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Abstract: Multiple site damage (MSD) cracks are small fatigue cracks that may accumulate at the sides
of highly loaded holes in aging aircraft structures. The presence of MSD cracks can drastically reduce
the residual strength of fuselage panels. In this paper, artificial neural networks (ANN) modeling is
used for predicting the residual strength of aluminum panels with MSD cracks. Experimental data that
include 147 unique configurations of aluminum panels with MSD cracks are used. The experimental
dataset includes three different aluminum alloys (2024-T3, 2524-T3, and 7075-T6), four different test
panel configurations (unstiffened, stiffened, stiffened with a broken middle stiffener, and bolted
lap-joints), many different panel widths and thicknesses, and the sizes of the lead and MSD cracks.
The results presented in this paper demonstrate that a single ANN model can predict the residual
strength for all materials and configurations with high accuracy. Specifically, the overall mean
absolute error for the ANN model predictions is 3.82%. Furthermore, the ANN model residual
strength predictions are compared to those obtained using the most accurate semi-analytical and
computational approaches from the literature. The ANN model predictions are found to be at
the same accuracy level of these approaches, and they even outperform the other approaches for
many configurations.

Keywords: fracture; multiple site damage cracks; residual strength; aircraft fuselage panels; stiffened
panels; lap-joint panels; artificial neural networks; ANN optimization

1. Introduction

The concern about multiple site damage (MSD) typically arises for aging passenger and transport
aircraft, especially since many of these aircraft are being used beyond their original design life. MSD
cracks are small fatigue cracks that may accumulate at the sides of highly loaded holes (rivet holes in
particular) in the aircraft’s fuselage or internal structure. These MSD cracks usually appear after an
extended period of time due to the large number of loading cycles. Aircraft manufacturers design
the fuselage of their airplanes to be able to carry the design load with the presence of a relatively
large crack (in the fuselage) spanning several adjacent rivet holes. However, the presence of MSD
cracks can significantly reduce the structure’s ability to carry loads [1–3]. The significant effect of
the MSD phenomenon on aircraft’s structural integrity was brought to light after the Aloha Airlines
(flight 243) incident in 1988 where a large section of the upper crown structure was separated from
the fuselage in midair. From that time onwards, the MSD phenomenon started to gain attention.
Nowadays, the inspection for MSD cracks is part of the aircraft’s maintenance procedures, and aircraft
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manufacturers take MSD into consideration when designing their airplanes. In general, there are three
concerns related to the MSD phenomenon: crack initiation, crack growth life, and residual strength of
panels with MSD cracks. The residual strength of a cracked structure simply refers to the maximum
stress level (or load) the structure can withstand before fracture. In the case that MSD cracks are
present along with a lead crack, residual strength is usually used to refer to the stress level at which the
ligaments between the lead crack and adjacent MSD cracks on both sides collapse. The collapse of
these ligaments, which is usually referred to as linkup, will cause the entire panel to fracture, unless
crack arresting structures (such as stiffeners) are used. Therefore, the residual strength of panels with
MSD is also sometimes referred to as linkup stress.

Many researchers have investigated the ability of several methodologies to estimate the
residual strength of panels with MSD, and the accuracy of these methodologies varied substantially.
The methodologies ranged all the way from simple engineering models to sophisticated, robust
computational techniques. The vast majority of these methodologies relied on analytical or
semi-analytical (empirically corrected) models [1–17]. Nevertheless, other methodologies such
as elastic–plastic finite element analysis (FEA) along with the crack tip opening angle (CTOA)
criterion [12,18], weight functions combined with CTOA [19], system reliability method [20],
and computational intelligence techniques [21,22] were also used for residual strength estimation for
panels with MSD.

The artificial neural networks (ANN) is one of the advanced computational intelligence methods,
which is inspired by the way the human nervous system works. The ANN resembles the work principle
of the human brain by acquiring knowledge through a learning process and storing this knowledge
through interneuron connections of different synaptic weight [23]. Based on past experience gained
from the input/output dataset through the training process, an ANN learns how the system behaves,
and based on that, it can predict the outputs for any new set of inputs. The ANN’s ability to learn by
examples make them particularly useful for modeling highly complicated and nonlinear processes
where the development of thorough analytical models is extremely difficult. The ANNs are usually
built directly from experimental data without the need for any prior knowledge about the relations
between the input/output parameters. The use of ANNs has always been seen as a simple and attractive
alternative approach to using some of the complicated analytical or computational models. In general,
the greatest advantage of ANNs is its ability to model complex nonlinear relationships between several
input/output parameters without any prior knowledge of the nature of the relationships between
these parameters.

Since its introduction in the 1960s, ANNs continued to provide a powerful framework for modeling
nonlinear systems, and they were used in a wide variety of engineering applications, including
automatic control [24], solar energy systems [25], traffic and transportation [26], image processing [27],
optimization of structures [28], materials science and engineering [29–32], manufacturing [33], fracture
mechanics, and fault detection [34–51]. In fracture mechanics, ANNs were mostly used in applications
concerned with crack propagation, fatigue life, and failure mode prediction [34]. As a matter of fact,
ANNs did not find much use in the field of mechanical fracture and fracture parameters as in other
fields. This can mainly be attributed to the nature of this field, where it is not easy to generate large
experimental datasets for training the ANN due to practical constraints related to the time and cost
requirements in many mechanical fracture experiments. Some researchers have employed ANN for
predicting some fracture parameters for different materials. Seibi and Al-Alawi [46] employed ANN
to predict the fracture toughness in beams and plates made of aluminum under uniaxial and biaxial
loading. In addition, Ince [47], used ANN to predict the stress intensity factor and crack tip opening
displacement for concrete. The use of ANN for residual strength predictions of aircraft panels with
MSD is actually very rare in the literature. This is most likely due to the somewhat limited number
of available experimental data for this type of problem along with the variety of possible test panel
configurations (unstiffened, stiffened, lap-joint, curved, etc.) and materials. Pidaparti et al. [21,22]
used ANN for predicting the corrosion rate and residual strength of unstiffened aluminum panels
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with corrosion thinning and MSD. About 40 experimental data points, obtained from the literature,
were used for training the network, and the network was tested using a selected group of nine
unstiffened panels. The ANN residual strength predictions were compared to the experimental results,
and the mean absolute error was found to be about 12%. In fact, such an error level is considered to be
relatively high compared to some of the other simple engineering models reported in the literature [9].

Previous experimental investigations done by Smith et al. [9,13,14] led to the development of
relatively simple to use semi-analytical models (i.e., empirically corrected analytical models) for
the three aluminum alloys commonly used in the aircraft industry (2024-T3, 2524-T3, and 7075-T6).
These models give fairly accurate residual strength predictions. However, they require using some
geometric correction factors (usually obtained from charts), and sometimes, it will be necessary to use
FEA to obtain some of these geometric correction factors. Therefore, it is desirable to develop an ANN
model for obtaining quick and accurate residual strength predictions. It will also be advantageous if a
single ANN model can be used for the different panel materials and geometric configurations. In this
paper, we use ANN modeling for estimating the residual strength of aluminum panels with MSD.
Our results demonstrate that a single ANN model can predict the residual strength for the different
panel materials and configurations that are being considered here. The experimental MSD residual
strength data used in this investigation are obtained from several sources in the literature [7–11,13,14,19].
A total of 147 unique data points are used here where the data includes three different aluminum
sheet materials (2024-T3, 2524-T3, 7075-T6), four different panel configurations (unstiffened, stiffened,
stiffened with middle broken stiffener, bolted lap-joint), different panel widths, sheet thickness,
and grain orientation, along with many different lead and MSD cracks geometries. The 147 data points
are split into three groups: training, validation, and testing, where the data points in each group are
chosen randomly. In order to get more reliable results, the random selection of the data points in
the training, validation, and testing datasets is repeated 40 times, and ANN models are developed
using each of these 40 random combinations of training, validation, and testing datasets. A total of
97 data points that covered all the different configurations (materials, panel configuration, etc.) are
used for training the ANN, while 50 data points are retained for validation and testing (25 each).
The training datasets are used to develop/build the ANN prediction model, while the validation
datasets are used to optimize the ANN’s configuration in terms of the number of hidden nodes (i.e.,
neurons), back-propagation learning algorithm, and hidden nodes activation function; and finally,
the testing datasets (unseen previously by the ANN) are used to evaluate the performance of the
built-ANN predictions with respect to the actual experimental values. A feed-forward ANN model
having one hidden layer with nine independent inputs and one output (residual strength) is used in this
investigation. The nine inputs used for the ANN model cover the panel and cracks geometry, the panel
material and panel configuration. The ANN is optimized to give the best performance based on two
performance metrics: the mean absolute percentage error (MAEP) and the root mean square percentage
error (RMSEP). The ANN optimization covered three of the most commonly used learning algorithms,
12 different activation functions and up to 30 nodes in the hidden layer. Based on this optimization, the
Bayesian Regularization (BR) learning algorithm, the Elliot symmetric sigmoid activation function,
and seven hidden nodes are used in the ANN model. Our results show that the ANN is able to predict
the residual strength for all the different materials and panel configurations with a mean absolute
error of about 3.82%. The results also show that the ANN predictions are generally accurate for all
the different materials and panel configurations. The obtained ANN predictions are also compared
with the residual strength predictions of the best available fracture mechanics semi-analytical and
computational models. The comparison shows that the ANN results are of comparable accuracy and
even give more accurate results in many cases.
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2. Background

