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Abstract: The electrochemical behaviors of rare earth (RE) ions have extensively been studied because
of their high potential applications to the reprocessing of used nuclear fuels and RE-containing
materials. In the present study, we fully investigated the electrochemical behaviors of RE(III) (La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) ions over a Ni sheet electrode in 0.1 M NaClO4

electrolyte solution by cyclic voltammetry between +0.5 and −1.5 V (vs. Ag/AgCl). Amperometry
electrodeposition experiments were performed between −1.2 and −0.9 V to recover RE elements
over the Ni sheet. The successfully RE-recovered Ni sheets were fully characterized by scanning
electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy,
X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The newly reported recovery
data for RE(III) ions over a metal electrode provide valuable information on the development of the
treatment methods of RE elements.

Keywords: rare earth ions; electrochemical recovery; amperometry electrodeposition; cyclic
voltammetry; actinide ions

1. Introduction

Rare earth (RE) elements have widely been used in diverse industry materials such as magnets,
fluorescent lamps, catalysts, and batteries [1–5]. Lanthanide (Ln) elements are commonly co-present
with actinide (An) elements in nuclear oxide fuels. Therefore, the treatment and the recycling of
used RE-containing industry materials and oxide fuels are of very attractive research projects [6–10].
In the reprocessing of spent nuclear oxide fuels, the pyroprocessing technology has been employed
to reprocess Ln and An ions present in a pre-prepared electrolyte condition [11]. For this treatment,
electrochemistry is an indispensable technique, and the understanding electrochemical behaviors
(e.g., electrochemical reduction-oxidation reactions) of the ions over electrodes is very important.
For the recovery of RE elements from used industry materials [12,13], the electrochemical recovery
method has been a useful method to selectively recover a desired element in an electrolyte with
mixed RE ions [12–14]. To achieve these goals, electrochemical behaviors of RE ions in an electrolyte
have fundamentally been studied by electrochemistry [15–19]. Yang et al. studied electrochemical
behaviors and electrodeposition of Eu (III) ions over a Al-Ga cathode, and co-reduction behaviors of
Eu(III), Al(III) and Ga(III) over a W electrode [16]. They showed efficient reduction and co-reduction
of Eu(III) ions over the electrodes. Liu et al. studied direct separation of U from RE (La, Nd, Ce,
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and Sm)-containing LiCl-KCl eutectic and showed that U was efficiently electrodeposited as Al-U
alloys (Al3U and Al4U) on the Al electrode [17]. Kim and Lee focused on obtaining fundamental
electrochemical properties of both Nd3+/Nd2+ and Ce3+/Ce in a molten LiCl-KCl eutectic salt at a high
temperature of 773 K using a glassy carbon counter electrode, a Ag/Ag+ reference electrode, and a W
working electrode, and reported the measured diffusion constant, the standard reduction potential,
and the standard-state Gibb’s free energy of the RE ions [18]. Separation of a neighboring RE pair
(e.g., Sm3+/Sm2+ and Eu3+/Eu2+) is another goal to be achieved. Ge et al. used a reactive Cu electrode
for selective recovery as Cu-Sm intermetallic compounds [19]. Al-Eu compound was reported to be
selectively recovered over an Al electrode at a negative potential of −2.225 V (vs. Ag/Ag+), higher than
that of Al-Sm compound recovery on the electrode [19]. The molten-salt condition has commonly been
performed at a high temperature [16–19] while the electrodeposition in ionic liquid conditions has
been introduced for a mild temperature condition [20–22]. Xu et al. efficiently electrodeposited a rare
earth iron alloy of Nd-Fe film on a Cu electrode in an ionic liquid condition containing Nd(III) and
Fe(II) ions [20]. They proposed a deposition mechanism that Fe was initially deposited to subsequently
catalyze the reduction of Nd(III) to Nd(0), and consequently Nd-Fe was co-deposited.

