, doi:10.1021/cm061333j.
- 17. Gómez-Alcántara, M.D.M.; Cabeza, A.; Olivera-Pastor, P.; Fernández-Moreno, F.; Sobrados, I.; Sanz, J.; Morris, R.E.; Clearfield, A.; Aranda, M.A.G.; Cabeza, A.; et al. Layered microporous tin(iv) bisphosphonates. *Dalton Trans.* **2007**, *23*, 2394–2404, doi:10.1039/b618762e.
- Cabeza, A.; Gómez-Alcántara, M.D.M.; Olivera-Pastor, P.; Sobrados, I.; Sanz, J.; Xiao, B.; Morris, R.E.; Clearfield, A.; Aranda, M.A.G.; Cabeza, A.; et al. From non-porous crystalline to amorphous microporous metal (IV) bisphosphonates. *Microporous Mesoporous Mater.* 2008, 114, 322–336, doi:10.1016/j.micromeso.2008.01.018.
- 19. Kirumakki, S.; Huang, J.; Subbiah, A.; Yao, J.; Rowland, A.; Smith, B.; Mukherjee, A.; Samarajeewa, S.; Clearfield, A. Tin(IV) phosphonates: porous nanoparticles and pillared materials. *J. Mater. Chem.* **2009**, *19*, 2593–2603, doi:10.1039/b818618a.
- 20. Perry, H.; Law, J.; Porous zirconium and tin phosphonates incorporating 2,2'-bipyridine as supports for palladium nanoparticles. *Microporous Mesoporous Mat.* **2012**, *149*, 172–180.

- 21. Serre, C.; Ferey, G.; Hybrid Open Frameworks. 8. Hydrothermal synthesis, crystal structure and thermal behavior of the first three-dimensional titanium (IV) diphosphonate with an open framework structure: Ti₃O₂(H₂O)₂(O₃P-(CH₂)-PO₃)₂·(H₂O)₂, or MIL-22. *Inorg. Chem.* **1999**, *38*, 5370–5373.
- 22. Groves, J.A.; Miller, S.R.; Warrender, S.J.; Mellot-Draznieks, C.; Lightfoot, P.; Wright, P.A. The first route to large pore metal phosphonates. *Chem. Commun.* **2006**, 3305–3307, doi:10.1039/b605400e.
- 23. Serre, C.; Groves, J.A.; Synthesis, structure and properties of related microporous N,N'-piperazinebismethylenephosphonates of aluminium and titanium. *Chem. Mater.* **2006**, *18*, 1451–1457.
- 24. Liang, J.; Shimizu, G.K.H. Crystalline Zinc Diphosphonate Metal–Organic Framework with Three-Dimensional Microporosity. *Inorg. Chem.* **2007**, *46*, 10449–10451, doi:10.1021/ic701628f.
- 25. Wu, J.; Hou, H.; Highly selective ferric ion sorption and exchange by crystalline metal phosphonates constructured from tetraphosphonic acids. *Inorg. Chem.* **2007**, *46*, 7960–7970.
- 26. Ma, K.-R.; Zhang, D.-J.; Zhu, Y.-L. Structure and Characterization of a Novel 3D Lead Phosphonate Metal-Organic Framework with Cationic Layer Based on Weak Pb-O(N) Contact. *Aust. J. Chem.* **2010**, *63*, 452–457, doi:10.1071/ch09382.
- 27. Taddei, M.; Costantino, F.; Vivani, R. Synthesis and Crystal Structure from X-ray Powder Diffraction Data of Two Zirconium Diphosphonates Containing Piperazine Groups. *Inorg. Chem.* **2010**, *49*, 9664–9670, doi:10.1021/ic1014048.
- 28. Iremonger, S.S.; Liang, J.; Vaidhyanathan, R.; Shimizu, G.K.H. A permanently porous van der Waals solid by using phosphonate monoester linkers in a metal organic framework. *Chem. Commun.* **2011**, *47*, 4430–4432, doi:10.1039/c0cc04779a.