2.1. Residual Strength of Panels with MSD

The residual strength of panels having a lead crack along with adjacent MSD cracks, as illustrated
in Figure 1, can theoretically be predicted using different analytical theories. The Linear Elastic Fracture
Mechanics (LEFM) is one of the most fundamental theories that can be used in a variety of fracture
mechanics problems [52]. The LEFM is based on the assumption that material at the crack tip behaves
linearly elastic; thus, LEFM is more applicable to brittle materials. According to LEFM, failure (or
unstable crack extension) will occur when the value of the crack-tip Stress Intensity Factor (SIF) reaches
a critical value. This limiting value of the SIF is called the fracture toughness (KC). The fracture
toughness is a material property, but for thin sheets, it is also slightly dependent on the thickness, grain
orientation, and crack length. Another theory that can be used for predicting the residual strength is the
Net Section Yielding (NSY), and it is more applicable to ductile materials. However, experiments have
shown that neither of the LEFM nor NSY theories is able to accurately predict the residual strength of
panels with MSD for neither ductile nor brittle materials [13].

Figure 1. Illustration of the multiple site damage (MSD) test panel geometry definitions.

An analytical model that is especially formulated for the prediction of residual strength of panels
with MSD was introduced by Swift [1]. This model is called the “Linkup”, model and it is based on the
concept that the ligament between the lead crack and the adjacent MSD crack will fail when the remote
stress reaches a level that causes the lead crack-tip plastic zone and the adjacent MSD crack-tip plastic
zone to touch each other (i.e., merge together). According to the linkup model, the remote stress that
causes failure of the ligament, which is called “linkup” stress (σLU), is found as:

σLU = σy

√
2L

a βa
2 + ` β`2

(1)

where

σy: The yield strength of the material.
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L: Length of the ligament between the lead crack and MSD crack.
a: Lead crack half-length.
`: MSD crack half-length.
βa: The overall SIF correction factor for the lead crack tip.
β`: The overal SIF correction factor for the adjacent MSD crack tip.

The SIF geometric correction factors (usually referred to as “betas”) are usually readily available
in the literature in the form of equations or charts, and in case they are not available for some
configurations, they can be determined using FEA [15].

As mentioned previously, as the linkup occurs, the entire panel will fail (assuming MSD cracks
exist on all subsequent holes); therefore, the linkup stress (Equation (1)) is equal to the residual strength
of the panel. Experimental investigations have shown that the linkup model is not accurate for many
crack configurations [2,5,7–15,19]. Another analytical model that shares the same basic concept with the
linkup model, but is based on a different plastic zone size model (strip-yield), was introduced by Kuang
and Chen [6]. This model is based on the use of an iterative approach that is not so easy to implement
for engineering use, and it gave an average error of about 10% compared to their test results. In order
to improve the accuracy of the residual strength predictions of Swift’s linkup model, some researchers
developed empirical corrections for the linkup model based on experimental data [2,5,9,13,14]. The
most accurate of these empirically corrected models is that developed by Smith et al. [9] for 2024-T3
aluminum sheets, which is referred to as the “WSU2” model. This semi-analytical model was developed
based on test data of 40 unstiffened panels, and it is based on the use of the standardized A-Basis or
B-Basis yield strength values (obtained from the MIL-HDBK-5H [53]). The accuracy of the “WSU2”
model was further verified using test data for stiffened panels and bolted lap-joint panels [10,11].
Overall, the model was able to predict the residual strength for over 100 panels that included unstiffened,
stiffened, and lap-joint panels with a mean absolute error of about 4.5% [15]. Using the same approach,
two other semi-analytical models were also developed for 7075-T6 aluminum (the “MLU7075” model)
and 2524-T3 aluminum (the “MLU2524” model) [13,14]. For A-Basis yield strength values and using
(SI) units, the three models for 2024-T3, 2524-T3, and 7075-T6, respectively, are given as:

σWSU2 =
σLU

1.3123 + 0.3065 ln(L/25.4)
(2)

σMLU2524 =
σLU

0.9683 + 0.1905 ln(L/25.4)
(3)

σMLU7075 =
σLU

1.377 + 1.042 (L/25.4)
(4)

where σLU is the linkup stress (given by Equation (1)) and L is the ligament length in “millimeters”.
The experimental results show that all of these three empirically corrected models can predict the
residual strength with very good accuracy (3% and 2% mean absolute errors for the LU2524 and LU7075
models, respectively). Since these models are fairly accurate and, at the same time, are relatively easy
to calculate, they are used in this paper to compare their residual strength predictions with the ANN
predictions in terms of accuracy.

The CTOA criterion is one of the more recent sophisticated Elastic–Plastic Fracture Mechanics
(EPFM)-based techniques that can be used for predicting residual strength [52]. The assumption of
this criterion is that crack growth will occur when the crack-tip opening angle reaches a critical value.
A variety of numerical techniques exist to facilitate the application of the CTOA criterion. Predicting
the residual strength of cracked panels based on the CTOA criterion generally requires the use of a
three-dimensional elastic–plastic FEA because of the three-dimensional state of stress at the crack tip.
However, for thin sheets, two-dimensional FEA can be used if a thin layer of plane stain elements is
placed along the crack plane to account for the higher constraint at the crack tip [54]. Dawicke and
Newman [18] used three-dimensional FEA along with the CTOA criterion for predicting the stable
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crack extension and residual strength of panels with MSD and reported that the simulation results
were within 7% of the experimental measurements. Hijazi et al. [12] used two-dimensional FEA along
with the CTOA criterion for predicting the residual strength of bolted lap-joint panels with MSD
and reported that the simulations were able to predict the residual strength with about 3% mean
absolute error. Although the elastic–plastic FEA analysis along with the CTOA criterion can generally
predict residual strength with very reasonable accuracy, such approach is time consuming and not
very suitable for engineering use. Xu et al. [19] proposed a unifying method for solving problems
involving collinear cracks. Their method combines the CTOA criterion with crack weight function
and strip-yield plastic zone model to predict stable growth and residual strength for panels with MSD
cracks. Their method was able to predict residual strength within 9% of their experimental results.
Even though this method is analytical, it is not as easy to use for quick calculations as the linkup model
and its modifications. As a matter of fact, the experimental data for 11 of the MSD crack configurations
tested by Xu et al. [19] are used in this current investigation. Probably, it is worth mentioning that for
these 11 crack configurations, the residual strength predictions of the modified linkup model (WSU2)
are more accurate than those of the Xu et al. [19] method (the mean absolute errors for the WSU2 model
and the Xu et al. method are 4% and 7%, respectively).

In addition to the typical fracture mechanics approaches mentioned earlier, some attempts were
also made to use data-driven methods for predicting the residual strength of panels with MSD.
Wu et al. [20] used a load-sharing parallel system reliability model for residual strength assessment.
Monte Carlo simulation was used to derive the residual strength probability distribution, and they
verified their approach by comparing to test results, and the relative error was about 10%. Finally,
Pidaparti et al. [21,22] used ANN and inverse ANN mapping for predicting the residual strength of
aluminum panels with MSD and corrosion thinning. Experimental data of about 40 panels, obtained
from the literature, were used for training the network. However, it should be noted that the group of
panels used for training included both unstiffened and stiffened panels, although none of the used
ANN inputs accounted for the stiffened panels. It is not clear how stiffened panels data were handled,
while none of the inputs accounted for this different configuration. It is likely that they were included
to increase the number of data points used for ANN training. The ANN was tested using a selected
group of nine unstiffened panels (no stiffened panels were used for testing), and the reported mean
absolute error for the ANN residual strength prediction was 12%. As a matter of fact, such an error
level is relatively high compared to that of some of the other engineering and computational methods
reported in the literature [15].