Although there are many literatures for the recovery of RE elements under various conditions,
few studies have been systematically reported for the recovery of all the RE elements over a metal
electrode in a NaClO4 condition at room temperature. Because the electrochemical behaviors of RE
and An elements are very similar, the selective recovery and the treatment are challenging and needed
to be continuously developed. The novelty of this study is that all the RE elements were introduced
to show that they had a systematic relationship on redox potentials with atomic number. Therefore,
this data set is very useful for better understanding the redox behaviors of rare earth ions and the
development of Ln and An treatment methods as well as other heavy metal ions present in water.

2. Results and Discussion

To examine the electrochemical behaviors of RE(III) ions, Figure 1 displays cyclic voltammetry
(CV) curves for various 10 mM RE(III) ions in 0.1 M NaClO4 electrolyte over bare Ni sheets. In a
blank 0.1 M NaClO4 electrolyte, there was no discernible reduction–oxidation (redox) peaks except for
the current increases below −1.0 V (vs. Ag/AgCl) and above 0.0 V. Upon addition of 10 mM RE(III)
ions, a strong negative current increase was commonly observed, starting from −0.5 V. There was no
significant current increase between −0.5 and +0.5 V. The negative current increase was due to both the
hydrogen evolution reaction and the RE reduction/complexation. Interestingly, as the atomic number
was increased (or as the atomic size was decreased) from #57 (La) to #70 (Yb), the reduction peak became
distinctly appeared. This indicates that the reduction potentials for La (#57), Ce (#58), and Pr (#59) are
close to the hydrogen reduction potential, and the reduction potentials for Er (#68), Tm (#69), and Yb
(#70) are far from the hydrogen reduction potential. The reduction potential for La was barely detected
at −1.2 V (vs. Ag/AgCl) and that for Yb was clearly seen at −0.95 V (vs. Ag/AgCl). The reduction
potentials for Nd, Sm, and Eu were observed to be between −1.11 and −0.92 V (vs. Ag/AgCl). Xu et al.
reported that the equilibrium potentials of RE elements were in a relationship with atomic size [23].
Herein, the present redox potentials of RE(III) ions appear to be also influenced by other factors such
as electronegativity and complex formation degree.

To examine the electrochemical recovery of RE(III) ions over Ni sheets and the corresponding
morphology, Figure 2 shows scanning electron microscope (SEM) and optical microscope images before
and after electrodeposition. On the basis of the images, all the RE elements were efficiently deposited
on Ni sheets. The deposited areas were clearly discriminated from the undeposited areas by optical
microscope images. For the SEM images of La, Ce, and Pr, the surface morphology showed a uniform
film state, although some cracks were present in the deposited areas. For the SEM images of Nd, Sm,
Eu, Gd, and Tb, the morphology appeared to be a film state aggregated by ultrafine particles. For the
SEM images of Dy, Ho, Er, Tm, and Yb, the particle sizes were appeared to be much bigger and become
nanoparticle structures. Overall, it can be concluded that the morphology was changed from uniform



Materials 2020, 13, 5314 3 of 11

thin film state to nanoparticle structures as the atomic number was increased. The present data can
provide valuable information on the development of thin film fabrication by electrodeposition.
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Figure 1. Cyclic voltammetry curves at a scan rate of 0.2 V/s for various 10 mM RE(III) ions in 0.1 M
NaClO4 electrolyte over bare Ni sheets. The reduction peak positions (V vs. Ag/AgCl) are shown with
RE elements. A schematic of the three-electrode system used in this study is shown.

