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Abstract: Concrete is known as a quasi-brittle material and the microplane model has been proven
to be a powerful method to describe its constitutive features. For some dynamic cases, however,
numerous microplane models used successfully at small strains are not sufficient to predict the
nonlinear behaviour of damaged concrete due to large deformations. In this contribution at hand,
a combined plasticity-damage microplane model extended to the finite strain framework is formulated
and regularised using implicit gradient enhancement to achieve mesh insensitivity and to obtain more
stable finite element solutions. A modified smooth three surface Drucker–Prager yield function with caps
is introduced within the compression-tension split. Moreover, a viscoplastic consistency formulation is
implemented to deliver rate dependency at dynamic cases. In case of penetration into concrete materials,
the proposed model is equipped with an element erosion procedure to yield a better approximation of
crack patterns. Numerical examples on impact cases are performed to challenge the capability of the
newly proposed model to existing experimental data.

Keywords: concrete; microplane; plastic-damage model; finite strain; implicit gradient enhancement;
rate dependency

1. Introduction

Throughout a building’s service period, complex behaviour can be observed in concrete structures,
such as for instance military base anchorages, nuclear reactors, long-span bridges, and oil platforms,
which are subjected to impact phenomena, natural disasters such as earthquake or seismic loading,
detonation, or blast loading with high intensity. These circumstances lead to dynamic fractures in concrete
material up to the final failure of its structure. Finite element simulations are capable of modelling various
phenomena in concrete using material modelling developed extensively up to now. Concrete itself is known
as a quasi-brittle material with heterogeneous complex nature as a result of its constituent materials, such as
cement paste and different type of aggregates. The behaviour of concrete changes from linear elastic to
highly nonlinear inelastic due to several physical phenomena as microcracking, crushing or even plasticity
caused by tension, compression, or combination of both tension and compression. These conditions yield
difficulties in modelling concrete, especially in terms of constitutive laws and numerical aspects regarding
the finite element method.

Several approaches for modelling these phenomena have been employed in order to describe concrete
responses realistically in the context of continuum mechanics. The most renowned approaches are
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using continuum damage mechanics, plasticity, or a combination of damage and plasticity. Continuum
damage mechanics is characterised by the degradation of the material stiffness describing the inelastic
behaviour at post-peak range. Meanwhile, plasticity deals with elastic-plastic conditions as a result
of the stress state, which are evaluated with respect to the applied yield criterion. At monotonic
loadings, in fact, either damage or plasticity models are sufficient to represent softening behaviour
of concrete. Nonetheless, by the fact that a structure is subjected not only to monotonic loading but also to
unloading-reloading states altogether, the necessity of a coupled plastic-damage formulation is inevitable.
Various plastic-damage approaches for concrete can be found in [1–9]. Moreover, other plastic-damage
models with different features are also available, e.g., for impact failure [10], for concrete spalling
considering creep-shrinkage [11], for ductile failure [12], and for granular materials at low confining
pressure [13].

In the last three decades, a powerful model for concrete materials, namely the microplane approach,
has been studied and developed extensively since it was pioneered by [14]. The concept of microplanes
is characterised by a projection of the strain tensor to random planes of a microscale. This concept is
straightforward to understand the relation between strain and stress vectors in each microplane, which is
eventually equivalent to macroscopic strains and stresses. This approach was then improved by [15],
namely the model M1 and subsequently, it was developed further up to the recent version M7 employing
stress-strain bounds [16]. As discussed in [17], however, the conventional microplane models using either
the normal-tangential (N-T) or the volumetric-deviatoric-tangential (V-D-T) split have several mechanical
deficits. The full range of Poisson’s ratio cannot be represented by the N-T split, while microplane elastic
constants with the unique macroscopic-microplane relation is not possible to be considered by the V-D-T
split. As observed in [18], the ambiguity of the deviatoric-tangential projection allows a lot of freedom
in the V-D-T split and it leads to problems in numerical implementation. Therefore, the deviatoric and
tangential components in the V-D-T split were merged and resulted in the volumetric-deviatoric (V-D)
split, see [19].

For strain softening at the post-peak regime, however, problems relating to ill-posed differential
equations and strain localisation occur. In consequence, these issues lead to pathological mesh
dependencies and unstable finite element solutions eventually indicated by slow convergence rates.
The so-called implicit gradient enhancement introduced in [20,21] has been proven to tackle these problems,
and it has been successfully implemented to regularise the microplane damage model using the V-D split
in [22]. Moreover, the gradient-enhanced microplane model was combined with Drucker–Prager plasticity
in order to show the softening response of concrete [23], while the coupled plastic-damage model was
developed in [24] for modelling concrete in the state of unloading and reloading.

Notwithstanding that the established microplane approaches at small strains have been effectively
used to describe concrete behaviour, but finite deformations occur in concrete at dynamic cases.
In particular, at high confined pressure on tube-squash tests according to experiments conducted in [25],
approximately 30–50% of concrete strains were exhibited at deformed shapes with no visible damage or
cracks observed. This phenomenon has been supported by numerical simulations using a finite strain
microplane damage model in [26], while simulation results obtained by the small strain version showed
that the concrete lost almost its entire stiffness. Meanwhile, using softening microplane plasticity at finite
strains proposed in [27,28], large plastic deformations were demonstrated for similar cases. Furthermore,
strains up to 100% may happen in the state of impact loading due to bored injection piles or anchors,
whereas strains achieve approximately 30% while subjected to blast loading or ground shock waves,
as mentioned in [25]. Meanwhile, under seismic or earthquake loading, columns of structures were
deformed at around 15% of strains until collapse based on [25]. In the case of projectile or missile
penetration into a concrete wall, beyond 100% of effective plastic strain occurred [29,30].
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Due to all aforementioned circumstances, the small strain microplane model should be extended to
the finite strain framework. Hence, the plastic-damage microplane formulation at finite strains regularised
by the implicit gradient-enhanced method is proposed within the V-D split. The described model is
also equipped with rate dependency to deliver strain rate effects at dynamic cases. Moreover, a coupled
contact-adaptive element erosion is implemented herein for the penetration situation. The objective of
the present work is to introduce and formulate the rate-dependent plastis-damage microplane model
for concrete at finite strains in order to achieve more accurate and reliable responses, particularly at
high velocity impact simulations. This work is organised as follows. First, the research motivation
is summarised and followed by the proposed constitutive description as well as algorithmic features
implemented. Subsequently, numerical examples of impact load cases are simulated and, finally, the results
are compared to existing experimental investigations in order to challenge the capability of the newly
proposed formulation.