2.2. Applications of ANN in Fracture Mechanics

The review conducted by Nasiri et al. [34] concluded that among the five artificial intelligence
techniques of the Bayesian network, ANN, genetic algorithms, fuzzy logic, and case-based learning,
ANN has attracted most of the researchers’ interest in fracture mechanics applications and resulted
in the most sufficient accuracy. Nasiri et al. classified the ANN applications in fracture mechanics
and mechanical fault detection into four sub-domains: failure mode and mechanism identification,
damage and failure detection and diagnosis, fault and error detection and diagnosis, and mechanical
fracture and fracture parameters. Balcıoğlu et al. [35] investigated the effects of bonding angle,
patching type, and patching structure on the failure load of pultruded composite using different
ANN algorithms. Bayesian regularization (BR), Levenberg–Marquardt (LM), and Scaled Conjugate
Gradient (SCG) algorithms demonstrated high effectiveness in predicting the failure load of adhesively
bonded composites. Hakim and Razak [36] proposed ANN to predict the damage severity of a
steel girder bridge. The inputs of the network were the first five natural frequencies, while the
output parameter was a damage index. In conclusion, this study demonstrated the ability of ANN
to estimate the severity of damage with a maximum error of 6.8%. Janssens et al. [37] proposed a
feature-learning approach for bearing fault detection based on convolutional ANN and compared it with
the feature-engineering approach. The results of convolutional ANN outstandingly outperformed the
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traditional feature-engineering approach with respective accuracies of 93.6% and 87.3%. Shu et al. [38]
developed a Back-Propagation Neural Network (BPNN) damage detection procedure, considering
single and multi-damage cases for a one-span simply supported beam railway bridge. The ANN inputs
considered in this study were the statistical properties of structural dynamic responses. The results
revealed that ANN can accurately predict the damage severity and location. Feng et al. [39] used deep
neural networks (DNN) to predict solidification cracking in metals using a relatively small dataset.
In order to improve the performance of the DNN, as compared to the traditional shallow (single hidden
layer) networks, they proposed the use of pre-trained and fine-tuned DNNs. Their results demonstrate
that their approach shows a better generalized performance over shallow neural network and DNN
trained by conventional methods.

Applications of ANN in fracture mechanics are mostly concerned with crack propagation, fatigue
life, and failure mode prediction. Nechval et al. [40] adopted three-layer BBNN, with crack length as a
single input and cyclic loading times as an output, to monitor fatigue crack growth. The feasibility and
the ease of use of the model were verified on a special austenitic stainless steel material. Gajewski
and Sadowski [41] adopted ANN, served by an FEA model for input data, to evaluate the behavior
of a bituminous layered structure pavement material and estimate its crack propagation sensitivity.
The study confirmed the effectiveness of the ANN–FEA model to monitor cracking in road pavements
and indicated other application possibilities in similar layered materials. Lee et al. [42] showed
that ANN can be accurately used to predict fatigue lives for the composite materials of five carbon
and one glass fiber-reinforced plastics laminates. The most suitable inputs to the network were
the minimum stress, peak stress, and the failure probability level. Hamdia et al. [43] predicted the
fracture energy of polymer nanocomposites using ANN and adaptive neuro-fuzzy inference system
(ANFIS) models. When comparing the performance evaluation indices for the proposed models with
linear regression and literature models, the ANN and ANFIS models were found to be much more
efficient. Mohanty et al. [44] designed ANN for fatigue life prediction considering different retardation
parameters under constant amplitude for two aluminum alloys. In comparison with experimental data,
the proposed ANN model was able to predict the fatigue life with a maximum error of 4%. Mortazavi
and Ince [45] developed a radial basis function ANN model for predicting the fatigue crack growth
behavior for short and long crack regimes. Experimental data for three different materials were used
for training and validating the ANN model. Their results indicate that the ANN model has good
interpolation capability. However, the model’s ability to extrapolate out of the training data range is
poor, and the model effectiveness is greatly dependent on sufficient available input data. Additionally,
ANN was also used in fracture parameters prediction. Seibi and Al-Alawi [46] employed ANN in
predicating the facture toughness of beams and plates made of aluminum alloy under uniaxial and
biaxial loading. The results demonstrated the capability of ANN to predict fracture toughness under
various conditions with high accuracy. Moreover, the study revealed the relationship between the
fracture toughness and the crack geometry, product dimensions, and working temperature. Ince [47]
used an ANN model built directly from experimental data for predicting the fracture parameters
of concrete. Two fracture parameters, stress intensity factor and crack tip opening displacement,
were predicted by the ANN model, and the predictions were of reasonable accuracy.

ANN applications associated with fracture mechanics in aircraft structures are relatively scarce.
Pidaparti and Palakal [48] presented an ANN method to represent the fatigue crack growth behavior
under spectrum loading in aluminum panels. The inputs were characteristics related to the spectrum
loading and crack growth, while the output was the corresponding loading cycles. Later, the same
authors introduced an ANN-optimization system to estimate the fatigue life and fatigue crack growth
for panels with MSD [49]. Two ANN models were combined: the BPNN model for predicting the local
crack growth and an ANN optimization model to predict the overall behavior of the panel. For the
optimization model, it was able to determine how fast cracks propagate and how long it takes for
panels to experience fatigue for a given crack size. The comparison of the proposed system’s results
with the actual fatigue test data illustrated the system’s ability to predict the crack growth and panel
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failure with fair accuracy. Spear et al. [50] described an ANN surrogate model combined with the
FEM simulation framework for predicting the residual strength of flight structures. Four damage
parameters, as inputs, and residual strength, as an output, were used to train and test the adopted
feedforward BPNN. In their work, FEM crack growth simulations were used to derive the residual
strength values, and these data was used for training the ANN, rather than using experimental data.
The coupled proposed methodology provided useful means for achieving more adaptive aircraft
control. Candelieri et al. [51] used ANN for the diagnosis and prognosis assessment of the structural
health of aircraft. Mainly, the diagnosis is related to crack detection in terms of size and location
identification—that is, if cracking has occurred in the bay or stringer components. For the prognosis,
it aimed at estimating the evolution of the crack and the remaining useful life. The data used to build
the ANN models were generated using FEM simulations. The proposed approach was found to be
useful as an online monitoring and assessment system on aircraft.

3. Experimental Data

The experimental data used in this investigation were obtained from several sources in the
literature [7–11,13,14,19]. In these experiments, the residual strength was obtained by performing a
tensile test on relatively large-scale panels containing a lead crack and adjacent MSD cracks. The tests
were conducted under displacement control mode to prevent the complete failure of the test panel.
The reported residual strength values correspond to the loading level that caused the failure of the
ligament between the lead crack and the adjacent MSD cracks on both sides. The stress value used
in this investigation is the nominal remote stress, which is the load divided by the panel’s nominal
cross-sectional area (that includes the stiffeners’ cross-sectional area in case of the stiffened panels).
Reporting the stress rather than the load value is actually more meaningful here, since panels of
different widths, thicknesses, and stiffener configurations are included in the experimental data.

As a matter of fact, testing panels with MSD cracks is not a quick and easy experimental task,
and it is usually a time-and-cost-intensive process in both preparation and testing. For instance,
the panels need to be relatively wide to avoid the dominance of the NSY type of failure and in order
to resemble the actual case of aircraft structures realistically. For this reason, it is not possible to find
large experimental datasets for panels with MSD in the literature. The most extensive testing program
for the residual strength of panels with MSD was carried out by Smith et al. [9–15] over the course
of several years. All this data are used in this study, and in addition to that, data from three other
literature sources [7,8,19] that have a reasonable number of different cracks configurations (about ten
or so) are also included to cover as many different configurations as possible.

The experimental data used in this investigation include a wide variety of panel configurations,
materials, material conditions, widths, thicknesses, and lead and MSD cracks geometries.
The experimental data presented here are grouped according to the panel configuration into three general
groups: unstiffened panels, stiffened panels (it includes two different configurations), and lap-joint
panels. The data for each of the three groups are presented in each of the succeeding subsections.

3.1. Unstiffened Panels

The unstiffened panel is the simplest panel configuration that can be tested for the effect of
MSD cracks, and therefore, it is the most commonly found configuration in the literature. The test
panels’ configuration is generally similar to that shown in Figure 1. Though not shown in the figure,
anti-buckling fixtures are used in the experiments to prevent crack-face buckling. The unstiffened
panels experimental data include three different aluminum sheet materials that are commonly used
in aircraft (2024-T3, 2524-T3, 7075-T6), different panel widths (from 508 to 2286 mm), different sheet
thickness (from 1 to 1.8 mm), bare and clad material conditions, longitudinal and transverse grain
orientations, different lead crack lengths (from 76 to 546 mm), different MSD crack lengths (from 7.6
to 25.4 mm), and different ligament lengths between the lead and adjacent MSD cracks (from 3.8 to
38 mm). Some of the tested panels had cracks that were produced using an Electromagnetic Discharge
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Machine (EDM), while other panels had cracks that were produced by saw cut (fine jewelers saw);
however, that information is not reported here, since previous studies have shown that the EDM and
jewelers saw cracks give comparable results [9]. In addition, for some of the reported configurations,
a number of duplicates were tested; however, the value being used here is the average value, since the
variations in residual strength between the duplicates are not significant. The unstiffened panels data
are presented in three tables according to the sheet material. Each table contains the material properties,
panel and cracks geometry, and the experimentally obtained value of residual strength. It should
be clearly stated here that the material properties reported in the table—namely yield strength and
fracture toughness—are the standard handbook values (obtained according to material type, condition,
grain orientation, and thickness), not the experimental value of the actual sheets used in the tests.
Although many of the literature sources make tensile tests for the sheets used in the MSD experiments
and report the yield strength, the handbook values are used here because this is the more realistic
engineering approach. The yield strength values given in all the following tables are the A-basis values
obtained from MIL-HDBK-5H [53]. Table 1 gives the experimental data for the Al 2024-T3 unstiffened
panels, and it includes 50 unique configurations that are obtained from four different literature sources:
WSU [9], NIST [8], FM [7] and SJTU [19]. It should be noted here that the SJTU experimental data
(Xu et al. [19]) included in the table are only for the configurations with a lead crack and one MSD
crack on either side (since the configurations with non-uniformly spaced MSD cracks do not represent
realistic cases of MSD cracks as in aircraft structures). Configurations from U-1 to U-30 have MSD
cracks emerging from the sides of holes (similar to Figure 1), while the remaining configurations have
only MSD cracks (with very small pilot holes). Previous experience has shown that the effect of the
hole size on residual strength is very minor, and therefore, the hole size is not included in the table
nor in the ANN model. The loading direction relative to grain orientation is indicated in the table
using (L-T) for loading in the longitudinal grain direction and (T-L) for loading in the transverse grain
direction. Table 2 gives the experimental data for the Al 2524-T3 unstiffened panels, and it includes
22 unique configurations that are identical to the first 22 configurations in Table 1 (except that it is
for a different material). It should be noted that the 2024-T3 and the 2524-T3 materials have the same
yield strength but differ in fracture toughness, and the 2524-T3 (which is the newest material and it is
currently used in aircraft industry) has more resistance to failure due to MSD cracks, as can be seen
from the test data. Finally, Table 3 gives the experimental data for the Al 7075-T6 unstiffened panels,
and it includes 12 unique configurations.