To confirm the elements of the recovered RE elements, Figure 3 shows the energy-dispersive X-ray
spectroscopy (EDXS) data for the samples shown in Figure 2. For the EDX spectrum (not shown here)
of a bare Ni sheet, the detected signals were of Ni (major), C (minor), and O (minor) elements: Ni L
(0.84 KeV), C K (0.26 KeV), and O K (0.52 KeV) [24]. Upon electrodeposition, the signals of RE, C, and O
were strongly increased. The strong O signal was plausibly due to RE–O, –OH, –ClO4, and –CO3 species,
confirmed by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy
(XPS) shown below. The EDXS signals of RE and Cl (Cl K = 2.62 KeV) elements were newly appeared.
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The Cl K signal was due to ClO4 species, further discussed in the FT-IR spectra below. The Ni L signals
were observed to be dependent on the amounts of RE deposited on a Ni sheet. The Gd/Ni sample
showed the strongest Ni signal while Dy/Ni showed the weakest signal. This indicates that Dy element
was the most recovered by electrodeposition after a given time for 5 min. For the EDXS signals (Ln M)
of RE elements, the peak position was linearly increased to a higher energy position with increasing
the atomic number. The La M (#57 for La element) and the Yb M (#70 for Yb element) signals were
positioned at 0.83 and 1.52 KeV, respectively [24]. The peak separation between the two peaks was
estimated to be 0.69 KeV. For the radioactive promethium, Pm M can be expected to be observed
around 1.1 KeV. On the basis of inductively coupled plasma elemental analysis of Ce and the Ln M
EDXS signal intensities, the recovery percentages (%) were roughly estimated to be La (15.6%), Ce (3%),
Pr (3.2%), Nd (5.7%), Sm (5.9%), Eu (4.3%), Gd (2.7%), Tb (3.3%), Dy (12.6%), Ho (11.5%), Er (12.7%),
Tm (15.3%), and Yb (18.7%) over a 5 mm × 10 mm size electrode in 5 min.
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Figure 3. Energy-dispersive X-ray spectroscopy (EDXS) data for electrodeposited RE elements over a
Ni sheet.

To deduce the chemical structures of the electrodeposited materials, Figure 4 displays the FT-IR
spectra for all the electrodeposited samples. Very interestingly, all the FT-IR spectra were found to be
similar, except for the signal intensity, which was determined by the amounts of recovered materials.
The FT-IR intensity was in good consistent with the EDXS signal intensity. The Gd/Ni sample showed
the weakest IR intensity. As discussed above, this sample showed the strongest EDXS Ni signal
(from the Ni support). This indicates that the electrodeposited Gd was the thinnest. In the FT-IR
spectra, a broad peak around 3600 cm−1 was distinctly observed, attributed to RE–OH stretching
vibrations [25–28]. The corresponding O–H bending vibrational mode was observed at 1625 cm−1.
The commonly appeared peak at 620 cm−1 was attributed to a RE–O vibrational mode [26]. A broad
peak at 1080 cm−1 could be related with a vibration of ClO4

− group [29]. Two strong peaks were also
observed at 1350 and 1403 cm−1, the most plausibly attributed to the stretching vibration modes of
CO3

2− group [25–28]. On the basis of the FT-IR data, it could be concluded that the electrodeposited
samples were complexes of RE, OH (and/or H2O), CO3

2−, and ClO4
− groups, further discussed below.
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To further examine the crystal structures of the electrodeposited samples, the X-ray diffraction
(XRD) patterns of a selected Eu sample and a bare Ni were displayed in Figure 5. The XRD signals
were barely detected because the film was ultrathin (and low crystallinity), and the electrode was too
small to be properly aligned. This needs further investigation to increase a potential applicability.
For bare Ni sheet, the XRD signals were very strong and there were no significant impurity signals.
The strong peaks at 2θ = 45◦ and 52◦ were attributed to the (111) and (200) crystal planes of metallic
Ni [30]. The other (but clearly discriminated from the background signal) weak XRD signals were
observed around 2θ = 10◦, 20◦, 28◦, and 50◦. These XRD peak positions are similar to those of
Ln2(OH)x(NO3)y(SO4)z·nH2O complex [25] and metal carbonate hydroxide structures [25,27,28,31,32].
Assuming that anions of SO4