2. Material Constitutive Laws at Finite Strains

2.1. Microplane Approach with V-D Split

The present work continues to use the V-D split for extending the small strain microplane model
to the finite strain regime employing the conjugate strain-stress pair, namely the Green-Lagrange strain
tensor and the second Piola-Kirchhoff stress tensor, which is transformed to the Cauchy stress tensor at
post-processing [26,28]. Both predecessor models showed that large deformations occur in concrete either
at the damaged region or at the plasticity domain. Due to these phenomena, this subsequent work will
combine both damage and plasticity within the microplane approach at the finite strain framework using
the proposed model in [26,28]. As discussed in [29,31], the Green-Lagrange strain tensor E is chosen to
extend the small strain microplane description for concrete to the finite strain formulation computed as

E =
1
2
(C− I) , (1)

with the right Cauchy-Green tensor C obtained by the deformation gradient F as follows

C = FT F, (2)

F =
∂x
∂X

, (3)

where X and x are the initial and spatial Cartesian coordinates, respectively.
Rather than the Biot or Hencky strain tensor, the Green-Lagrange strain tensor is selected since it

is the only admissible strain tensor for extending the small strain microplane model to the finite strain
formulation due to several reasons. A direct physical interpretation, such as the V-D or N-T decompositions,
is clearly explained by the Green-Lagrange strain tensor. Stretch characterisations in the normal strain
component should be independent of the stretch in other directions. Similarly, the representation of shear
angles in the shear strain component should also be independent of the shear angle in other microplanes as
well as the stretch in other directions. Solely the Green-Lagrange strain tensor satisfies these circumstances
and, hence, it is chosen to be the strain measure in this extended model.

In general, the V-D decomposition at finite strain theories is multiplicative. Nevertheless, by the
fact that the volumetric strain of concrete is always small at all conditions, the multiplicative formulation
could be simplified additively for the extension using the Green-Lagrange strain tensor [29,31]. Please note
that for other materials with large volume changes, the multiplicative decomposition should be employed
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instead of the additive split. According to the V-D-T split, the microplane normal strain EN is related to its
volumetric and deviatoric parts, EV and END, as follows

EN = EV + END or END = EN − EV , (4)

where EN and EV are computed as
EN = n⊗ n : E, (5)

EV = E0 +
1
2

E2
0. (6)

While E is obtained from Equation (1) and n denotes the normal vector, E0 is described by the Biot strain
as E0 = J

1
3 − 1 with J = detF > 0. As the kinematic constraint of the V-D split is used here, the deviatoric

component END is modified into vector form of the deviatoric strain ED

ED = ENDn + ET , (7)

where the tangential strain vector ET is calculated from its third order projection tensor T as

ET = T : E, (8)

T = n · Isym − n⊗ n⊗ n, (9)

with the symmetrical fourth order identity tensor defined as Isym = 1
2 [I+ IT ].

In terms of elastoplasticity, the multiplicative decomposition into elastic and plastic parts is performed
using the deformation gradient F [32]. Since concrete undergoes very small elastic strains, the elastic part
of the finite strain tensor could be replaced by small strains and it leads non-negative dissipation by plastic
strains [29] and, thus, the additive elastic-plastic decomposition is admissible. This approach has been
introduced in [28], and it yields accurate plastic behaviour of concrete at finite strains. For hyperelastic
materials such as rubbers, the multiplicative formulation should be implemented instead of using the
proposed additive approach.

The formulation of microplane models, in general, starts with the macroscopic free-energy function
as the integration of its microplane quantities

Ψmac =
3

4π

∫
Ω

Ψmic(E) dΩ. (10)

As seen in Equation (10), the microplane free-energy is the function of the Green-Lagrange strain tensor,
its conjugate should be the second Piola-Kirchhoff S stress tensor. Due to material orientations, the stress
quantity obtained by applying material laws to the Green-Lagrange strain tensor is the co-rotated Cauchy
stress tensor as suggested in [29]. However, the second law of thermodynamics is not satisfied by
the non-conjugate pair of the Green-Lagrange strain tensor and the co-rotated Cauchy stress tensor.
Besides thermodynamical restrictions, the use of the second Piola-Kirchhoff stress tensor as the stress
measure is appropriate for concrete, since this tensor refers to the initial configuration. Concerning the
physical meaning of strength and frictional limit within the normal and shear components, the second
Piola-Kirchhoff stress tensor is allowed to be the stress measure since no large elastic strain is observed in
concrete, yet the finite strain may occur at the inelastic regime. For those reasons, as discussed in [26,28],
the approximation of the second Piola-Kirchhoff stress tensor to be equal to the co-rotated Cauchy stress
tensor is considered.
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By coupling damage and plasticity, the second Piola-Kirchhoff stress tensor S is then computed as

S =
3

4π

∫
Ω

(
1− dmic

) [
KmicV(EV − Ep

V) + 2GmicDevT · (ED − Ep
D)
]

dΩ, (11)

where dmic denotes the damage variable separated into compression and tension, while the superscript
p indicates the plastic quantities. The constants Kmic and Gmic define the elastic microplane material
parameters related to the bulk and shear moduli as Kmic = 3K and Gmic = G, respectively. Moreover,
the volumetric and deviatoric projection tensors, V and Dev, are obtained as

V =
1
3

J
2
3 C−1, (12)

Dev = n · Idev = n · Isym − 1
3

n · C−1 ⊗ C. (13)

Next, the plastic strains evolve following the elastoplastic flow rules

Ėp
V = λ̇mV , Ėp

D = λ̇mD, (14)

where λ̇ denotes the plastic multiplier, while mV and mD define the flow directions expressed as

mV =
∂Fmic

∂Se
V

, mD =
∂Fmic

∂Se
D

, (15)

where the yield function Fmic originates from the Drucker–Prager yield criterion as used in [28], which is
now equipped with compression and tension caps. Meanwhile, the superscript e indicates the effective
stress measure in which Se

V and Se
D are

Se
V = Kmic(EV − Ep

V), Se
D = 2Gmic(ED − Ep

D). (16)

Furthermore, in order to visualise damage and plastic contributions, the scalar values corresponding
to the damage variable dmic and the hardening variable κmic are calculated

dhom =
3

4π

∫
Ω dmicdΩ

3
4π

∫
Ω dΩ

, κhom =
3

4π

∫
Ω κmicdΩ

3
4π

∫
Ω dΩ

. (17)

Numerical integrations over the surface of the sphere as found in Equations (10), (11), and (17) are
performed using only 21 microplanes reduced from 42 microplanes due to symmetry.

