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Abstract: Natural hydraulic lime (NHL) as a building material has been widely used to restore the
historic structure. However, the slow growth rate of strength and durability limits its engineering
application. In this work, the NHL-based mortars were pretreated by lithium silicate (LS) solution
impregnation and surface spraying. The results show that the compressive strength, surface hardness,
and freeze-thaw cycle (FTC) resistance of NHL-based mortar were greatly improved after LS
pretreatment. Specifically, the compressive strengths of the sample increased by about 32.7–52.0%.
LS was sprayed on the sample’s surface (about 0.2 kg/m2) and the surface hardness increased by up to
10 grades. Compared with the control samples, the weight loss of treated samples decreased by about
31.6–43.8%. A rehydration process to generate the hydrated calcium silicate gel (C-S-H) was observed
between calcium hydroxide (CH) and LS, which can decrease the sample’s porosity and form a silicate
coating on the surface. With an increase in the concentration of LS, the macropores (50–10,000 nm)
content decreased, while the mesopores (10–50 nm) and nanopores (less than 10 nm) increased.
This work reveals that the LS pretreatment provides a potential route to improve NHL-based mortar’s
mechanical properties and durability.
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1. Introduction

Natural hydraulic lime (NHL) is an important inorganic binder that can be hydrated in air
and water [1–3]. Three classes of NHL were defined by the new version of the European Standard
(EN459-1:2015) based on the compressive strength after 28 days of curing and the content of calcium
hydroxide (CH): NHL2, NHL3.5, and NHL5 [4]. In NHL, C2S is the major hydraulic phase, while the
calcium hydroxide (CH) is contributed to the carbonation for hardening [5–7]. Due to NHL-based
mortars having low shrinkage [8], good permeability, and compatibility with old materials, NHL is
widely used to repair historical structures and the preparation of fluid screeds [9,10]. However,
certain disadvantages of NHL, such as the slow growth rate of strength and low final strength, limit its
wide application.

Multiple additives have been used to improve the mechanical performance and its durability.
For example, pozzolan’s introduction as a partial substitution of NHL has been studied [11–13].
Grilo et al. [14] reported that the mechanical strength of NHL-metakaolin (NHL-MK) mortar increased
with the introduction of metakaolin to replace lime partially. However, with an increase in aging time,
the NHL-MK mortar’s compressive strength would decrease due to the increase of kaolin content.
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A similar result is reported by Luso et al. [15,16] in which the compressive strength of the injection
grout with a ternary binder experienced a decrease after 180 days of aging. The poor durability
is ascribed to the instability of calcium-aluminum hydrated compounds formed in the pozzolanic
reaction [17]. In addition, Luis G. et al. [18] have investigated the effect of silica fume (SF) on the
properties of NHL-based grouts. The mechanical strength was increased with an increase of SF dosages.
However, the workability decreased gradually. Furthermore, the mechanical and physical properties
have been improved by adding graphene oxide (GO) in NHL-based mortar [19]. The above studies
mainly focused on the modification of lime as a restoration material for historic buildings. However,
the issues of the slow growth of strength and surface hardness remain, which are of critical importance
to explore the wide scope of application of NHL in engineering.

Lithium silicate (Li2O·nSiO2) (LS) is one of the typical lithium salt, where n is the modulus of
LS and is defined by the mole ratio of SiO2/Li2O. Since the lithium ion’s radius is only 0.0768 nm,
LS solutions with a larger modulus can be prepared without affecting the viscosity of the solution.
LS is widely used as an anti-corrosive coating for the surface of steel bars and the surface treatment of
cement-based materials [20]. Witzleben [21] has systematically investigated the effects of the addition
of LS in cement, including the setting time, strength, heat of hydration, and phase formation of
cementitious systems. Abou Sleiman et al. [22] reported that the LS could form insoluble wear and
moisture-protective surface on the concrete’s surface. Stepien et al. [23] used LS to modify silicate
autoclaved material in which the improved compressive strength was obtained. The corresponding
chemical reaction between LS and CH Equation (1) is:

Li2O·nSiO2 + mH2O + nCa(OH)2→nCaO·SiO2·(m + n − 1)H2O + 2LiOH (1)

It shows that the existence of LS leads to part of CH forming new calcium silicate gel (C-S-H),
which gives rise to the improved densification of the hydration products. Previous studies have
shown that there is a large amount of CH in NHL, but the carbonation is a long-term process [24,25].
The existence of a large amount of CH in NHL-based mortar would adversely affect its strength,
surface hardness, and durability [26,27]. Hence, converting the CH to C-S-H could dramatically
improve the serviceability of NHL.