2− and NO3
− are exchanged by CO3

2− and ClO4
− but the crystal phase is

not changed [25], the corresponding crystal planes are assigned on the four broad peaks in Figure 5.
Based on the present XRD information, the FT-IR data, and the literature information, the recovered RE
elements were proposed to be presented as RE2(OH)x(CO3)y−z(ClO4)z·nH2O complex, where O and
RE were the most abundantly present in the complex [25]. The EDXS data commonly showed RE, C, O,
and Cl elements, and the atomic compositions of RE and O were much higher than those of C and Cl.Materials 2020, 13, x; doi: FOR PEER REVIEW 6 of 12 
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Surface chemical states of a selected electrodeposited sample were examined by X-ray photoelectron
spectroscopy (XPS). Figure 6 displays survey, high-resolution C 1s, Ni 2p, and Eu 3d XPS spectra before
and after Eu electrodeposition over a Ni sheet. All the binding energies (BEs) here were not calibrated
using an internal standard, but the XPS spectrometer showed an Au 4f7/2 XPS peak at 84.0 eV for a
cleaned Au film (as an external standard). For the survey XPS scan of a bare Ni sheet, Ni, C and O
elements were only observed. An O 1s XPS signal was observed at a BE of 530.2 eV for a bare Ni
sheet, due to oxidation of Ni surface. The surface oxide was ultrathin and could not be detected by the
bulk XRD technique, shown above. For the survey scan of an electrodeposited Eu on Ni, Eu 3d and
Eu 4d signals were strongly and newly appeared. In addition, N 1s and Cl 2p XPS signals were also
newly appeared. The N 1s peak position was observed at a BE of 406.0 eV [33,34], plausibly due to
nitrates trapped in the surface. The Cl 2p BE was observed at 207.0 eV, due to ClO4 species [33,35].
The Cl element was also detected by EDXS, shown above. In the C 1s XPS for bare Ni, two peaks were
observed at 283.8 eV (major) and 287.2 eV (minor), attributed to adventitious C–C and C–O species,
respectively. In the C 1s XPS for electrodeposited Eu on Ni, a C 1 XPS peak at a BE of 288.5 eV was
newly observed, attributed to O–C=O species such as carbonates [33]. In the Ni 2p XPS for bare Ni,
several peaks were observed. Two shaper peaks at 868.6 and 851.4 eV with a spin orbit splitting of
17.2 eV were assigned to the Ni 2p1/2 and Ni 2p3/2 XPS signals of metallic Ni [30,33,36], respectively.
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Two broader peaks at 872.6 and 854.6 eV with a spin orbit splitting of 17.7 eV were assigned to the
Ni 2p1/2 and Ni 2p3/2 XPS signals of Ni(II) state (e.g., NiO), respectively [30,36]. The corresponding
satellite peaks of Ni(II) oxidation state were observed at 879.3 and 861.0 eV, respectively [33,36]. On the
basis of the Ni 2p XPS, the surface of Ni sheet was oxidized to Ni(II) state. Upon Eu deposition, the Ni
2p signal was not observed, an indication that the electrodeposited overlayer was much thicker than
the XPS probe depth. In the Eu 3d XPS, two major signals were observed at 1163.3 and 1133.5 eV with
a spin-orbit splitting energy of 29.8 eV, attributed to Eu 3d3/2 and Eu 3d5/2 XPS signals of Eu(III) state,
respectively [37]. A weaker Eu 3d3/2 peak around 1156.0 eV could be due to some Eu(II) states [37].Materials 2020, 13, x; doi: FOR PEER REVIEW 7 of 12 
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To further confirm the oxidation state of Eu elements, photoluminescence spectroscopy was
employed for the Eu electrodeposited sample because Eu(III) ion has unique 5D0→

7F0,1,2,3,4 transitions
in the visible region between 550 and 720 nm [37–40], while Eu(II) shows no visible light emission under
an excitation of UV light. Figure 7 shows excitation and emission spectra for a thick electrodeposited
Eu sample and the corresponding 2D- and 3D-PL contour mapping images. For the excitation spectra
setting at emission wavelengths (λem) of 613 and 590 nm, the PL profiles were found to be very similar,
but the intensity was stronger for the spectra at λem = 613 nm. This indicates that the emission under
613 nm light was stronger than the emission under 590 nm light. Various peaks were observed at
299, 319, 363, 383, 395, 416, and 466 nm, assigned to the 5F4, 5H5, 5D4, 5GJ/

5L7, 5L6, 5D3, and 5D2

transitions from the ground 7F0 state of Eu(III), respectively [37]. For the emission spectra taken at
excitation wavelengths (λex) of 280 nm (indirect excitation), 320 nm (the 5F4←