Table 1. Experimental data for the unstiffened 2024-T3 panel configurations [7–9,19].

Panel ID Source Mat. Cond. Grain Orient. σy
MPa

KC
MPa.m1/2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

U-1 WSU Clad L-T 310.3 114.3 1.6 610 93.35 4.45 3.81 79.84
U-2 WSU Clad L-T 310.3 114.3 1.6 610 90.81 4.45 6.35 97.15
U-3 WSU Clad L-T 310.3 114.3 1.6 610 88.27 4.45 8.89 112.18
U-4 WSU Clad T-L 275.8 109.9 1.6 610 84.46 8.26 8.89 94.25
U-5 WSU Clad T-L 275.8 109.9 1.6 610 83.19 6.99 11.43 110.04
U-6 WSU Clad T-L 275.8 109.9 1.6 610 81.92 5.72 13.97 120.04
U-7 WSU Clad T-L 275.8 109.9 1.6 610 80.65 4.45 16.51 132.52
U-8 WSU Clad T-L 275.8 109.9 1.6 610 118.75 4.45 3.81 67.57
U-9 WSU Clad T-L 275.8 109.9 1.6 610 116.21 4.45 6.35 83.36
U-10 WSU Clad T-L 275.8 109.9 1.6 610 113.67 4.45 8.89 94.94
U-11 WSU Clad T-L 275.8 109.9 1.6 610 109.86 8.26 8.89 82.33
U-12 WSU Clad T-L 275.8 109.9 1.6 610 108.59 6.99 11.43 97.15
U-13 WSU Clad T-L 275.8 109.9 1.6 610 107.32 5.72 13.97 105.7
U-14 WSU Clad T-L 275.8 109.9 1.6 610 106.05 4.45 16.51 119.77
U-15 WSU Clad L-T 310.3 114.3 1.6 610 144.15 4.45 3.81 59.02
U-16 WSU Clad L-T 310.3 114.3 1.6 610 141.61 4.45 6.35 73.98
U-17 WSU Clad L-T 310.3 114.3 1.6 610 139.07 4.45 8.89 83.71
U-18 WSU Clad T-L 275.8 109.9 1.6 610 135.26 8.26 8.89 71.23
U-19 WSU Clad T-L 275.8 109.9 1.6 610 133.99 6.99 11.43 83.50
U-20 WSU Clad T-L 275.8 109.9 1.6 610 132.72 5.72 13.97 93.91
U-21 WSU Clad T-L 275.8 109.9 1.6 610 131.45 4.45 16.51 108.73
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Table 1. Cont.

Panel ID Source Mat. Cond. Grain Orient. σy
MPa

KC
MPa.m1/2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

U-22 WSU Clad T-L 275.8 109.9 1.6 610 160.66 8.26 8.89 71.23
U-23 NIST Bare L-T 324.1 111.0 1.02 2286 254 6.35 6.35 61.50
U-24 NIST Bare L-T 324.1 111.0 1.02 2286 177.8 5.08 7.62 84.12
U-25 NIST Bare L-T 324.1 111.0 1.02 2286 71.12 7.62 10.16 137.9
U-26 NIST Bare L-T 324.1 111.0 1.02 2286 195.58 5.08 15.24 97.91
U-27 NIST Bare L-T 324.1 111.0 1.02 2286 241.3 6.35 19.05 88.95
U-28 NIST Bare L-T 324.1 111.0 1.02 2286 96.52 7.62 22.86 161.34
U-29 NIST Bare L-T 324.1 111.0 1.02 2286 273.05 6.35 25.4 91.29
U-30 NIST Bare L-T 324.1 111.0 1.02 2286 127 5.08 33.02 151.69
U-31 FM * Clad T-L 268.9 113.2 1.02 508 101.6 3.81 8.89 97.43
U-32 FM * Clad T-L 268.9 113.2 1.02 508 96.52 6.35 11.43 99.98
U-33 FM * Clad T-L 268.9 113.2 1.02 508 40.64 10.16 12.7 144.8
U-34 FM * Clad T-L 268.9 113.2 1.02 508 63.5 12.7 12.7 106.05
U-35 FM * Clad T-L 268.9 113.2 1.02 508 93.98 6.35 13.97 110.32
U-36 FM * Clad T-L 268.9 113.2 1.02 508 40.64 6.35 16.51 171.55
U-37 FM * Clad T-L 268.9 113.2 1.02 508 91.44 6.35 16.51 118.94
U-38 FM * Clad T-L 268.9 113.2 1.02 508 76.2 6.35 31.75 155.14
U-39 FM * Clad T-L 268.9 113.2 1.02 508 38.1 12.7 38.1 194.78
U-40 SJTU * Clad L-T 303.4 117.6 1 600 90 7.5 8 106.83
U-41 SJTU * Clad L-T 303.4 117.6 1 600 90 7.5 12 120.83
U-42 SJTU * Clad L-T 303.4 117.6 1 600 90 7.5 18 132
U-43 SJTU * Clad L-T 303.4 117.6 1 600 111 7.5 10 103
U-44 SJTU * Clad L-T 303.4 117.6 1 600 111 7.5 15 107.83
U-45 SJTU * Clad L-T 303.4 117.6 1 600 113 7.5 15 113.33
U-46 SJTU * Clad L-T 303.4 117.6 1 600 113 7.5 20 119.67
U-47 SJTU * Clad L-T 303.4 117.6 1 600 136 7.5 20 99
U-48 SJTU * Clad L-T 303.4 117.6 1 600 138 7.5 30 110.67
U-49 SJTU * Clad L-T 303.4 117.6 1 600 143 7.5 20 100
U-50 SJTU * Clad L-T 303.4 117.6 1 600 148 7.5 30 106.67

* Panels have MSD cracks with very small pilot holes.

Table 2. Experimental data for the unstiffened (Clad) 2524-T3 panel configurations [14].

Panel ID Grain Orient. σy
MPa

KC
MPa.m1/2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

2524-1 L-T 310.3 204.4 1.6 610 93.35 4.45 3.81 102.11
2524-2 L-T 310.3 204.4 1.6 610 90.81 4.45 6.35 124.18
2524-3 L-T 310.3 204.4 1.6 610 88.27 4.45 8.89 139.69
2524-4 T-L 275.8 180.2 1.6 610 84.46 8.26 8.89 125.42
2524-5 T-L 275.8 180.2 1.6 610 83.19 6.99 11.43 144.17
2524-6 T-L 275.8 180.2 1.6 610 81.92 5.72 13.97 156.31
2524-7 T-L 275.8 180.2 1.6 610 80.65 4.45 16.51 172.44
2524-8 T-L 275.8 180.2 1.6 610 118.75 4.45 3.81 89.01
2524-9 T-L 275.8 180.2 1.6 610 116.21 4.45 6.35 107.08

2524-10 T-L 275.8 180.2 1.6 610 113.67 4.45 8.89 120.94
2524-11 T-L 275.8 180.2 1.6 610 109.86 8.26 8.89 108.67
2524-12 T-L 275.8 180.2 1.6 610 108.59 6.99 11.43 124.32
2524-13 T-L 275.8 180.2 1.6 610 107.32 5.72 13.97 136.73
2524-14 T-L 275.8 180.2 1.6 610 106.05 4.45 16.51 150.1
2524-15 L-T 310.3 204.4 1.6 610 144.15 4.45 3.81 77.5
2524-16 L-T 310.3 204.4 1.6 610 141.61 4.45 6.35 93.77
2524-17 L-T 310.3 204.4 1.6 610 139.07 4.45 8.89 103.15
2524-18 T-L 275.8 180.2 1.6 610 135.26 8.26 8.89 92.32
2524-19 T-L 275.8 180.2 1.6 610 133.99 6.99 11.43 107.63
2524-20 T-L 275.8 180.2 1.6 610 132.72 5.72 13.97 116.94
2524-21 T-L 275.8 180.2 1.6 610 131.45 4.45 16.51 129.21
2524-22 T-L 275.8 180.2 1.6 610 160.66 8.26 8.89 80.67
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Table 3. Experimental data for the unstiffened (Bare) 7075-T6 panel configurations [13].