In this paper, we focus on the effects of the LS modification on NHL-based mortars’ mechanical
and durability. To verify whether LS could improve NHL-based mortar properties, the compressive
strength, surface hardness, air permeability, water absorption, and FTC resistance were tested after
pretreatment. The micro-morphology, pore structures, and thermogravimetric (TG) analysis were used
to investigate the mechanism of the effect of LS on NHL-based mortar.

2. Materials and Methods

2.1. Materials

In this study, NHL2 was purchased from Hessler Kalkwerke GmbH (Hessler, Germany) following
the European standard EN459-1:2015. Chemical composition and X-ray diffraction patterns of NHL2
are shown in Table 1 and Figure 1, respectively. The LS was supplied by Specchem LLC (Shanghai,
China), diluted with deionized water into three different concentrations. The concentration was 5.0%,
10.0%, and 15.0%, respectively. The aggregates are quartz sand with particle diameters ranging from
0.5 to 2.0 mm. Tap water was used in the preparation of the NHL-based mortar samples.

Table 1. Chemical composition of NHL2 (wt %).

Chemical Composition SiO2 CaO Fe2O3 MgO Al2O3

NHL2 9.48 78.66 1.98 4.51 3.12
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Figure 1. X-ray diffraction pattern of NHL2.

2.2. Preparation

In this investigation, the mass ratio of water/NHL2 is 0.5, and sand/NHL2 is 1:1, 2:1, and 3:1,
respectively. The mix proportion and pretreated details are listed in Table 2. According to the mixing
ratio, the raw materials were mixed in the mortar mixer. The metallic mould is 40 mm × 40 mm × 40 mm
for the compressive strength, water absorption, and FTC tests (Three samples are needed for each
group, and average values are calculated). The metallic mould is 20 mm × 100 mm × 100 mm for
the hardness and permeability tests (Three samples are needed for each group, and average values
are calculated). After molding, all the samples were cured for 24 h (RH = 100% and T = 21 ± 1 ◦C),
then demolded and cured (RH = 50% and T = 21 ± 1 ◦C). After curing for 3-days, 7-days, and 28-days,
the samples for compressive strength measurement were dried to a constant weight (T = 50 ◦C) and
then submerged in LS solution for 8 h. After soaking for 8 h, all samples were taken out and dried to a
constant weight in the oven (T = 50 ◦C). The samples for air permeability index (API) and hardness
tests are cured for 7-days and 28-days (RH = 50% and T = 21 ± 1 ◦C) and then dried to constant weight
before the LS solution was sprayed onto the surface (about 0.2 kg/m2). Similarly, the samples for FTC
and water absorption tests are cured for 28-days (RH = 50% and T = 21 ± 1 ◦C) and then dried to a
constant weight before the LS solution was sprayed onto the surface (about 0.2 kg/m2). When the
compressive strength test was completed, samples were broken and screened as required for SEM,
TG test (Remove sands from samples), and MIP tests (The particle diameter is about 5 mm).

Table 2. The mix design of NHL-based mortar.

Samples
Composition of Mixture (kg/m3)