7F0 direct excitation),
and 395 nm (the 5L6←

7F0 direct excitation), the two emission profiles at direct excitations of λex = 320
and 395 nm are similar, but the emission profile at an indirect excitation of λex = 280 nm is dissimilar to
the other two. The PL intensity of the direct transition to an Eu(III) excited energy level was found to be
stronger than that of the indirect transition. Several PL peak positions were commonly observed at 578,
590, 613, 647, and 698 nm, commonly associated to the 5D0→

7F0, 5D0→
7F1, 5D0→

7F2, 5D0→
7F3,

and 5D0→
7F4, transitions, respectively [37–40]. The 5D0 →

7F2 transition was observed to be the
most intense. Because of the strong emission, the sample appeared to be red for the electrodeposited
Eu (inset photo in Figure 7A). The 5D0→

7F2 transition is known to be electric dipole transition and
hypersensitive to Eu(III) local environment. The transition becomes dominant when Eu(III) ion is
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located at an asymmetric site. On the other hand, the 5D0→
7F1 transition is insensitive to the local

environment. For this reason, (5D0 →
7F2)/(5D0 →

7F1) intensity ratio is regarded as an asymmetric
ratio for Eu(III) location site. The ratio was estimated to be 2.3 for the emission spectra at direction
excitations. The ratio was 1.2 for the emission at indirect excitation. The corresponding 2D and 3D
contour PL mapping profiles show densely spaced regions, an indication of strong emission signals.
The densely spaced regions are mainly localized at the upper energy levels (5F4, 5H5, 5D4, 5GJ/

5L7, 5L6,
5D3, and 5D2)← 7F0 excitation transitions and 5D0→

7F0,1,2,3,4 emission transitions.Materials 2020, 13, x; doi: FOR PEER REVIEW 8 of 12 
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Figure 7. Excitation (A) and emission (B) spectra for a thick electrodeposited Eu on a Ni sheet, and the
corresponding 2D- and 3D-PL contour mapping images (C, D).

3. Experimental Section

3.1. Sample Preparations

Ni sheets (99.96%) were cut with a size of 5 mm × 20 mm; cleaned by ultrasonication in acetone,
isopropyl alcohol, and water, repeatedly; and dried under an infrared lamp. All the purchased RE(III)
ions were nitrate forms and used as received without any further purification: La(III) nitrate hexahydrate
(99.999%, Sigma-Aldrich, Saint Louis, MO, USA), Ce(III) nitrate hexahydrate (99%, Sigma-Aldrich),
Pr(III) nitrate pentahydrate (99.9%, Alfa Aesar, Ward Hill, MA, USA), Nd(III) nitrate hexahydrate
(99.9%, Alfa Aesar), Sm(III) nitrate hexahydrate (99.9%, Alfa Aesar), Eu(III) nitrate hexahydrate
(99.9%, Alfa Aesar), Gd(III) nitrate hexahydrate (99.9%, Sigma-Aldrich), Tb(III) nitrate hydrate
(99.9%, Alfa Aesar), Dy(III) nitrate pentahydrate (99.9%, Sigma-Aldrich), Ho(III) nitrate pentahydrate
(99.99%, Alfa Aesar), Er(III) nitrate hydrate (99.9%, Sigma-Aldrich), Tm(III) nitrate hydrate (99.9%,
Alfa Aesar), and Yb(III) nitrate hydrate (99.9%, Sigma Aldrich). Sodium perchlorate (NaClO4 ≥ 98.0%,
Sigma-Aldrich) was used as received and made to an aqueous 0.1 M solution as a supporting
electrolyte. RE(III) ions were 10 mM concentration in the supporting electrolyte. Cyclic voltammetry
tests were conducted using a WPG100 Potentiostat/Galvanostat (WonATech Co., Ltd., Seoul, Korea)
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electrochemical workstation. with a conventional three-electrode arrangement: a Ag/AgCl (3.5 M KCl)
reference electrode, a Pt wire (0.5 mm) counter electrode, and a Ni sheet electrode (5 mm × 20 mm) in a
0.1 M NaClO4 electrolyte with and without RE(III) ions (10 mM). For the recovery of the RE elements,
the electrodeposition over a Ni sheet was performed by amperometry for 5 min setting at the reduction
potential observed in the CV data. After the electrodeposition, the electrode was gently washed with
deionized water and dried under an infrared lamp before further characterization.