Panel ID Grain Orient. σy
MPa

KC
MPa.m1/2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

7075-1 T-L 468.9 76.9 1.8 610 84.46 6.99 10.16 100.6
7075-2 T-L 468.9 76.9 1.8 610 109.86 8.26 8.89 81.02
7075-3 T-L 468.9 76.9 1.8 610 108.59 6.99 11.43 94.25
7075-4 T-L 468.9 76.9 1.8 610 108.59 5.72 12.7 96.94
7075-5 T-L 468.9 76.9 1.8 610 107.32 4.45 15.24 105.36
7075-6 T-L 468.9 76.9 1.8 610 133.99 5.72 12.7 81.22
7075-7 T-L 468.9 76.9 1.8 610 132.72 5.72 13.97 90.46
7075-8 T-L 468.9 76.9 1.8 610 135.26 6.99 10.16 75.22
7075-9 T-L 468.9 76.9 1.8 610 158.12 5.72 13.97 77.29

7075-10 T-L 468.9 76.9 1.8 610 191.14 8.26 3.81 32.61
7075-11 T-L 468.9 76.9 1.8 610 189.87 8.26 5.08 41.23
7075-12 T-L 468.9 76.9 1.8 610 188.60 8.26 6.35 46.68

3.2. Stiffened Panels

The experimental data for the stiffened panels included two general configurations that are of
interest in the aircraft industry, which are a lead crack centered between two stiffeners and a lead crack
centered under a broken stiffener. Figure 2 shows the shape of the test panel used for each of the
two different stiffened panel configurations. Anti-buckling fixtures were used in the experiments to
prevent crack-face buckling, but they are not shown in the figure. Table 4 gives the experimental data
for the stiffened panels where it includes 36 unique configurations all of the same material (Al 2024-T3
clad) and width but with two different stiffeners configurations [10]. In addition to the material and
geometric parameters information of the unstiffened panels (in the previous subsection), this table also
includes the cross-sectional area of each of the stiffeners (Astf) which are also made of aluminum and
fixed at the front and back sides of the panel using bolts, as seen in the figure. For the first stiffened
panel configuration (one-bay panels, from S-1 to S-21), three different sets of stiffeners were used in the
experiments, where each set has a different cross-sectional area, as can be seen in the table.

Figure 2. The stiffened panels’ configurations: (a) one-bay panel, (b) two-bay panel with broken
middle stiffener.
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Table 4. Experimental data for the stiffened (Clad) 2024-T3 panel configurations [10].

Panel ID Stiff. Config. Grain Orient. σy
MPa

KC
MPa.m1/2

Astf
mm2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

S-1 One-Bay T-L 275.8 109.9 105 1.6 610 118.75 4.45 3.81 73.09
S-2 One-Bay T-L 275.8 109.9 105 1.6 610 116.21 4.45 6.35 86.95
S-3 One-Bay T-L 275.8 109.9 105 1.6 610 113.67 4.45 8.89 99.91
S-4 One-Bay T-L 275.8 109.9 105 1.6 610 108.59 6.99 11.43 95.43
S-5 One-Bay T-L 275.8 109.9 105 1.6 610 107.32 5.72 13.97 110.66
S-6 One-Bay T-L 275.8 109.9 105 1.6 610 106.05 4.45 16.51 122.18
S-7 One-Bay T-L 275.8 109.9 105 1.6 610 144.15 4.45 3.81 74.67
S-8 One-Bay T-L 275.8 109.9 105 1.6 610 141.61 4.45 6.35 88.67
S-9 One-Bay T-L 275.8 109.9 105 1.6 610 139.07 4.45 8.89 97.08
S-10 One-Bay T-L 275.8 109.9 105 1.6 610 133.99 6.99 11.43 96.25
S-11 One-Bay T-L 275.8 109.9 105 1.6 610 132.72 5.72 13.97 112.66
S-12 One-Bay T-L 275.8 109.9 105 1.6 610 131.45 4.45 16.51 127.83
S-13 One-Bay L-T 310.3 114.3 161.3 1.6 610 113.67 4.45 8.89 107.08
S-14 One-Bay L-T 310.3 114.3 151.6 1.6 610 108.59 6.99 11.43 108.6
S-15 One-Bay L-T 310.3 114.3 151.6 1.6 610 107.32 5.72 13.97 119.9
S-16 One-Bay L-T 310.3 114.3 151.6 1.6 610 106.05 4.45 16.51 130.8
S-17 One-Bay L-T 310.3 114.3 161.3 1.6 610 144.15 4.45 3.81 81.5
S-18 One-Bay L-T 310.3 114.3 151.6 1.6 610 133.99 6.99 11.43 114.04
S-19 One-Bay L-T 310.3 114.3 161.3 1.6 610 132.72 5.72 13.97 120.32
S-20 One-Bay L-T 310.3 114.3 161.3 1.6 610 131.45 4.45 16.51 139.35
S-21 One-Bay L-T 303.4 117.6 105 1.02 610 81.92 5.72 13.97 130.73
S-22 Two-Bay * T-L 275.8 109.9 105 1.6 610 107.32 5.72 13.97 80.53
S-23 Two-Bay * T-L 275.8 109.9 105 1.6 610 108.59 6.99 11.43 70.88
S-24 Two-Bay * T-L 275.8 109.9 105 1.6 610 109.86 8.26 8.89 58.68
S-25 Two-Bay * T-L 275.8 109.9 105 1.6 610 132.72 5.72 13.97 75.85
S-26 Two-Bay * T-L 275.8 109.9 105 1.6 610 133.99 6.99 11.43 67.85
S-27 Two-Bay * T-L 275.8 109.9 105 1.6 610 135.26 8.26 8.89 56.75
S-28 Two-Bay * T-L 275.8 109.9 105 1.6 610 158.12 5.72 13.97 72.26
S-29 Two-Bay * T-L 275.8 109.9 105 1.6 610 159.39 6.99 11.43 63.92
S-30 Two-Bay * T-L 275.8 109.9 105 1.6 610 160.66 8.26 8.89 54.75
S-31 Two-Bay * T-L 275.8 109.9 105 1.6 610 183.52 5.72 13.97 68.74
S-32 Two-Bay * T-L 275.8 109.9 105 1.6 610 184.79 6.99 11.43 60.95
S-33 Two-Bay * T-L 275.8 109.9 105 1.6 610 186.06 8.26 8.89 51.85
S-34 Two-Bay * L-T 310.3 114.3 105 1.6 610 107.32 5.72 13.97 97.01
S-35 Two-Bay * L-T 310.3 114.3 105 1.6 610 132.72 5.72 13.97 84.26
S-36 Two-Bay * L-T 310.3 114.3 105 1.6 610 158.12 5.72 13.97 82.33

* Panels with crack centered under broken middle stiffener.

3.3. Lap-Joint Panels

The experimental data for the lap-joint panels includes 27 unique configurations, all of the
same material (Al 2024-T3 clad), grain orientation, width, and thickness [11]. Figure 3 shows the
configuration of the test lap-joint panels where the two overlapping sheets are fixed together using
three rows of bolts, as seen in the figure. Anti-buckling fixtures were used in the experiments to prevent
crack-face buckling but are not shown in the figure. The experimental data for the 27 different crack
configurations are given in Table 5.

Table 5. Experimental data for the lap-joint (Clad) 2024-T3 panel configurations [11].

Panel ID Grain Orient. σy
MPa

KC
MPa.m1/2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

LJ-1 T-L 268.9 109.9 1.42 610 106.52 3.65 16.83 126.73
LJ-2 T-L 268.9 109.9 1.42 610 106.52 4.92 15.56 115.77
LJ-3 T-L 268.9 109.9 1.42 610 107.79 3.65 15.56 126.73
LJ-4 T-L 268.9 109.9 1.42 610 107.79 4.92 14.29 113.35
LJ-5 T-L 268.9 109.9 1.42 610 107.79 6.19 13.02 106.53
LJ-6 T-L 268.9 109.9 1.42 610 109.06 3.65 14.29 119.84
LJ-7 T-L 268.9 109.9 1.42 610 109.06 4.92 13.02 113.56
LJ-8 T-L 268.9 109.9 1.42 610 109.06 6.19 11.75 105.77
LJ-9 T-L 268.9 109.9 1.42 610 109.06 7.46 10.48 101.49

LJ-10 T-L 268.9 109.9 1.42 610 131.92 3.65 16.83 107.29



Materials 2020, 13, 5216 13 of 26

Table 5. Cont.