2.2. Modified Smooth Three Surface Drucker–Prager Yield Criterion

The smooth cap model within the Drucker–Prager yield criterion is implemented for capturing
complex triaxial behaviour of concrete. As discussed in [33], a non-smooth yield surface leads to
the singularity in the tangent terms and causes numerical instabilities with slow convergence rates.
Accordingly, the smooth yield surface function depicted in Figure 1, based on the study in [34] then
implemented in [24], is now extended to the finite strain framework and written in terms of the reference
configuration as

Fmic (Se
D, Se

V , κ) =
3
2

Se
D · Se

D − F2
1 (Se

V , κ) Fc (Se
V , κ) Ft (Se

V , κ) . (18)
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Here, the function F1 contains the Drucker–Prager yield criterion with hardening

F1 = S0 − αSe
V + Fh(κ), (19)

with the linear hardening function defined as

Fh(κ) = Dκ, (20)

where D is the material constant and the hardening variable κ evolves following the flow rule as

κ̇ = λ̇. (21)

Moreover, the functions Fc and Ft describe the compression and tension caps, respectively, which are
computed as

Fc = 1− Hc

(
SC

V − Se
V

) (Se
V − SC

V
)2

X2 , (22)

Ft = 1− Ht

(
Se

V − ST
V

) (Se
V − ST

V
)2(

T − ST
V
)2 , (23)

where the intersection points of corresponding caps are

X = RF1

(
SC

V

)
, (24)

T = T0 + RtFh(κ). (25)

The function Hc and Ht are defined by the Heaviside function for activating the respective caps as the
stress state is within their domains

H(x) =
1
2
(1 + sign(x)) . (26)

hardened

yield surface

Figure 1. Smooth three-surface yield function as in [24] extended to finite strains.

Furthermore, in accordance with [35], the calibration of several parameters in the smooth three-surface
Drucker–Prager yield function is required in order to simplify the numerical implementation. By knowing
concrete data in terms of uniaxial compressive strength fuc in MPa, other empirical formulas can be
obtained such as the uniaxial tensile strength fut and the biaxial compressive strength fbc

fut = 1.4 ( fuc/10)2/3 , fbc = 1.15 fuc. (27)
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Now, the parameters S0 and α in Equation (19) can be determined as

α =

√
3( fbc − fuc)

2 fbc − fuc
, (28)

S0 =
(

1/
√

3− α/3
)

fuc. (29)

Substituting Equation (27) into Equation (28) yields α = 0.2. Moreover, fbc can be related to the yield
function as

√
3/2‖Se

D‖ = fbc/
√

3 and SV = − 2
3 fbc.

For compression caps as in Equations (22) and (24), the material constant SC
V defines the abscissa of

the intersection point between the compression cap and the Drucker–Prager yield function, whereas R
denotes the ratio between the major to the minor axes of the compression cap. The constant SC

V is difficult
to be determined. However, according to [24], SC

V = − 2
3 fbc can be set as a minimum value mentioned

before if no triaxial test data are provided. Meanwhile, for tension caps as in Equations (23) and (25),
the material constant ST

V defines the abscissa of the intersection point between the tension cap and the
Drucker–Prager yield function, whereas T0 is the initial intersection point of the tension cap with the
volumetric axis. These two parameters are easier to find, and they can also be related to the empirical
formula as

ST
V = − fuc/3, T0 = fut/3, (30)

while parameter Rt controls the increase of the current intersection point T. As mentioned in [24],
parameter Rt can be taken as Rt = 1 if no data for uniaxial cyclic tensile tests are available.

2.3. Damage Evolution Law

As mentioned earlier, the damage evolution law in this work is decomposed into compression and
tension parts, dmic

c and dmic
t , as proposed in [5] and implemented in [24]

1− dmic =
(

1− dmic
c

) (
1− rwdmic

t

)
, (31)

with the splits
dmic

c = 1− exp
(
−βcγmic

c

)
, (32)

dmic
t = 1− exp

(
−βtγ

mic
t

)
, (33)

where βc and βt are the compression and tension damage parameters, respectively, while rw denotes the
split weight factor computed as

rw =
∑3

I=1〈EI〉
∑3

I=1 |EI |
, (34)

where EI is the positive principal value of the Green-Lagrange strain tensor. Moreover, the variables γmic
c

and γmic
t are determined as follows

γmic
c =

{
ηmic

c − γc0 for ηmic
c > γc0

0 for ηmic
c ≤ γc0

, (35)

γmic
t =

{
ηmic

t − γt0 for ηmic
t > γt0

0 for ηmic
t ≤ γt0

, (36)
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where γc0 and γt0 denote the damage thresholds for the state of compression and tension, respectively.
Meanwhile, the equivalent finite strains ηmic are obtained in terms of rates as

η̇mic
c =

{
(1− rw)Ėp

V for Ėp
V > 0

0 for Ėp
V ≤ 0

, (37)

η̇mic
t =

{
rwĖp

V for Ėp
V > 0

0 for Ėp
V ≤ 0

. (38)

By activating constraints in Equations (37) and (38), this proposed model covers two conditions such
as damage prevention of concrete at high confined pressure loading if Ėp

V > 0, and plastic volumetric
compaction of concrete in the compression cap if Ėp

V ≤ 0.

2.4. Rate Dependency

To deliver rate dependency of concrete at dynamic cases, the proposed model is also supplemented by
a viscoplastic function, a so-called consistency type formulation, adopted from [36] and applied in [37,38],
which is expressed as

Fvp = ηvpS2
0λ̇, (39)

where ηvp denotes the viscosity parameter with an arbitrary value. As a consequence, considering rate
dependency, Equation (18) yields

Fmic (Se
D, Se

V , κ, κ̇) =
3
2

Se
D · Se

D − F2
1 (Se

V , κ, κ̇) Fc (Se
V , κ, κ̇) Ft (Se

V , κ, κ̇) , (40)

where the function F1 is modified as

F1 = S0 − αSe
V + Fh(κ) + Fvp(κ̇), (41)

and, now, the intersection point T increases controlled not only by the parameter Rt as in Equation (25)
but also by the viscoplastic function Fvp as

T = T0 + Rt(Fh(κ) + Fvp(κ̇)). (42)

All functions F1, Fc, and Ft as seen in Equation (40) are now a function of κ̇, which are rate-dependent
functions. Furthermore, the effect of rate dependency on the yield function is shown in Figure 2.

hardened

yield surface

Figure 2. Effect of rate dependency to the yield function.
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2.5. Implicit Gradient Enhancement

The microplane approach, which incorporates nonlocal damage or plasticity, or the combination of
both, requires a regularisation method to eliminate pathological mesh dependencies and to yield a more
stable finite element solution. As implemented successfully in previous models, the present work also
employs the so-called implicit gradient-enhanced formulation for regularisation. Two governing equations
are then used, such as the balance of linear momentum for the dynamic case

∇ · σ + f = ρü, (43)

and the modified Helmholtz equation introducing a nonlocal field

η̄m − c∇2η̄m = ηm, (44)

with its boundary condition
∇η̄m · nb = 0. (45)

In Equation (43), ∇· is the divergence, while σ and f denote the Cauchy stress tensor and the body force
vector, respectively. Mass density is defined by ρ, whereas ü is the acceleration vector. Moreover, ∇2 and
∇ are the Laplace operator and the gradient, respectively. While the parameter c governs the nonlocal
interaction range, nb describes the unit normal of outside boundaries. Furthermore, ηm defines the local
variable containing the equivalent strains ηmic

c and ηmic
t for compression and tension, whereas η̄m is the

nonlocal counterpart. For adding only two extra degrees of freedom, according to [24], the variable ηm is
taken into consideration as

ηm =

[
ηmc

ηmt

]
=

[
1

4π

∫
Ω ηmic

c dΩ
1

4π

∫
Ω ηmic

t dΩ

]
. (46)

Nonetheless, as found in [39,40], the over-nonlocal method can achieve a full regularisation in
plastic-damage descriptions. Therefore, the equivalent strains ηmic

c and ηmic
t are enhanced as

η̂mic
c = mη̄mc + (1−m)ηmic

c , (47)

η̂mic
t = mη̄mt + (1−m)ηmic

t . (48)

It is stated that localisation still occurs at the strain softening regime if the value m = 1 is applied,
which means the standard regularisation is implemented. Hence, the value of m should be taken as larger
than 1 to eliminate localisation and achieve regularisation. Accordingly, ηmic

c and ηmic
t in Equations (35)

and (36) are now replaced by η̂mic
c and η̂mic

t .