LS Concentration (%)
Sand/NHL2 Water/NHL2 NHL2 Sand Water

N1-0

1:1 0.5 450 450 225

0
N1-1 5
N1-2 10
N1-3 15

N2-0

2:1 0.5 450 900 225

0
N2-1 5
N2-2 10
N2-3 15

N3-0

3:1 0.5 450 1350 225

0
N3-1 5
N3-2 10
N3-3 15
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2.3. Test Methods

The pencil hardness tester (Figure 2) (3BEVS1301, Huasheng, Guangzhou, China) was used for
the hardness test in accordance with the ASTM D3363-2005 [28]. This test method covers a procedure
for the rapid, inexpensive determination of the substrate’s surface hardness in drawing leads or pencil
leads of known hardness. There are 14 grades of pencil hardness tester, from low to high, 6B, 5B, 4B,
3B, 2B, B, HB, F, H, 2H, 3H, 4H, 5H, and 6H, respectively. The weight of the complete hardness tester
was about 19.6 N and the weight transferred by the tip of the pen is about 6.9 ± 5 N. When testing,
the sample was placed horizontally, and the hardness tester was placed on the surface of the sample.
The pencil formed a 45◦ angle with the tested surface. The pencil hardness tester was pushed forward
horizontally at a speed of 1 cm/s for 2 cm.
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Figure 2. Pencil hardness tester. (a) Pencil hardness tester. (b) Pencil.

The NHL mortars’ compressive strengths were evaluated on the testing machine (SANS CMT5105,
Shenzhen, China) at a loading rate of 2400 ± 200 N/s. The treated samples and the control samples
were cured for 3-days, 7-days, and 28-days under the same conditions. The compressive strength
values at different stages were obtained to evaluate LS’s effect on the NHL-based mortar strength.

The Autoclam permeability system (Figure 3) was developed by Queen’s University Belfast to
measure the sorptivity, air permeability, and water permeability of concrete [29,30]. This system was
adopted to test the air permeability of the NHL-based mortar. During the test, the air was injected into
the Autoclam body through a syringe. When the air pressure reached 0.5 bars, the electronic controller
started to work, and a pressure decrease was monitored every minute until the pressure diminished
to zero. A plot of the natural logarithm of air pressure against time is linear, and the slope of the
linear regression curve for tests is used as an air permeability index (API). The logarithmic function is
calculated by Equation (2).

AI = ln P/t (2)

where AI is the logarithmic function value, P is the air pressure, and t is the pressure corresponding
to time.

To evaluate the effect of LS on FTC resistance of NHL-based mortar, the weight loss was investigated
after FTC. After 28-days of curing, the NHL-based mortar was initially immersed in tap water until
obtaining a saturated state. An FTC includes the following processes. First, the samples were set
in a −15 ◦C freezer for 4 h. Then this was followed with a thawing period, in which the samples
were immersed in water at room temperature for 4 h. The weight loss of samples was calculated by
Equation (3).

W =
W0 −Wn

W0
× 100 (3)
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where W is the weight loss of FTC (%) for n times, W0 is the initial weight, and Wn is the weight of
samples after FTC for n times.
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The surface morphology of the samples was characterized by SEM (UItra55, Carl Zeiss NTS
GmbH, Heidenheim, Germany). The matrix’s pore structure was represented by MIP (Auto pore
IV9500, Micromeritics, Norcross, GA, USA, maximum mercury intrusion pressure: 30,000 Psi).
Thermogravimetry (TG, Jupiter STA449C, Netzsch, Bavaria, Germany) was carried out at 10 ◦C/min in
an atmosphere of flowing N2 (50 mL/min) in alumina crucibles over a temperature ranging from 25 to
1000 ◦C.

3. Results and Discussion

3.1. The Effect on Mechanical Properties

NHL-based mortars were treated with three different concentrations of LS. The effect of the LS
pretreatment on the hardness of NHL-based mortar is shown in Figure 4. In Figure 4, samples’ surface
hardness at 7-days and 28-days increased significantly when LS solution concentration gradually
increases from 5.0% to 15.0%. Specifically, after treatment by LS, the 7-days surface hardness grades of
sample N1-3, N2-3, and N3-3 reach 4H, 3H, and 3H, respectively. Similarly, the surface hardness of the
sample cured for 28-days can also significantly increase with the LS surface treatment. The 28-days
surface hardness grades of sample N1-3, N2-3, and N3-3 reach 6H. This phenomenon can be attributed
to the fact that a large amount of CH in NHL2 is consumed by LS to form C-S-H, forming a silicate
coating on the sample’s surface [6,21]. The sand/NHL2 ratio has an important effect on NHL-based
mortar’s surface hardness. It can be concluded that a lower sand/NHL2 ratio is more likely to improve
the surface hardness. It is similar to the results reported by Pan et al. [31]. The magnesium fluorosilicate
and sodium silicate decreased the carbonation depth and increased surface hardness of concrete due
to the formation of silicate coating by C-S-H. In addition, Thompson et al. [32] reported that sodium
silicate could improve concrete surface properties such as hardness, permeability, chemical durability,
and abrasion resistance.