Panel ID Grain Orient. σy
MPa

KC
MPa.m1/2

t
mm

W
mm

a
mm

`
mm

L
mm

σExp
MPa

LJ-11 T-L 268.9 109.9 1.42 610 131.92 4.92 15.56 102.6
LJ-12 T-L 268.9 109.9 1.42 610 133.19 3.65 15.56 105.91
LJ-13 T-L 268.9 109.9 1.42 610 133.19 4.92 14.29 97.29
LJ-14 T-L 268.9 109.9 1.42 610 133.19 6.19 13.02 90.32
LJ-15 T-L 268.9 109.9 1.42 610 134.46 3.65 14.29 102.18
LJ-16 T-L 268.9 109.9 1.42 610 134.46 4.92 13.02 96.25
LJ-17 T-L 268.9 109.9 1.42 610 134.46 6.19 11.75 88.26
LJ-18 T-L 268.9 109.9 1.42 610 134.46 7.46 10.48 81.91
LJ-19 T-L 268.9 109.9 1.42 610 157.32 3.65 16.83 89.29
LJ-20 T-L 268.9 109.9 1.42 610 157.32 4.92 15.56 86.26
LJ-21 T-L 268.9 109.9 1.42 610 158.59 3.65 15.56 87.84
LJ-22 T-L 268.9 109.9 1.42 610 158.59 4.92 14.29 81.29
LJ-23 T-L 268.9 109.9 1.42 610 158.59 6.19 13.02 75.02
LJ-24 T-L 268.9 109.9 1.42 610 159.86 3.65 14.29 84.46
LJ-25 T-L 268.9 109.9 1.42 610 159.86 4.92 13.02 79.78
LJ-26 T-L 268.9 109.9 1.42 610 159.86 6.19 11.75 74.12
LJ-27 T-L 268.9 109.9 1.42 610 159.86 7.46 10.48 69.23

Figure 3. The bolted lap-joint panel configuration.

4. ANN Modeling Procedure

The main objective of this study is to develop a single ANN model that can accurately predict
the residual strength of panels with MSD for any panel configuration and geometry, material type
and condition, and lead and MSD cracks geometry. Several parameters such as geometry, material
properties, and panel configuration identifiers are used as inputs to the ANN. Only one hidden
layer is used in the ANN structure, since the number of input/output nodes is relatively small. In
addition, the use of ANN with one hidden layer (shallow network) generally gives better performance
than multi-hidden-layer ANN (deep network) when dealing with small datasets, such as the case
being considered here [39]. The learning algorithm, activation function, and the number of nodes
in the hidden layer are optimized to give the best possible accuracy. It is important to mention
again that each of the 147 data points used in here is unique, as no duplicates are being included.
For each of the data groups corresponding to the different materials and panel configurations, the
percentages of data points used for training, validation, and testing are about 66%, 17%, and 17%,
respectively. Therefore, for each of the different groups of panels given by Tables 1–5, the number of
data points used for training/validation/testing are 34/8/8 for the unstiffened 2024-T3 panels, 14/4/4 for
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the unstiffened 2524-T3 panels, 8/2/2 for the unstiffened 7075-T6 panels, 24/6/6 for the stiffened 2024-T3
panels, and 17/5/5 for the lap-joint 2024-T3 panels. This makes the total number of data points used
for training (from all the different groups) to be 97 data points and the number of data points in the
validation and testing datasets to be 25 data points each.

To avoid any bias in the results that might come from choosing particular data points for
testing the network, the individual data points that are used for training, validation, and testing
are chosen randomly. Furthermore, to get more reliable results and robustly evaluate the ANN
residual strength prediction accuracy, a total of 40 random combinations of data points are used for
training, validation, and testing. This approach of choosing several random combinations is usually
referred to as cross-validation, and it is commonly used in data-driven analyses [55]. In other words,
the cross-validation procedure involves randomly sampling the training and validation observations
with fixed fractions (66% and 17%, respectively, are being used here), where the remaining observations
will be used as the testing dataset (17%). Then, the process is repeated a given number of times (40 times
is being used here) using different observations for training and validation datasets. The entire ANN
model development is repeated for each of the random training/validation/testing dataset combinations.
This means that for our case, 40 different ANNs are developed using the 40 different random training
datasets. Then, the performance of each of these 40 ANNs is evaluated using the testing dataset
corresponding to the training dataset used for developing that particular ANN (i.e., the testing data
points used with each of the 40 ANNs are never seen before by that particular ANN). It should be
clearly stated here that the performance metrics reported in this paper are calculated by averaging
40 different values corresponding to the 40 different random combinations. So if we, for instance,
consider the reported MAEP value, it is calculated by averaging 40 MAEP values of the 40 different
random combinations used in the simulation trials.

4.1. Ann Inputs and Structure

A schematic illustration of the structure of the implemented ANN model is shown in Figure 4.
The network consists of an input layer with nine input nodes where five inputs are geometry related,
three inputs are material related, and one input is used to identify the configuration of the test panel.
The geometric input parameters are the lead crack half-length, MSD cracks half-length, ligament length,
panel width, and the stiffener cross-sectional area. As for the stiffener cross-sectional area (Astf), it will
have a value for the stiffened panels only, while its magnitude will be zero for the unstiffened and
lap-joint panels. As a matter of fact, the geometric input parameters being used here are carefully
chosen based on the researchers’ experience with this type of fracture mechanics problems and in
order to account for the experimental data, which are obtained from different sources. For the material
input parameters, two material properties that have significance in fracture mechanics problems are
used; these are the yield strength and fracture toughness. In addition to these two material properties,
a material identification number is used to designate each of the three different materials being included
here. Identification numbers 1, 2, and 3 are assigned to the 2024-T3, 2524-T3, and 7075-T6 aluminum
alloys, respectively. A preliminary sensitivity analysis is performed to evaluate the significance of each
of the ANN inputs and to see how it affects the residual strength. The sensitivity analysis is done
by calculating the Pearson linear correlation coefficient between each of the inputs and the residual
strength [56]. Although the sensitivity analysis has shown that the material identification number
has a minor effect on residual strength as compared to the yield strength and fracture toughness,
however, the material identification number is still included as one of the inputs mainly to designate
the materials in case other materials are to be added later. For thin aluminum sheets, the yield strength
and fracture toughness values depend on the material type, condition, and grain orientation, as well as
sheet thickness. It should be noted here that sheet thickness is not included in the input parameters
since both the yield strength and fracture toughness depend on the thickness; therefore, the thickness
effect is already accounted for indirectly through these two material properties. Additionally, the fact
that the residual strength being used here is the failure stress value rather than the failure load value
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makes the inclusion of the thickness among the ANN inputs unnecessary. The last input parameter is
the panel configuration identification number, which is used to designate each of the different test
panel configurations. The experimental data used in this investigation included four distinct test panel
configurations. Therefore, identification numbers from 1 to 4 are assigned to distinguish the different
configurations where 1: unstiffened panel, 2: one-bay stiffened panel, 3: two-bay stiffened panel with
broken stiffener, and 4: lap-joint panel.

Figure 4. The artificial neural networks (ANN) structure.

4.2. ANN Optimization

The validation datasets are used for optimizing the ANN’s configuration to give the best
performance (i.e., accurate residual strength predictions), where the performance is evaluated using
two metrics: MAEP and RMSEP. Although the MAEP is more meaningful for reflecting the level of
the error, the two metrics are used to get a better understanding of the performance, since the RMSEP

reflects the closeness of the errors to the mean value. The MAEP and RMSEP are calculated here as:

MAEP =
1
N

∑N

i=1

∣∣∣∣∣∣σPrdct − σExp

σExp
%

∣∣∣∣∣∣
i

(5)

RMSEP =

√
1
N

∑N

i=1

(
σPrdct − σExp

σExp
%

)
i

2 (6)

The optimum ANN configuration is determined by inspecting the average MAEP value for the
40 different random datasets combinations. The configuration of the ANN model is optimized in terms
of the following:

(1) The adopted back-propagation learning algorithm (la) used to optimally define the ANN’s internal
parameters (i.e., weights and biases). Basically, the weights and biases of the ANN are initially
set randomly and then updated iteratively by calculating the error on the training outputs and
distributing it back to the ANN layers.

(2) The hidden nodes activation function ( f ) used to process the ANN’s inputs.
(3) The number of nodes (H) in the hidden layer.
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For this purpose, a robust, comprehensive search procedure is followed by considering:

• Three different possible learning algorithms; la= Bayesian Regularization (BR), Levenberg–
Marquardt (LM), and Scaled Conjugate Gradient (SCG).

• Twelve different possible activation functions; f= ‘logsig’, ‘tansig’, ‘purelin’, ‘tribas’, ‘radbas’,
‘elliotsig’, ‘hardlims’, ‘hardlim’, ‘poslin’, ‘radbasn’, ‘satlin’, ‘satlins’.

• Up to 30 possible number of hidden nodes; H= [1–30].