3. Algorithmic Aspects

3.1. Finite Element Formulation

As standard procedure, the weight functions δu and δη̄m are used for obtaining the weak forms of
Equations (43) and (44) ∫

Bt
δu · ∇ · σ dv +

∫
Bt

δu · f dv =
∫
Bt

δu · ρü dv, (49)

∫
Bt

δη̄mη̄m dv−
∫
Bt

δη̄mc∇2η̄m dv =
∫
Bt

δη̄mηm dv. (50)
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With the help of the Gauss theorem and the Cauchy theorem as well as the boundary condition in
Equation (45), Equations (49) and (50) become∫

∂Bt
t · δu da +

∫
Bt

δu · f dv =
∫
Bt

ρδu · ü dv +
∫
Bt

σ : ∇δu dv, (51)

∫
Bt

δη̄mη̄m dv +
∫
Bt
∇δη̄mc∇η̄m =

∫
Bt

δη̄mηm dv. (52)

For carrying out the spatial discretisation using shape functions N, the displacement and the
variational field as well as their gradients are employed

u = Nd, δu = Nδd, (53)

∇u =
∂N
∂x

d, ∇δu =
∂N
∂x

δd. (54)

Analogously, the discretisation for the nonlocal field using the nonlocal shape function N is considered as

η̄m = N E, δη̄m = NδE, (55)

∇η̄m =
∂N
∂x

E, ∇δη̄m =
∂N
∂x

δE, (56)

where d and E denote nodal displacements and nodal nonlocal equivalent finite strains, respectively.
The discretisation using the above equations and the linearisation for Equations (51) and (52) should

be used in order to be solved using an iterative Newton-Raphson method. Now, the coupled linearised
system is obtained as

R =

[
Ru

Rη̄

]
=

[
f ext

u
f ext

η̄

]
−
[

f int
u

f int
η̄

]
, (57)

[
Suu,i Kuη̄,i
Kη̄u,i Kη̄η̄,i

] [
∆d,i+1
∆E,i+1

]
= −

[
Ru,i
Rη̄,i

]
, (58)

where the residual vectors for the mechanical and the nonlocal parts are

Ru,i =
∫
Bt

NTρN dv · d̈ +
∫
Bt

∂N
∂x

σ dv−
∫

∂Bt
NTt da−

∫
Bt

NT f dv, (59)

Rη̄,i =
∫
Bt

∂NT

∂x
c

∂N
∂x

E dv +
∫
Bt

NT [N E− ηm
]

dv. (60)

The submatrix Suu,i in Equation (58) is evaluated by the Newmark transient solver to analyse dynamic
cases as

Suu,i = M
1

βn∆t2 + Kuu,i, (61)

where βn and ∆t denote the Newmark parameter and the incremental time step, respectively. Moreover,
the mass matrix M and the submatrix Kuu,i are

M =
∫
Bt

NTρN dv, (62)
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Kuu =
∫
Bt

∂NT

∂x
c

∂N
∂x

dv +
∫
Bt

∂N
∂x

σ
∂NT

∂x
I dv. (63)

The other submatrices in Equation (58) are then

Kuη̄,i =
∫
Bt

∂NT

∂x
∂σ

∂η̄m
N dv, (64)

Kη̄u,i =
∫
Bt

NT
(η̄m − ηm)

∂N
∂x

dv−
∫
Bt

NT ∂ηm

∂E
Isym ∂N

∂x
dv−

∫
Bt

c

(
∂NT

∂x
∂N
∂x

)
∂η̄m

∂x
dv

+
∫
Bt

c

(
∂NT

∂x
∂η̄m

∂x

)
∂N
∂x

dv +
∫
Bt

c
∂NT

∂x

(
∂η̄m

∂x
∂N
∂x

)
dv,

(65)

Kη̄η̄,i =
∫
Bt

NT N dv +
∫
Bt

∂NT

∂x
c

∂N
∂x

dv. (66)

All required derivations for the tangent terms can be found in Appendix A.

3.2. Stress Return Algorithm

Two conditions may occur, either the stress state is still in the elastic region, which lies inside the yield
surface, or the stress state enters the plastic regime, which is outside the yield surface. If the stress fulfils
the yield criterion Fmic ≤ 0, the condition is elastic. Therefore, all plastic strains at the current time step are
equal to the condition at the previous time step as

Ep
V,n+1 = Ep

V,n, Ep
D,n+1 = Ep

D,n, ∆λn+1 = 0, (67)

where the subscript n + 1 indicates the current time step, while the subscript n denotes the previous one.
Then, the evaluation of the trial stresses and the yield function denoted by the subscript tr are

Se
V,tr = Kmic

(
EV − Ep

V,n

)
, (68)

Se
D,tr = 2Gmic

(
ED − Ep

D,n

)
, (69)

Fmic
tr =

3
2

Se
D,tr · Se

D,tr + F2
1 (S

e
V,tr, κn, κ̇n)Fc(Se

V,tr, κn, κ̇n)Ft(Se
V,tr, κn, κ̇n). (70)

The return algorithm needs to be enforced as Fmic = 0 if the yield function is not fulfilled, which means
that the step enters the plastic condition

Fmic =
3
2

Se
D,n+1 · Se

D,n+1 − F2
1 FcFt = 0, (71)

Se
V,n+1 = Se

V,tr − ∆λn+1KmicmV , (72)

Se
D,n+1 = Se

D,tr − ∆λn+12GmicmD, (73)

κn+1 = κtr + ∆λn+1. (74)

For rate dependency, the evolution of κ̇ is simply as

κ̇n+1 =
∆λn+1

∆t
. (75)
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Using Equation (15), the flow directions mV and mD are obtained as follows

mV = −2F1
∂F1

∂Se
V

FcFt − F2
1

∂Fc

∂Se
V

Ft − F2
1 Fc

∂Ft

∂Se
V

, (76)

mD = 3Se
D. (77)