3.2. Characterization of the RE Recovered Materials

The morphology of the RE-recovered samples was examined using a field-emission Hitachi S-4800
SEM (FE-SEM, Hitach Ltd., Tokyo, Japan). The crystal phases of the electrodeposited sample were
identified using a MiniFlex II X-ray diffractometer (Rigaku Corp., Tokyo, Japan) equipped with a
Cu Kα radiation source. Energy-dispersive X-ray spectroscopy (EDXS) was performed using a JSM
7000 F scanning electron microscope (JEOL Ltd., Tokyo, Japan) at an acceleration voltage of 20 kV.
The FT-IR spectra were recorded using a Nicolet iS 10 FT-IR spectrometer (Thermo Scientific Korea,
Seoul, Korea) with an attenuated total reflection mode. Photoluminescence (PL) emission and excitation
spectra were obtained using a Sinco FS-2 fluorescence spectrometer (Sinco, Seoul, Korea) setting at
scan speed = 300 nm/min, slit width = 5 nm, PMT voltage = 700 V, and integration time = 20 ms.
The emission profiles were recorded at various excitation wavelengths to plot 2D/3D PL contour profiles.
X-ray photoelectron spectroscopy was employed using Thermo-VG Scientific K-alpha+ spectrometer
(Thermo VG Scientific, Waltham, MA, USA) with a monochromatic Al Kα X-ray source (spot size
= 400 µm) and a hemispherical energy analyzer (CAE mode, pass energy = 50.0 eV, and step size
= 0.100 eV). An Avio 500 inductively coupled plasma optical emission spectrometer (Perkin Elmer,
Waltham, MA, USA) was used to examine the amount of Ce ions present in the electrolyte after the
amperometry test for 5 min.

4. Conclusions

In this work, we first showed a big data set for the recovery of rare earth (La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, and Yb) ions over a Ni sheet in a 0.1 M NaClO4 electrolyte. Cyclic voltammetry
tests showed the reduction potentials between −1.2 and −0.8 V (vs. Ag/AgCl). The observed reduction
potentials were reported for all the RE elements with increasing the atomic number. SEM images
showed that the electrodeposition method was useful to recover the RE elements as thin film or
nanoparticle structures on a Ni sheet. As the atomic number was increased the morphology was
changed from uniform thin film state to nanoparticle structures. The electrodeposited La (#59) on
Ni showed a uniform film morphology while the electrodeposited Yb (#70) on a Ni sheet showed
nanoparticle morphology. EDXS data confirmed the elements of RE, C, O, and Cl. The EDXS
Ni L signal was used to estimate the relative amounts of electrodeposited RE materials. On the
basis of the FT-IR and XRD data, it was tentatively concluded that the electrodeposited recovered
materials were of a RE2(OH)x(CO3)y−z(ClO4)z·nH2O complex. For a selected electrodeposited Eu on
Ni, the oxidation state of 3+ was confirmed by Eu 3d XPS signals. The Eu(III) oxidation state was
further confirmed by the PL spectra showing the 5D0 →

7F0,1,2,3,4 emission transitions in the visible
region between 570 and 720 nm. Future potential experiments may include a clear elucidation of
the crystal structure, and electrodeposition over a porous Ni mesh for energy storage and energy
production (e.g., CO2 reduction and water splitting) electrochemical electrodes.

Overall, the present study contains very valuable electrochemical behaviors of all the RE(III) ions
in a NaClO4 electrolyte when a Ni sheet is used as a working electrode. The newly established big
data set for RE elements could be used to predict the redox behaviors of Ln and An elements present in
solutions. Furthermore, their morphologies, chemical states and the electrochemical recovery method
could provide valuable information on the reprocessing of used nuclear oxide fuels, the recovery of
RE-containing industry wastes, and fabrication of thin films.
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