As shown in Figure 5, the compressive strength test results revealed that the compressive strengths
of samples treated by LS were higher than that of the control samples. The compressive strength
increases with an increase in LS concentration. Specifically, the compressive strengths of the sample
N1-3 were increased by 52.0% (3-days), 40.0% (7-days), and 32.7% (28-days), respectively. Similarly,
the compressive strengths of the sample N2-3 were increased by 81.0% (3-days), 40.0% (7-days),
and 64.3% (28-days). The compressive strength of the sample N3-3 were increased by 94.7% (3-days),
53.3% (7-days), and 75.7% (28-days), respectively. The increased compressive strengths were attributed
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to the introduction of more silicate ions by the higher concentration of LS solution, which consumed
CH to form more C-S-H. This result agrees well with the results reported by Luis G [18] in which
the silica fume (SF) leads to pozzolanic reactions by reaction with CH, resulting in the formation of
additional C-S-H.
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3.2. The Effect on Air Permeability

Autoclam air permeability testing was adopted to investigate the effects of LS pretreatment on the
air permeability of NHL-based mortar [33]. As shown in Figure 6, the API value of samples showed a
decreasing trend when LS’s concentration gradually increased from 0% to 15.0%. Specifically, the API
value of N1-3, N2-3, and N3-3 at 7-days were 1.7, 1.7, and 1.6, respectively. A dramatic decrease
occurred at 28 days when the API value of N1-3, N2-3, and N3-3 were 1.6, 1.5, and 1.4 after being
pretreated with 15.0% LS solutions. It can be ascribed to the formation of a large amount of C-S-H
within 8 h. C-S-H formed silicate coating on the samples’ surface that blocks the capillary pores,
which could reduce the erosion of harmful substances and improve NHL-based mortar durability [34].
The result was consistent with previous results reported by J. LaRosa Thompson, which demonstrated
that silicate sealers could decrease the air permeability [32].

3.3. Effect of LS on Water Absorption of NHL-Based Mortar

After curing for 28-days, the water absorption of the sample was tested after being treated by
LS [30]. The samples were first vacuumed for 4 h, and then immersed in deionized water for 48 h.
After wiping the surface water, the mass (m1) of the samples were measured under a surface-dry



Materials 2020, 13, 5292 7 of 14

condition, and then the samples were dried in an oven at 80 ◦C until reaching constant mass (m0).
The water absorption of the samples can be calculated using Equation (4).

ρ =
m1 −m0

m 1
× 100 (4)

The effect of LS pretreatment on water absorption of NHL-based mortar is shown in Figure 7.
As shown in Figure 7, the water absorption of mortar decreases gradually after pretreatment. This result
agrees well with the API testing. When compared with the control samples, the water absorptions of
the group N1, N2, and N3 decreased by 43.0%, 36.6%, and 31.6% at 28-days after 15.0% LS solution
pretreatment. Water absorption reflects the porosity of concrete. Thus, it represents that the LS solution
reduced permeability performance by decreasing the porosity of NHL-based mortar. It has been
reported that inorganic and organic materials are used to prepare coatings of cement-based materials.
Relevant literature [32] reveals that the sodium silicates (SS) can prevent erosion with 15% concentration
of chloride ion and that the resistance of freezing-thawing of coated samples is improved due to the
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3.4. The Analysis of Morphology

The micro-morphology of the samples N3-0 cured for 3 days and sample N3-3 treated with LS
after being cured for 3 days are shown in Figure 8. As shown in Figure 8a,b, a large number of CH
and a few C-S-H are observed. These products are mainly from the raw materials and partly from the
hydration products of C2S. The edges of CH grains are clear and overlapped, which leads to larger
micro-pores, microvoids, and micro-cracks in sample N3-0.
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In Figure 8c,d, CH almost disappeared, and a large number of amorphous phases were observed.
It can be observed that a dense C-S-H coating has been formed on the surface of sample N3-3. The high
concentration of silicate ions indicated that a large amount of CH was consumed by LS to form C-S-H.
These results are consistent with the permeability test. The pores are gradually filled, giving rise to a
decrease in air permeability when more C-S-H gel is formed [30,32].