Substituting Equation (77) into Equation (73) yields

Se
D,n+1 = Se

D,tr − 6∆λn+1GmicSe
D,n+1. (78)

As can be seen from Equation (78), Se
D,n+1 and Se

D,tr are collinear and one can rewrite Equation (78) as

‖Se
D,n+1‖ = ‖Se

D,tr‖ − 6∆λn+1Gmic‖Se
D,n+1‖. (79)

Then, substituting Equation (79) into Equation (71) results in

Fmic =
3
2

‖Se
D,tr‖2

(1 + 6∆λn+1Gmic)2 − F2
1 FcFt. (80)

For obtaining the plastic multiplier ∆λn+1 and the volumetric stress Se
V,n+1, Equation (80) can be

solved simultaneously with the help of Equation (72), so that

Fλ =
3
2

‖Se
D,tr‖2

(1 + 6∆λn+1Gmic)2 − F2
1 FcFt, (81)

FV = Se
V,n+1 − Se

V,tr + ∆λn+1KmicmV . (82)

By deriving both Equations (81) and (82) with respect to ∆λn+1 and Se
V,n+1, one obtains

∂Fλ

∂∆λn+1
= −18Gmic ‖Se

D,tr‖2

(1 + 6∆λn+1Gmic)3 +
∂Fmic

∂∆λn+1
, (83)

∂Fλ

∂Se
V,n+1

= mV , (84)

∂FV
∂∆λn+1

= KmicmV + ∆λn+1Kmic ∂mV
∂∆λn+1

, (85)

∂FV
∂Se

V,n+1
= 1 + ∆λn+1Kmic ∂mV

∂Se
V,n+1

. (86)

Subsequently, the updated deviatoric stress and plastic strains are

Se
D,n+1 =

Se
D,tr

(1 + 6∆λn+1Gmic)
, (87)

Ep
D,n+1 = ED,n+1 −

Se
D,n+1

2Gmic , (88)

Ep
V,n+1 = EV,n+1 −

Se
V,n+1

Kmic . (89)



Materials 2020, 13, 5165 13 of 35

4. Penetration Model

4.1. Contact Mechanism

To limit the discussion here, a general node-to-node contact mechanism is applied and it is briefly
explained. This contact model is simply used since forces are computed directly at the nodes, and it
provides a straightforward procedure to find the contact nodes. Moreover, a frictionless model is
implemented so that only normal components of contact forces are considered, which implies that the
tangential components are negligible. Since the contact model is not the main focus in the present
work, no special properties are provided so that general codes for contact models can be used herein.
Slight modifications are conducted in order to exclude contact nodes in damaged elements when the
contact model is coupled to the adaptive element erosion procedure.

4.2. Adaptive Element Erosion

As mentioned earlier, damaged elements should be removed if they are destroyed and the impactor
may penetrate into the concrete structure. To accommodate this feature, so-called adaptive element erosion
is introduced in the present work supplementing the proposed material models. Here, the elimination
method is implemented in a straightforward scheme as shown in Figure 3. A certain damage value as
failure threshold is firstly determined prior to start the removal procedure as{

damaged for dhom ≥ dval

undamaged for dhom < dval
, (90)

where dhom is a scalar damage measure which is homogenised from all microplanes as computed using
Equation (17), while dval is determined as the critical value.

undamaged element

damaged element

hanging node

Figure 3. Illustration of adaptive element erosion scheme.

From the material level, the value of dhom is obtained, then it is looped over Gauss points on the
element level. Here, an 8-node brick element in the three-dimensional model is used, so that eight Gauss
points are taken into account. If dval is achieved in all eight Gauss points, one element is completely
damaged and it can be considered to be a failed element indicated by the red-coloured square in Figure 3.
Since the stiffness of the damaged element has been degraded up to almost zero, the element is now inactive,
and it has to be excluded from the finite element computation without re-meshing. Hence, only active
elements are involved in the computation. Furthermore, a special treatment is performed only if all
neighbouring elements of a node are completely damaged. This condition causes the node connecting to its
surrounding elements being unsupported and it becomes a hanging node, denoted by the yellow-coloured
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circle as shown in Figure 3. Now, this node is also skipped and the profile is reconstructed without
re-meshing as previously.

To examine the adaptive element erosion, a four-point bending test at static loading is simulated.
The proposed gradient-enhanced plastic-damage microplane model is used for modelling concrete herein.
To evaluate and analyse the effect of the damage value tolerance dval to concrete responses, the values of
0.9, 0.97, and 0.99 are chosen. As can be seen in Figure 4, a good approximation is achieved by dval = 0.99
which coincides to the curve without dval , while the simulation with dval = 0.90 gives a different response
among others. Using dval = 0.90, the stiffness is degraded too early and, thus, it leads to the spurious
damage since the undamaged elements may categorise as damaged elements.

Figure 4. Load-displacement relations for different damage values dval in four-point bending test.

Moreover, the validation continues to the visualisation of crack paths at final step of the bending
test using those three different damage values dval as seen in Figure 5a, whereas Figure 5b visualises
the removed elements of the corresponding crack paths. Analogously, using dval = 0.90, the crack path
becomes unrealistic since spurious damage may occur as explained before. Therefore, based on these
investigations, dval = 0.99 is implemented in the present work so that Equation (90) reads{

damaged for dhom ≥ 0.99

undamaged for dhom < 0.99
. (91)

(a)

d
val = 0.90

(b)

d
val = 0.97

d
val = 0.99

d
val = 0.90

d
val = 0.97

d
val = 0.99

Figure 5. Four-point bending test using three different dval implementing an adaptive element erosion:
(a) crack paths and (b) removed elements.
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Another example is a compact tension test in order to observe that the proposed adaptive element
erosion also works well for crack branching. The simulations with three different velocities of 0.035 m/s,
1.4 m/s, and 4,3 m/s are performed according to [26] based on experiments in [41] using dval = 0.99,
as obtained before. Figure 6a displays the crack paths of the compact tension specimens, while Figure 6b
depicts the removed elements corresponding to its crack paths.

(a)

(b)

(c)

Figure 6. Simulation of compact tension specimens displaying crack paths and removed elements compared
to experiments in [41] at three different velocities: (a) 0.035 m/s, (b) 1.4 m/s, and (c) 4.3 m/s.

4.3. Coupled Contact and Adaptive Element Erosion

Since the final goal of this work is to simulate high velocity impact on concrete plates, the contact
model needs to be combined with adaptive element erosion introduced previously. Therefore, the contact
mechanism should be applied when the impactor hits the concrete plate surface, whereas the adaptive
element erosion is used to eliminate damaged elements as the impactor may penetrate into the structure.