For the activation functions, all the 12 different activation functions available in the MATLAB
ANN environment are used in the optimization [57]. The difference between these functions lies
in the way that each function calculates the layer’s output from the received inputs. As for the
leaning algorithms, although more learning algorithms are available, the three algorithms used in the
optimization (BR, LM, and SCG) are the most commonly used in the literature, and they are known to
give good performance in comparison to the other available learning algorithms in different industrial
applications [58–61]. The difference between the different learning algorithms lies in the way that each
algorithm sets the internal parameters of the ANN (i.e., weights and biases). It is worth mentioning
here that the modeling of the ANN has been conducted using a code that has been in-house developed
in MATLAB environment.

5. Results and Discussion

In this study, ANN modeling is used for predicting the residual strength of aluminum panels
with MSD cracks. A total of 147 experimental data points that represent 147 unique configurations
of aluminum panels with MSD cracks are used here (97 for training, 25 for validation, and 25 for
testing). These 147 data points represent different material types and conditions, panel configuration
and geometry, cracks geometry, etc. Nine independent inputs are used for the ANN model where
these inputs cover the different panel and cracks geometry, the different materials, and the different
panel configurations. It is needless to say that the proper selection of the input parameters and how
the different configurations are handled is essential to obtain good results. Overall, the ANN model
has demonstrated good efficiency in predicting the residual strength for panels with MSD, as will be
shown in the following sections.

5.1. Training Datasets Selection

As mentioned previously, a total of 97 data points (out of the 147 total) are used for ANN training,
where these include 34 unstiffened 2024-T3 panels, 14 unstiffened 2524-T3 panels, 8 unstiffened
7075-T6 panels, 24 stiffened panels, and 17 lap-joint panels. These data points are chosen randomly,
and 40 different random combinations of the 97 training data points are used in this investigation.
This randomized selection procedure is meant to ensure the credibility of the obtained ANN results.
However, by inspecting the individual data points within the 40 randomly selected combinations,
it is noticed that occasionally, some of the data points that represent the upper or lower limit values
of some of the important inputs (such as the crack length or ligament length) are not included in
the training dataset. Therefore, in order to avoid any extrapolation in the ANN residual strength
predictions (for the testing dataset), some fixed manually selected data points are always included
in the training datasets. For each group of data points (Tables 1–5), the fixed manually selected data
points included the upper and lower limits of each of the input parameters (e.g., ligament length, lead
crack length, MSD crack length, etc.). The number of these fixed, manually selected, training data
points for each of the different groups are 10 (out of 34) for the unstiffened 2024-T3 panels, 6 (out of
14) for the unstiffened 2524-T3 panels, 4 (out of 8) for the unstiffened 7075-T6 panels, 8 (out of 24) for
the stiffened 2024-T3 panels, and 4 (out of 17) for the lap-joint 2024-T3 panels. Other than the fixed,
manually selected, data points, the remaining data points for training as well as the validation and
testing datasets are selected randomly. A comparison of the ANN results for this approach (with
some fixed, manually selected, data points) to the completely randomized selection approach showed
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that it improves the accuracy of the residual strength predictions of the testing datasets. The results
have shown that using these fixed data points among the training datasets (32 out of 97) improves the
MAEP by about 0.2%. Accordingly, this partially randomized training dataset’s selection approach is
adapted in here. It should be mentioned here that the MAEP improvement that results from using the
partially randomized approach seems to be small (only 0.2%) because the MAEP values are averaged
for 40 different random combinations (as mentioned previously). However, for some particular data
points, the error in the ANN residual strength predictions can be noticeable if the ANN is extrapolating
out of the range used for training. It should also be indicated that this approach, which is being
followed here to avoid the extrapolation for the ANN predictions, is consistent with the findings
reported by Mortazavi and Ince [45] about the poor extrapolation ability of ANN.

5.2. Optimum ANN Configuration

As mentioned previously, the ANN optimization is done using three different learning algorithms,
12 different activation functions, and up to 30 hidden nodes. The optimum ANN configuration
is determined based on the MAEP value (averaged over the 40 different random combinations).
For identifying the best of the three learning algorithms (SCG, LM, BR), an ANN is developed using
the training dataset based on each algorithm, and the validation dataset is used to determine the
optimum configuration for each. Table 6 reports the best ANN configurations obtained for each
learning algorithm in terms of the hidden nodes activation function ( fopt) and the number of hidden
nodes (Hopt). The table shows that the BR learning algorithm outperforms the LM and SCG learning
algorithms significantly in terms of all performance metrics: MAEP, RMSEP, and the coefficient of
determination (R2). From the table, it can also be seen that the BR learning algorithm gives the best
performance using the Elliot symmetric sigmoid (elliotsig) activation function along with 30 hidden
nodes (based on the MAEP value of the validation datasets). To further clarify the effect of the number
of hidden nodes on the ANN performance, the evolution of the MAEP versus the considered numbers
of hidden nodes for each learning algorithm (using the optimum activation function) is shown in
Figure 5. The figure shows that the BR learning algorithm continuously outperforms the two other
learning algorithms for any number of hidden nodes. The optimum number of hidden nodes (Hopt),
indicated by the asterisk in Figure 5, for each learning algorithm are those that minimize the MAEP

value using the validation datasets. The figure shows that for the BR algorithm, the optimum number
of hidden nodes is 30, which corresponds to the lowest MAEP value. By carefully inspecting the
curve, it can be seen that the MAEP value dropped rabidly at the beginning (at seven hidden nodes),
and it remained relatively steady afterwards. Based on that, it can be seen that taking the number of
hidden nodes to be seven would probably be good enough, and it will not make much difference in the
residual strength prediction accuracy. As a matter of fact, some researchers use some rules of thumb
for choosing the number of hidden nodes to be used in ANN models. One of the most commonly used
rules of thump suggests that the number of hidden nodes should be somewhere in between the number
of input nodes and the number of output nodes (i.e., between one and nine hidden nodes for our
case) [62]. Based on this rule of thumb, taking the number of hidden nodes to be seven seems to be more
reasonable, although our optimization results indicate that the 30 hidden nodes gives slightly lower
MAEP value (3.38% for 30 nodes vs. 3.43% for seven nodes). To further investigate that, the residual
strength prediction performance of the seven hidden nodes and the 30 hidden nodes ANNs is also
compared using the testing datasets (instead of the validation datasets that are used in the optimization).
The compression based on the testing datasets (averages for the 40 random dataset combinations)
shows that the seven hidden nodes gives slightly more accurate residual strength predictions where the
MAEP values using the seven and 30 hidden nodes are 3.82% and 3.92%, respectively. Consequently,
the number of hidden nodes is taken to be seven, especially that such a small number of hidden nodes
makes the ANN less complex and reduces the computational effort. Therefore, in summary, the ANN
model that is being adopted in this study uses the “BR” learning algorithm, the “elliotsig” activation
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function, and seven nodes in the hidden layer. All the residual strength predictions presented in the
succeeding sections are obtained using this ANN configuration.

Table 6. Optimum artificial neural networks (ANN) configuration (based the validation dataset) for
each learning algorithm and its performance metrics (averages for the 40 random combinations of the
validation dataset).

SCG LM BR

fopt satlin logsig elliotsig
Hopt 19 19 30

MAEP [%] 6.99 4.59 3.38
RSMEP [%] 9.61 7.22 4.9

R2 [%] 85.77 91.27 96

Figure 5. MAEP evolution vs. the number of hidden neurons based on the validation dataset for the
three learning algorithms (averages for the 40 random combinations of the validation dataset).

5.3. ANN Residual Strength Predictions

In order to evaluate the performance of the ANN in predicting the residual strength of panels
with MSD, the selected ANN configuration is applied on the testing “unseen” datasets, which include
40 different combinations, each consisting of 25 randomly selected data points. Of course, there are
some differences in the calculated performance metrics for each of the 40 testing datasets. For instance,
the testing dataset that gives the best performance has an MAEP = 2.35%, and the testing dataset that
gives the worst performance has an MAEP = 6.35%, while the average MAEP for the 40 testing datasets
is 3.82%. This in fact shows the importance of using the cross-validation technique that makes the
results more credible, since it eliminates the variations associated with the selection of the data points
used in the testing dataset. It should be stressed here that the overall performance metrics reported in
this paper are calculated by averaging over the 40 testing dataset combinations.