3.5. Effect of LS Pretreatment on FTC Resistance

Figure 9a–c show the damage of group N3 after 10, 20, and 30 FTC tests, respectively. As shown in
Figure 9a, the surface separation occurred on the surface of sample N3-0 after 10 FTC, and the sample
N3-1, N3-2, and N3-3 still maintained an intact state. In comparison, the control samples occurred
with a cataclastic failure after 20 and 30 FTC, respectively. It is verified by the treated samples to have
larger FTC resistance when compared to the control samples. Particularly, the higher concentration of
LS was more beneficial to improve the FTC resistance. Similarly, group N1 and group N2 show the
same trend after FTC tests. Figure 9d–f shows the weight loss of group N1, N2, and N3 after 30 FTC.
Compared with the pretreated samples, the weight loss of N1-0, N2-0, and N3-0 after 30 FTC were
23.0%, 19.0%, and 32.0%, respectively, while the weight loss of sample N1-3, N2-3, and N3-3 after 30 FTC
were 13.0%, 13.0%, and 18.0%, respectively. These results are very different from previous reports.
Shuqiang Xu et al. [37] reported that the compressive strength is much higher after the FTC tests,
which could be attributed to the water curing condition that can further improve the mortars’ strength.



Materials 2020, 13, 5292 9 of 14
Materials 2020, 13, x FOR PEER REVIEW 10 of 15 

 
Figure 9. Photographs of the group N3 after FTC tests: (a) After 10 FTC, (b) After 20 FTC, (c) After 30 
FTC. Weight loss with FTC for NHL-based mortar: (d) Group N1, (e) group N2, and (f) group N3. 

3.6. Pore Structures 

Figure 10 presents the effect of LS modification on the pore structure distribution of NHL-based 
mortar. A main peak was located at 1000 nm in the pore size distribution curves, which is the same 
as the previous studies [5]. When the concentration of LS increased from 5% to 15.0%, the peaks 
around 1000 nm decreased gradually. As shown in Figure 10b,c, these peaks moved to the position 
of 700 nm and 400 nm, respectively. It indicates that the void ratio of macropores (50–10,000 nm) in 
the samples decreases gradually with an increase in the concentration of LS. In contrast, the void ratio 
of nanopores (less than 10 nm) increased gradually. Porosity and pore size distribution through MIP 
data are shown in Table 3 and Figure 11, respectively. 

Figure 9. Photographs of the group N3 after FTC tests: (a) After 10 FTC, (b) After 20 FTC, (c) After 30 FTC.
Weight loss with FTC for NHL-based mortar: (d) Group N1, (e) group N2, and (f) group N3.

3.6. Pore Structures

Figure 10 presents the effect of LS modification on the pore structure distribution of NHL-based
mortar. A main peak was located at 1000 nm in the pore size distribution curves, which is the same as
the previous studies [5]. When the concentration of LS increased from 5% to 15.0%, the peaks around
1000 nm decreased gradually. As shown in Figure 10b,c, these peaks moved to the position of 700 nm
and 400 nm, respectively. It indicates that the void ratio of macropores (50–10,000 nm) in the samples
decreases gradually with an increase in the concentration of LS. In contrast, the void ratio of nanopores
(less than 10 nm) increased gradually. Porosity and pore size distribution through MIP data are shown
in Table 3 and Figure 11, respectively.
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Table 3. Effect of LS on porosity of NHL-based mortar cured for 28-days (wt %).