An initial condition with a gap between an impactor and concrete plate is shown schematically in
Figure 7a, while the contact process starts when the impactor hits the plate surface as in Figure 7b and
contact nodes are indicated by blue-coloured circles. The regular contact mechanism works during this
process. If some elements are damaged as explained before, these elements are then eliminated and a
hanging node can probably exist, see Figure 7c. Once the unsupported node is also removed, the impactor
continues to move down following the applied velocity and the new contact nodes are found automatically
based on the gap tolerance value as in the beginning process, see also Figure 7d. Hence, the penetration
process continues and the next step proceeds repeatedly up to failure.
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undamaged element

damaged element

hanging node

contact node

(a) (b)

(c) (d)

Figure 7. Coupled contact mechanism and adaptive element erosion at impact cases: (a) initial condition,
(b) contact process, (c) detection of damaged elements during contact, (d) searching of new contact nodes
after removing elements.

5. Model Parameters Adjustment

Several types of model parameter are investigated by numerical examples performed in here,
i.e., parameters for elasticity, plasticity, damage, and nonlocal features. Young’s modulus E and Poisson’s
ratio ν as the elasticity parameters are simply taken from the experimental data. Next, the plasticity
parameters in this proposed model consist of fuc, SC

V , R, Rt, and D. The uniaxial compressive strength fuc

is mostly given in the experimental data, whereas the parameter R can be approximated by R = X0/ f1(SC
V)

as mentioned in [24]. Meanwhile, the hardening D is related to the damage parameters, hence, it needs to
be identified corresponding to βc and γc0 by performing a uniaxial cyclic compression test, whereas Rt

is related to the damage parameter βt and identified by carrying out a uniaxial cyclic tension test. As a
starting point, Rt = 1 and βt ' 1.5βc can be considered, see [24]. Moreover, due to the fact that softening
in the tensile state occurs right away subsequent to the elastic limit, the tension damage threshold is
considered to be γt0 = 0 in all simulations.

Moreover, the nonlocal parameter c is quite challenging to be identified as c = l2. Nevertheless,
several attempts were conducted in [42–44] to find the parameter c. For the parameter m, as explained
earlier, it should be taken larger than 1 to achieve a full regularisation. According to [45], the value of
m is considered to be 1 < m ≤ 1.1 , while [40] used the value slightly beyond 1 as m = 1.005. However,
m = 2.5 is used in all simulations herein. For rate dependency, an arbitrary value larger than zero of the
viscosity parameter ηvp gives a rate effect in the modelling. A benefit of the consistency type formulation
in the viscoplastic model as in Equation (39) is to consider the constitutive law with or without strain
rate effects in a straightforward manner. To produce a rate-independent model, ηvp = 0 can be simply
taken, whereas in order to activate the rate-sensitive formulation, ηvp = 1 s/MPa is implemented in all
subsequent simulations.
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5.1. Four-Point Bending Test at Cyclic Loading

A four-point bending test at cyclic loading is simulated. This analysis is performed to identify the
material parameters which need to be fitted with respect to experimental data in [46]. The meshed beam
with a notch including boundary conditions and applied cyclic loading for the bending simulation is
provided in Figure 8a,b, respectively. Table 1 provides all model parameters used in this bending test
simulation. A load-displacement relation obtained by the proposed formulation using the fitted parameters
is plotted in Figure 9a, while damage and plastic contributions computed by Equation (17) are depicted in
Figure 9b. Moreover, mesh insensitivity of the proposed model is achieved as plotted in Figure 10a with
accompanying convergence rates for the mesh with 2464 elements at chosen certain time steps shown in
Figure 10b.

Table 1. Model parameters for four-point bending test.

Parameter Concrete

E [MPa] 38,000
ν [-] 0.2

fuc [MPa] 20
Rt [-] 1
D [MPa] 7× 104

SC
V [MPa] −40

R [-] 2
γt0 [-] 0
γc0 [-] 2× 10−5

βt [-] 5.5× 103

βc [-] 3× 103

c [mm2] 20
m [-] 2.5

25 150 150 257575

100

dimensions in [mm]

thickness = 50

1/2 P1/2 P(a) (b)

Figure 8. Four-point bending test: (a) geometry and (b) applied cyclic displacement.

Two model parameters, for instance the uniaxial compressive strength fuc and the hardening stiffness
D, are observed to figure out their effects with respect to the load-displacement response. Three different
values are arbitrarily chosen to perform the simulation. As can be seen in Figure 11a, the obvious influence
of fuc is shown that increasing fuc affects the higher peak load. This parameter is simply taken from
the experiment or, if no data provided, the value can be empirically determined corresponding to the
Young’s modulus E as considered in many building codes. Meanwhile, the parameter D can be identified
relating to other damage parameters, βc and γc0, as mentioned previously. However, its effect to the
hardening-softening branch of the load-displacement curve can be seen in Figure 11b. The curve slope
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downgrades significantly by using the lower value of D, otherwise the higher D leads to the higher
hardening and the delayed softening so that the curve is going down slowly.

1.0

0.8

0.6

0.4

0.2

0.0

1.3e-4

1.0e-4

7.8e-5

5.2e-5

2.6e-5

0.0

(a) (b)

Figure 9. Four-point bending test result: (a) load-displacement relation and (b) damage and plastic
distribution, dhom and κhom.

(a)

A

B

C

(b)

Figure 10. Four-point bending simulation: (a) comparison of different mesh densities and (b) accompanying
convergence rates for mesh with 2768 elements.

(a) (b)

Figure 11. Effect of parameters with respect to the load-displacement relation: (a) compressive strength fuc

and (b) hardening stiffness D.

5.2. Homogeneous Test

In addition to identify the damage parameters D, βc, and γc0 by simulating the uniaxial compression
test as well as the parameters βt and Rt by performing the uniaxial tension test, a homogeneous test can also
be used to find out about the effect of strain rates ė as shown in Figure 12. Only one element is simulated
subjected to uniaxial tension as illustrated in Figure 12a. The activation of strain rate effects is simply
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performed by taking ηvp = 1 s/MPa as mentioned previously. Here, six strain rates of 0.05 s−1, 1 s−1,
10 s−1, 25 s−1, 50 s−1, and 100 s−1 are chosen to demonstrate the influence of the proposed rate-dependent
model. Due to the applied strain rates, one can see the growth of peak stresses in terms of stress-strain
relations plotted in Figure 12b. In other words, by increasing the strain rate, the stress-strain curve is getting
higher accordingly. Furthermore, the effect of different strain rates at cyclic uniaxial tension-compression
test with respect to the stress-strain response is depicted in Figure 13.

(a) (b)

Figure 12. Homogeneous test: (a) illustration of uniaxial tension test and (b) strain rate effect.

Figure 13. Homogeneous test at cyclic loading with different strain rates.

6. Numerical Examples

A couple of concrete plate simulations with different thickness subjected to high velocity impacts are
carried out using the newly proposed framework. Comparisons between the small and finite strain model
simulated by the same material parameters are provided and compared also to the experimental data.