- 9. Iremonger, S.S.; Liang, J.; Vaidhyanathan, R.; Martens, I.; Shimizu, G.K.H.; Thomas, D.D.; Aghaji, M.Z.; Yeganegi, S.; Woo, T.K. Phosphonate Monoesters as Carboxylate-like Linkers for Metal Organic Frameworks. J. Am. Chem. Soc. 2011, 133, 20048–20051, doi:10.1021/ja207606u.
- 30. Vaidhyanathan, R.; Liang, J.; A route to functionalized pores in coordination polymers via mixed phosphonate and amino triazole linkers. *Supramol. Chem.* **2011**, *23*, 278–282.
- Miller, S.R.; Pearce, G.M.; Wright, P.A.; Bonino, F.; Chavan, S.M.; Bordiga, S.; Margiolaki, I.; Guillou, N.; FéreyG.; Bourrelly, S.; et al. Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metal–Organic Framework, Ni-STA-12. *J. Am. Chem. Soc.* 2008, 130, 15967–15981, doi:10.1021/ja804936z.
- 32. Wharmby, M.T.; Mowat, J.P.S.; Thompson, S.P.; Wright, P.A. Extending the Pore Size of Crystalline Metal Phosphonates toward the Mesoporous Regime by Isoreticular Synthesis. *J. Am. Chem. Soc.* **2011**, *133*, 1266–1269, doi:10.1021/ja1097995.
- 33. Taylor, J.M.; Vaidhyanathan, R.; Enhancing the water stability of metal-organic frameworks via phosphonate monoester linkers. *J. Am. Chem. Soc.* **2012**, *134*, 14338–14340.
- 34. Mah, R.K.; Lui, M.W.; Enhancing order and porosity in a highly robust tin(IV) triphosphonate network. *Inorg. Chem.* **2013**, *52*, 7311–7313.
- 35. Tang, S. F.; Pan, X. B.; Fabrication of new metal phosphonates from tritopic triphosphonic acid containing methyl groups and auxillary ligands: syntheses, structures, and gas adsorption properties. *Cryst. Eng. Chem.* **2013**, *15*, 1860–1873.
- 36. Taddei, M.; Costantino, F.; Vivani, R.; Sabatini, S.; Lim, S.-H.; Cohen, S.M. The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. *Chem. Commun.* **2014**, *50*, 5737–5740, doi:10.1039/c4cc01253d.
- Taddei, M.; Costantino, F.; Marmottini, F.; Comotti, A.; Sozzani, P.; Vivani, R. The first route to highly stable crystalline microporous zirconium phosphonate metal–organic frameworks. *Chem. Commun.* 2014, 50, 14831–14834, doi:10.1039/c4cc06223j.
- 38. Tang, S.F.; Cai, J.J.; A highly porous three-dimensional aluminum phosphonate with hexagonal channels: synthesis, structure and adsorption properties. *Dalton Trans.* **2014**, *43*, 5970–5973.
- 39. Mah, R.K.; Gelfand, B.S.; Reconciling order, stability, and porosity in phosphonate metal organic frameworks via HF-mediated synthesis. *Inorg. Chem. Front.* **2015**, *2*, 273–277.
- Taddei, M.; Shearan, S.J.; Donnadio, A.; Casciola, M.; Vivani, R.; Costantino, F. Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers. *Dalton Trans.* 2020, 49, 3662–3666, doi:10.1039/c9dt02463h.
- 41. Kimura, T.; Synthesis of novel mesoporous aluminum organophosphonate by using a bridged diphosphonic acid, *Chem. Mater.*, **2003**, *15*, 3742–3744.

- 42. Haskouri, J.E., Guillem, C.; The first pure mesoporous aluminum phosphonates and diphosphonates new porous hybrid materials. *Eur. J. Inorg. Chem.* **2004**, *9*, 1804–1807.
- 43. Kimura, T. Oligomeric Surfactant and Triblock Copolymer Syntheses of Aluminum Organophosphonates with Ordered Mesoporous Structures. *Chem. Mater.* **2005**, *17*, 5521–5528, doi:10.1021/cm050919n.
- 44. Kimura, T. Synthesis of Mesostructured and Mesoporous Aluminum Organophosphonates Prepared by Using Diphosphonic Acids with Alkylene Groups. *Chem. Mater.* **2005**, *17*, 337–344, doi:10.1021/cm0490672.