Concentration of LS Group N1 Group N2 Group N3

0% 25.58 29.84 37.71
5.0% 23.58 29.20 36.72
10.0% 23.11 28.38 34.72
15.0% 20.12 26.38 31.83

The porosity of samples with a different void ratio show a decreasing trend with an increase
in LS concentration. In the meantime, the number of macropores (50–10,000 nm) decreased while
mesopores (10–50 nm) and nanopores (less than 10 nm) increased with an increase in LS concentration.
The void ratio of macropores in the sample decreases gradually. Compared with the control
samples, macropores of the samples N1-3, N2-3, and N3-3 gradually decreased from 92.9% to 82.7%,
92.5% to 84.4%, and 92.6% to 83.0%, respectively. On the contrary, with LS concentration increasing,
the void ratio of mesopores and nanopores in the sample gradually increases. The mesopores of the
samples N1-3, N2-3, and N3-3 gradually increased from 6.1% to 14.3%, 6.5% to 12.5%, and 6.3% to
13.6%, respectively. Mesopores of the samples N1-3, N2-3, and N3-3 gradually increased from 6.1% to
14.3%, 6.5% to 12.5%, and 6.3% to 13.6%, respectively. Nanopores of the samples N1-3, N2-3, and N3-3
gradually increased from 1.0% to 3.0%, 1.0% to 2.9%, and 1.1% to 3.4%, respectively. The increase
of mesopores and nanopores with the addition of LS mainly attributed to the filling effect of C-S-H
formation through rehydration of CH and LS [21]. It is similar to the results reported by Kai Luo [38,39].

3.7. TG Analysis Results

Figure 12 shows the thermogravimetric (TG) curve of group N1 cured for 28-days with and
without LS pretreatment. Four mass loss stages could be observed, including 0–100 ◦C, 100–400 ◦C,
400–570 ◦C, and 570–800 ◦C, respectively. The mass loss stage below 100 ◦C is corresponding to the
dehydration of adsorption water. The mass loss at 100–400 ◦C corresponds to dehydration of C-S-H,
while the mass loss at 400–570 ◦C is the dehydroxilation of CH. The mass loss at 570–800 ◦C is due to the
decomposition of calcium carbonate (CC) [40]. Based on each mineral’s mass loss characteristics at an
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elevated temperature, the content of water bound to C-S-H (%), CH, and CC in hardened NHL pastes
could be evaluated [41,42]. As shown in Figure 12, with an increase in LS concentration, the content
of C-S-H increased, while the content of CH and CC decreased. The detailed content of C-S-H, CH,
and CC in hardened pastes after being treated by LS are given in Table 4.
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Table 4. The content of the main phases in samples with various concentrations of LS (%).

Group Samples Water Bound to C-S-H CH CC

N1

N1-0 3.4 31.4 24.5
N1-1 4.6 28.3 23.3
N1-2 4.8 26.5 19.2
N1-3 5.3 23.1 21.0

N2

N2-0 3.5 32.4 24.6
N2-1 4.3 29.2 23.7
N2-2 4.5 27.3 19.8
N2-3 5.2 23.8 18.0

N3

N2-0 3.3 32.3 24.0
N2-1 4.7 29.3 23.0
N2-2 4.6 27.4 19.1
N2-3 5.3 24.1 18.2

It can be observed that the addition of LS can regulate the content of C-S-H. Compared with
the control sample, the C-S-H content of the group N1, group N2, and group N3 increased by 55.9%,
48.6%, and 60.6%, respectively. On the contrary, the addition of LS can decrease the content of CH
and CC. In particular, CH’s content decreased by 35.9%, 36.1%, and 34.0% when the concentration of
LS was 15.0%, respectively. At the same time, the CC content decreased by 16.7%, 36.7%, and 31.9%,
respectively. The results show that LS could consume exising or newly generated CH to form C-S-H.
These results agree well with the results of pore structures analysis and the air permeability test.

4. Conclusions

In this study, NHL-based mortar was pretreated by LS. From the test and analysis results,
the following conclusions can be drawn:
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1. The NHL-based mortar’s compressive strength can be improved after being impregnated in LS
solution for 8 h. The growth rate of compressive strength was maintained between 32.7% and 52.0%.

2. After spraying LS on the sample’s surface (about 0.2 kg/m2), the surface hardness increased by up
to 10 grades.

3. The sample surface was densified by LS, and the FTC resistance was improved. In particular,
compared with the control samples after 30 FTC tests, the weight loss of sample N1-3, N2-3,
and N3-3 decreased by 43.0%, 31.6%, and 43.8%, respectively.

4. LS can consume existing or newly generated CH to form C-S-H, which refines the NHL-based
mortar’s pore structure, leading to a decrease in API value and water absorption.
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