6.1. Thick Plate Simulation

First, an example of a thick plate is simulated to show the penetration of an impactor into the concrete
plate. As reported in [47], a machine plate of 540 kg and a steel impactor of 50 kg at a height of 2 m hit a
concrete plate with the dimensions of 1500 × 1500 × 300 mm. The impactor velocity is considered to be
25,000 mm/s according to [26]. Furthermore, as boundary conditions, the concrete plate is restrained at all
four corners denoted by red dots as can be seen in Figure 14. This impact test is modelled using one-fourth
of the whole specimen by 5241 nodes and 3272 elements due to the symmetrical condition. The whole
geometry of the thick plate impact test in finite element mesh discretisation is depicted in Figure 14a,



Materials 2020, 13, 5165 20 of 35

while the dimension of its impactor is shown in Figure 14b. All material properties of this impact test are
provided in Table 2.

(b)

1001000

dimensions in [mm]

100

1500

300

x
y

z

steel impactor

concrete plate

fixed support

(a)

1500

dimensions in [mm]

Figure 14. Finite element mesh of thick plate impact test: (a) geometry and (b) dimension of the
steel impactor.

Table 2. Material properties for the thick plate impact test.

Parameter Concrete Plate Steel Impactor

E [MPa] 40,000 210,000
ν [-] 0.2 0.3
ρ [kg/m3] 2400 7850

fuc [MPa] 70 -
Rt [-] 1 -
D [MPa] 7× 104 -
SC

V [MPa] −60 -
R [-] 2 -

γt0 [-] 0 -
γc0 [-] 8× 10−5 -
βt [-] 5× 103 -
βc [-] 2× 103 -
c [mm2] 50 -
m [-] 2.5 -

ηvp [s/MPa] 1 -

The proposed plastic-damage microplane model at finite strains including the contact mechanism
coupled to the adaptive element erosion is able to represent the damage evolution including the eroded
elements as shown in Figure 15a,b seen from top view of the plate surface at the chosen time step for small
and finite strain simulation, respectively. Meanwhile, the visualisation of damage evaluation from the
bottom side for both models is depicted in Figure 16a,b. As explained before, the damage value tolerance
dval is considered to be 0.99, which means that the element is removed once the value of dhom in all eight
Gauss points of one element is equal or larger than 0.99. From both Figures 15 and 16, one can see the
difference between the small and finite formulation that the damage of concrete plate at small strains
evolves faster than the damage in finite strain simulations. It means that the faster degradation of material
stiffness occurs in numerical simulations using the small strain formulation rather than using the finite
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strain model. Moreover, in order to display a more realistic crack growth, Figure 17 represents only the
material view of steel and concrete, which is simulated by the finite strain model.

1.0

0.8

0.6

0.4

0.2

0.0

(a) (b)

small strain finite strain

Figure 15. Top view of damage evolution for thick plate impact test: (a) small strain and (b) finite
strain simulation.

1.0

0.8

0.6

0.4

0.2

0.0

(a) (b)

small strain finite strain

Figure 16. Bottom view of damage evolution for thick plate impact test: (a) small strain and (b) finite
strain simulation.

As shown in Figure 17, crack initiation starts immediately on the mid-bottom side of the concrete plate
once the steel impactor hits the plate surface. Further cracks propagate diagonally towards the four fixed
supports implemented in each plate corner. Crack openings get wider following the impactor penetration
into the concrete plate. By these results, the use of damage values obtained from the proposed penetration
model has an advantage since it is able to be coupled with the element erosion in a straightforward
manner. A good visualisation of the crack growth is valuable to supplement the proposed material model,
which has indeed yielded meaningful results without coupling the element erosion method altogether.
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(a)

(b)

steel concrete
material

Figure 17. Crack growth visualisation of thick plate impact test: (a) top and (b) bottom view.

Besides the damage evolution, the velocity-time and displacement-time relations are also plotted
to show the differences between the small and finite strain microplane model. Analogous to the
previous explanation regarding the material stiffness degradation, the velocity and displacement responses
differ accordingly. The impact velocity is observed at a node located on the contact surface, while the
displacement is investigated on the mid-bottom side of the plate. As one can see in Figure 18a, the impact
velocity simulated by the small strain model drops immediately, so that the finite strain result has a higher
residual velocity, which differs approximately 2.3 m/s. Likewise, since the material stiffness of the small
strain model degrades faster as explained earlier, its displacement also deviates accordingly as shown in
Figure 18b. Here, more or less 10 mm difference of the displacement is discovered between the small and
finite strain simulation result.

(a) (b)

Figure 18. Simulation results comparing small and finite strain model: (a) velocity-time and (b)
displacement-time relation.

In this simulation, only a picture of damaged plate is compared to the simulation results since no other
experimental data are reported. The comparison for both small and finite strain models to the experimental
investigation is depicted in Figure 19. Some deviations of the crack propagation direction obtained by the
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experiment may occur due to the heterogeneity of material constituents in concrete, for instance diverse
aggregate sizes as well as porosity between aggregates and cement paste. However, the numerical result
is able to yield quite similar crack patterns compared to the experimental investigation. From Figure 20,
one can see that more damage occurs surrounding the impactor in the small strain simulation, whereas the
finite strain model gives a closer result to the experimental data. This observed inaccuracy may indicate
that a finite strain case happens in the present impact test, so that the small strain formulation is not
sufficient for modelling this phenomenon.

small strain finite strain

0.0 0.2 0.4 0.6 0.8 1.0

experiment

Figure 19. Comparison of damaged plate reported in [47] to both small and finite strain models.

small strain finite strain

Figure 20. Cross-section view of damaged plate for small and finite strain models.

6.2. Small Thin Plate Simulation

Second example deals with a square small thin plate subjected to high velocity impact loading based
on experiments by [48] with dimension of 610× 610× 30 mm. A steel impactor with a diameter of 100 mm
and a height of 100 m installed in a steel frame hits the concrete plate by an initial velocity of 12,300 mm/s.
As boundary conditions, fixed supports of 30 mm wide denoted by red dots are applied on each side of
the plate specimen. Figure 21a displays the whole geometry of the impact test in finite element mesh
discretisation, whereas Figure 21b provides the dimension of the steel impactor used in the present work.
Due to the symmetry, only a quarter of the geometry is simulated with 5463 nodes and 3440 elements.
Moreover, all material properties of this impact test are shown in Table 3.
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(b)

100150

dimensions in [mm]

610

610

30

30

x

y z
steel impactor

concrete plate

fixed support

(a)

dimensions in [mm]

Figure 21. Finite element mesh of thin plate impact test: (a) geometry and (b) dimensions of the
steel impactor.

Table 3. Material properties for the thin plate impact test.