- 45. Mal, N.K.; Fujiwara, M.; Yamada, Y.; Matsukata, M. Synthesis of Surfactant-assisted Microporous Layered Tin Phenylphosphonate. *Chem. Lett.* **2003**, *32*, 292–293, doi:10.1246/cl.2003.292.
- Sarkar, K.; Yokoi, T.; Tatsumi, T.; Bhaumik, A. Mesoporous hybrid zirconium oxophenylphosphate synthesized in absence of any structure directing agent. *Microporous Mesoporous Mater.* 2008, 110, 405–412, doi:10.1016/j.micromeso.2007.06.045.
- 47. Shi, X.; Yang, J.; Mesoporous aluminum organophosphonates functionalized with chiral L-proline groups in the pore. *Eur. J. Inorg. Chem.* **2006**, *10*, 1936–1939.
- 48. Vasylyev, M.V.; Wachtel, E.J.; Popovitz-Biro, R.; Neumann, R. Titanium Phosphonate Porous Materials Constructed from Dendritic Tetraphosphonates. *Chem. A Eur. J.* **2006**, *12*, 3507–3514, doi:10.1002/chem.200501143.
- 49. Vasylyev, M.V.; Neumann, R.; Preparation, characterization, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous materials constructed from a dendritic phosphonate. *Chem. Mater.* **2006**, *18*, 2781–2783.
- 50. Ma, T.Y.; Zhang, X.J.; Ordered microporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption. *J. Phys. Chem. C* **2008**, *112*, 3090–3096.
- 51. Ma, T.; Zhang, X.-J.; Yuan, Z.-Y. High selectivity for metal ion adsorption: from mesoporous phosphonated titanias to meso-/macroporous titanium phosphonates. *J. Mater. Sci.* **2009**, *44*, 6775–6785, doi:10.1007/s10853-009-3576-7.
- 52. Ma, T.-Y.; Lin, X.-Z.; Zhang, X.-J.; Yuan, Z.-Y. High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. *New J. Chem.* **2010**, *34*, 1209–1216, doi:10.1039/b9nj00775j.
- 53. Ma, T.-Y.; Lin, X.-Z.; Yuan, Z.-Y. Periodic mesoporous titanium phosphonate hybrid materials. *J. Mater. Chem.* **2010**, *20*, 7406–7415, doi:10.1039/c0jm01442g.
- 54. Ma, T.Y; Lin, X.Z; Cubic mesoporous titanium phosphonates with functionality. *Chem. Eur. J.* 2010, 16, 8487–8494.
- 55. Ma, T.; Lin, X.-Z.; Yuan, Z.-Y. Hierarchical meso-/macroporous phosphated and phosphonated titania nanocomposite materials with high photocatalytic activity. In Proceedings of the Studies in Surface Science and Catalysis; Elsevier BV: Amsterdam, The Netherlands, 2010; Vol. 175, pp. 571–574.
- 56. Zhang, X.J.; Ma, T.Y.; Titania-phosphonate hybrid porous materials: preparation, photocatalytic activity, and heavy metal ion adsorption. *J. Mat. Chem.* **2008**, *18*, 2003–2010.
- 57. Kimura, T; Moleular design of bisphosphonates to adjust their reactivity towards metal sources for the surfactant-assisted synthesis of mesoporous films. *Angew. Chem. Int. Ed.* **2017**, *56*, 13459–13463.
- 58. Wakabayashi, R.; Kimura, T. Further Understanding of the Reactivity Control of Bisphosphonates to a Metal Source for Fabricating Highly Ordered Mesoporous Films. *Chem. A Eur. J.* **2019**, *25*, 5971–5977, doi:10.1002/chem.201900250.
- 59. Wang, Y.; Alauzun, J.G.; Mutin, P.H. Water-Stable, Nonsiliceous Hybrid Materials with Tunable Porosity and Functionality: Bridged Titania-Bisphosphonates. *Chem. Mater.* **2020**, *32*, 2910–2918, doi:10.1021/acs.chemmater.9b05095.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).