Figure 6 shows exemplary results for one of the 40 testing datasets (the one that gives the best
performance out of the 40 random testing datasets). The data shown in the figure is a subgroup
of the 25 testing data points where this figure includes the unstiffened panels only (14 data points).
The stiffened and lap-joint panels’ results are shown in separate figures. The upper part of Figure 6
shows the experimental residual strength value for each panel alongside with the ANN prediction
and the prediction obtained using the semi-analytical model corresponding to the panel material
(Equation (2) to Equation (4)). The lower part of the figure shows the magnitude of error in the
predicted residual strength using the ANN and the semi-analytical model for each panel. The figure
shows that the ANN residual strength predictions are fairly accurate and they generally outperform
the semi-analytical model predictions in terms of accuracy. Figure 7 is similar to the previous figure,
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but it shows the stiffened panels’ subgroup (six data points) of the 25 testing data points. This figure
shows that also for the stiffened panels, the ANN residual strength predictions are fairly accurate,
and they generally outperform the semi-analytical model predictions in terms of accuracy. It is
important here to mention that the stiffened panels included two different configurations (one-bay
and two-bay with a broken stiffener) and the ANN residual strength predictions for both are of
comparable accuracy. Finally, Figure 8 shows the results for the lap-joint panels’ subgroup (five data
points) of the 25 testing data points. In this figure, in addition to the ANN and semi-analytical model
predictions, the predictions obtained using elastic–plastic FEA based on CTOA criterion are also shown
for comparison purposes. These FEA residual strength results for the lap-joint panels are obtained
from Hijazi et al. [12]. This figure shows that also for the lap-joint panels, the ANN residual strength
predictions are fairly accurate and they generally outperform both of the semi-analytical model and
FEA predictions in terms of accuracy.

Figure 6. The unstiffened panels experimental residual strength values along with the predictions
obtained by the ANN and the semi-analytical models (WSU2, MLU2524, and MLU7075) [9,13,14]
for one of the testing datasets (top), together with the residual strength prediction errors (bottom).
The shown ANN predictions are for the best of the 40 random combinations.

In order to better visualize the overall accuracy for the ANN residual strength predictions,
the correlation between the experimental results and ANN predictions for all the 147 data points is
shown in Figure 9. As in the previous figures, the ANN results shown in Figure 9 are for the best one
of the 40 random combinations of the testing datasets. The figure shows the results of all the 147 data
points, which include the training (97), validation (25), and testing (25) data points. The figure shows
that the ANN predictions are of very good accuracy, and there is no noticeable difference in accuracy for
the different materials and panel configurations, since all the data are clustered close to the 45-degrees
line. In addition, since the points are distributed uniformly above and below the 45-degrees line, it can
be concluded that there is no over-or-under prediction tendency in the ANN predictions, and the
prediction errors are fairly random (no systematic error is observed). The coefficient of determination
(R2) values for the training, validation, and testing datasets are also shown in the figure. It should be
noticed here that the coefficient of determination for the training dataset is clearly higher than those for
the validation and training datasets. This is in fact quite expected, since the training data are already
"seen" by the ANN (since they are used for training); therefore, the ANN can predict the residual
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strength for the training dataset more accurately that the "unseen" validation and testing datasets.
The overall coefficient of determination for all the 147 data points shown in Figure 9 is 99.46%, which is
another indicator of the goodness of the ANN predictions.

Figure 7. The stiffened panels experimental residual strength values along with the predictions obtained
by the ANN and the semi-analytical model (WSU2) [10] for one of the testing datasets (top), together
with the residual strength prediction errors (bottom). The shown ANN predictions are for the best of
the 40 random combinations.

Figure 8. The lap-joint panels experimental residual strength values along with the predictions obtained
by the ANN and the semi-analytical model (WSU2) [11] and FEM simulation [12] for one of the
testing datasets (top), together with the residual strength prediction errors (bottom). The shown ANN
predictions are for the best of the 40 random combinations.
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Figure 9. Correlation of ANN predictions with experimental residual strength values for all panels (the
full 147 data points used for training, validation, and testing). The shown ANN predictions are for the
best of the 40 random combinations.

Finally, Table 7 gives the overall performance metrics calculated by averaging over the 40 random
testing datasets. The table lists the MAEP and RMSEP values for the three different materials and for
the three general panel configurations, as well as the totals for all materials and panel configurations.
From the table, it is evident that the ANN predictions are generally accurate for all the deferent
materials. However, it also can be seen that there are some relatively small differences in the residual
strength predictions error levels between the different materials and panel configurations. The largest
error is observed for the Al 7075-T6 material (MAEP = 8.2%). The relatively high error associated
with this material is rather expected, since the number of data points used for training the ANN is
smaller than that for other materials (only eight data points are used for training). On the other hand,
the best ANN performance is observed for the lap-joint panels where the MAEP is 1.81%. This error
value is lower than that observed for the unstiffened panels of the same Al 2024-T3 material (MAEP

= 4.61%), even though the number for panels used for ANN training for the unstiffened panels is
larger than that for the lap-joint panels. In fact, this difference can be attributed to the fact that
the unstiffened panels data have more variation where they include different thicknesses, material
conditions, and grain orientations; while on the other hand, the lap-joint panels are all of the same
thickness and grain orientation. Therefore, it is quite normal that the ANN is able to give better
predictions for the lap-joint panels, since there is no variation in their material properties. It is probably
worth mentioning here that using the actual values of the material properties (obtained by testing
samples of the same sheet material) might slightly improve the ANN prediction accuracy. However,
as mentioned previously, adopting the standard handbook values of the material properties is much
more convenient for engineering use. By comparing the values of the two performance metrics given
in the table, it can be seen that the RMSEP values are consistently higher than the MAEP values,
but the difference is generally not very high. This difference between the RMSEP and the MAEP values
comes from the variability of the error values for the individual predictions, and the fact that the
difference is not very high indicates that the variability is not that significant. Finally, the table also
shows the overall error for all the testing datasets where the MAEP is equal to 3.82%. For the same
group of testing datasets, the average error for the residual strength predictions obtained using the
semi-analytical models (Equation (2) to Equation (4)) is 4.1%. Comparing the overall error values of
the ANN and semi-analytical models predictions shows that both have the same level of accuracy.
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However, obtaining residual strength predictions using the ANN is easier, and the fact that a single
ANN model is used for all materials and panel configurations makes it even more convenient.

Table 7. The ANN predictions overall performance metrics for the different materials and panel
configurations (averages for the 40 random combinations of the testing datasets).

Unstif (2024) Unstif (2524) Unstif (7075) Stif Lab-joint All

MAEP [%] 4.61 2.86 8.2 3.62 1.81 3.82

RMSEP [%] 6.36 3.38 9.96 4.49 2.21 5.88

6. Concluding Remarks

The presence of MSD cracks and their effect on residual strength is a serious concern for aging
aircraft fleets. Several methodologies ranging from simple engineering models to sophisticated
computational approaches can be used for estimating the residual strength of panels with MSD cracks.
Data-driven techniques, and in particular ANN, have been successfully applied and are increasingly
being used in a wide variety of engineering applications. In this paper, ANN modeling is used
for predicting the residual strength of aluminum panels with MSD. The experimental data used for
developing the ANN model (training/validation/testing) include 147 unique data points that cover
several material types and conditions, panels and cracks geometry, and test panel configurations.
The ANN model has nine independent inputs that deal with the geometry, materials, and panel
configurations. The results presented in this paper demonstrate that the ANN model can predict the
residual strength for all materials and configurations with high accuracy. The overall ANN model
average prediction error (MAEP) is 3.82%, which puts it at the same accuracy level (and even better for
many configurations) of the best available semi-analytical and computational approaches. The main
conclusions of this study can be summarized in the following points:

• Proper selection of the input parameters for representing the different materials and the geometric
and panel configurations is essential for obtaining good results using ANN. For instance,
two fracture-related material properties (yield strength and fracture toughness) and a designation
number are used as inputs to account for the three different materials being used here. The material
properties also "indirectly" account for sheet thickness, material condition, and grain orientation,
and this eliminates the need for some inputs. In addition, using the standard handbook values of
the material properties (instead of the actual properties obtained from testing) makes the ANN
modeling approach being used here simpler and more convenient for engineering use.

• Optimizing the ANN model is essential for obtaining high-accuracy predictions. The ANN
optimization carried out here showed that there could be quite a significant difference in the
prediction accuracy when using different learning algorithms, hidden node activation functions,
and numbers of hidden nodes. In this investigation, the best ANN performance was obtained
using the Bayesian Regularization learning algorithm with the Elliot symmetric sigmoid activation
function and seven hidden nodes.

• In order to avoid bias and get more reliable results, it is essential to implement a randomized
selection procedure for the data points used in the training, validation, and testing datasets; also,
the randomized selection needs to be repeated several times (cross-validation). Additionally, it is
beneficial to include some fixed, manually selected data points that cover the upper and lower
limit values of the different inputs within the training group. This will avoid the extrapolation in
the ANN predictions and thus improve the accuracy.

• There are some differences (relatively small yet noticeable) in the average residual strength
prediction error values between the different materials and panel configurations. These differences
in the error values can be attributed to two factors: (i) the different number of data points available
for training the ANN for the different materials and configurations and (ii) the amount of variation
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in the different inputs parameters within the different materials and configurations. For instance,
the highest error is observed for the 7075-T6 material (MAEP = 8.2%) since only eight data points
are used for training. In fact, eight data points is a very small number, and it is definitely not
sufficient for training an ANN; however, the error level is still reasonable, since this material is
not used alone for developing an ANN model but rather among a larger group of data points that
share many common geometric and configuration inputs, although the materials are different.
On the other hand, the best accuracy (MAEP = 1.81%) is observed for the lap-joint panels, since
they all share the same sheet thickness, material condition, and grain orientation.
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