Parameter Concrete Plate Steel Impactor

E [MPa] 33,100 210,000
ν [-] 0.2 0.3
ρ [kg/m3] 2150 8000

fuc [MPa] 95 -
Rt [-] 1 -
D [MPa] 7× 104 -
SC

V [MPa] −75 -
R [-] 2 -

γt0 [-] 0 -
γc0 [-] 8× 10−5 -
βt [-] 5× 103 -
βc [-] 2× 103 -
c [mm2] 20 -
m [-] 2.5 -

ηvp [s/MPa] 1 -

Similar to the previous example, the damage value tolerance dval is considered to be dhom = 0.99
obtained from the material level. As discussed previously, the closer dval is approaching 1.0, spurious
damage in numerical simulations can be avoided. Furthermore, the damage evolution obtained by the
proposed finite strain model is displayed in Figures 22 and 23 for the top and bottom side of the concrete
plate, respectively. Damage initiation starts at the middle of the plate after the impactor hits the plate
surface. Hereafter, damage evolves continuously, in particular surrounding the steel impactor. Then, it gets
wider following the impactor velocity. This condition causes the destruction of elements at the mid-surface
as shown in Figure 22, while the impactor starts to penetrate into the plate. Subsequently, as one can see in
Figure 23, cracks propagate diagonally towards the four corners of the plate emerged at the bottom side.
Moreover, vertical and horizontal cracks are then observed.
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Figure 22. Top view of damage evolution for thin plate impact test at chosen time step.

1.0

0.8

0.6

0.4

0.2

0.0

Figure 23. Bottom view of damage evolution for thin plate impact test at chosen time step.

In a similar manner to the preceding example, the crack growth visualisation for this impact simulation
is then provided in Figure 24a,b shown from the top and bottom side of the concrete plate, respectively.
For the sake of a clearer and more realistic view, Figure 24 displays only the material colour of the steel
and concrete. From the figure, additional crack propagations as seen in Figure 23 are not represented in
Figure 24b since the damage value dhom of the diagonal cracks as well as the vertical and horizontal cracks
have not achieved 0.99 yet.

To investigate the difference between small and finite strain simulations, the impact test is performed
using three different velocities, i.e., 12.3 m/s, 16.5 m/s, and 20.3 m/s. First investigation is the velocity-time
relation for both models compared to the experimental data in [48], see Figure 25. At the lower velocity,
v = 12.3 m/s, coinciding curves of small and finite strain results are observed. Meanwhile, both curves
differs slightly at higher velocity than before, with v = 16.5 m/s. Furthermore, at v = 20.3 m/s,
the deviation of both models gets larger with the difference in velocity of approximately 1 m/s.
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By performing all simulations with the three different velocities, the finite strain microplane model
gives better agreement compared to the experimental investigations than the small strain formulation.
Here, one can deduce that the higher the impact velocity, the larger the deviation of residual velocity
between the small and finite strain simulation. Again, finite strain condition may occur in the impact test
simulation at higher velocities, so that the deviation is observed using the small strain simulation.

(a)

(b)

steel concrete
material

Figure 24. Crack growth visualisation of thin plate impact test: (a) top and (b) bottom view.

v = 20.3 m/s

v = 16.5 m/s

v = 12.3 m/s

Figure 25. Velocity-time curves reported in [48] compared to small and finite strain simulations for three
different velocities of 12.3 m/s, 16.5 m/s, and 20.3 m/s.

Second investigation deals with the crack pattern for the small and the finite strain model compared
to the experimental data as reported in [48], see Figures 26 and 27 for the top and bottom side view of
the plate, respectively. As can be seen in Figures 26a and 27a, almost similar results between the small
and finite strain simulations are identified at the lower impact velocity of 12.3 m/s. Meanwhile, a slight
difference of both models appears at the impact velocity of 16.5 m/s at the top surface as in Figure 26b,
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while the damage pattern at the bottom side shown in Figure 27b is almost identical for both models.
Moreover, at the higher impact velocity of 20.3 m/s as shown in Figures 26c and 27c, damage patterns
obtained by the small strain simulation are focused only in the middle part of the plate. No other crack
propagation at the top side is observed unlike the finite strain result. Furthermore, by comparing the
simulation results numerically to the existing experimental investigations, one can observe that the finite
strain microplane model yields a better accuracy in predicting the damage pattern of the present high
velocity impact test than the small strain formulation. Apparently, as can be seen in Figure 28, the difference
of crack prediction for both models compared to the experiments is caused by the heterogeneous nature
of the concrete material due to its composition as well as aggregate size. In addition, imperfection of
the experimental set-up can possibly happen during the impact test in the reality, whereas the numerical
simulations are always carried out by considering the model testing in a perfect condition.

1.0

0.8

0.6

0.4

0.2

0.0

(a)

(b)

(c)

experiment small strain finite strain

Figure 26. Top view of thin plate impact test for experiments in [48] comparing small and finite strain
simulations at three different velocities: (a) 12.3 m/s, (b) 16.5 m/s, and (c) 20.3 m/s.

Throughout the simulations and result analyses of the small thin concrete plate at the three different
velocities, both small and finite strain microplane models are used to perform the simulation. As one can see
from the aforementioned investigations, the small strain approach provides good results and gives almost
identical responses at the impact velocity of 12.3 m/s compared to the proposed finites strain formulation.
Hence, both models are able to simulate this condition. However, each formulation yields different results
during the impact test at higher velocities, such as 16.5 m/s and 20.3 m/s. The observation in terms of
velocity and crack pattern simulated by the finite strain model gives a better approximation compared to
the experimental data than the small strain formulation. In this regard, a finite strain case probably occurs
so that the small strain microplane model cannot suffice to demonstrate the accurate response.
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Figure 27. Bottom view of thin plate impact test for experiments in [48] comparing small and finite strain
simulations at three different velocities: (a) 12.3 m/s, (b) 16.5 m/s, and (c) 20.3 m/s.

(a)

(b)

experiment small strain finite strain

Figure 28. Damaged plate due to impact tests reported in [48] compared to small and finite strain
simulations at the velocity of 12.3 m/s: (a) top view and (b) bottom view.



Materials 2020, 13, 5165 29 of 35

7. Conclusions and Outlook

Formulating a robust material model for concrete using the well-known microplane approach
extended to the finite strain framework as a main objective of the contribution at hand is achieved.
The proposed model can be used to analyse concrete structures numerically at various loading states
particularly for dynamic cases within implicit finite element codes. Constitutive models are developed
in the present work involving a combination of both damage and plasticity. The newly proposed model
combines the plastic-damage microplane approach at finite strains due to the fact that large deformations
occur in concrete at high velocity impacts. The conjugate pair of the Green-Lagrange strain tensor and
the second Piola-Kirchhoff stress tensor is used to extend the small strain microplane model to the finite
strain regime. A smooth three-surface Drucker–Prager yield function is introduced and supplemented
by rate dependency to deliver strain rate effects at dynamic loading. The proposed model is then used
to simulate impact tests with high velocities on concrete plates after being implemented together with a
contact mechanism and an adaptive element erosion during penetration.

A penetration model is required in such impact tests due to the fact that an impactor may penetrate
into concrete structures at high velocity impact. Damage values obtained by the proposed material model
are used as failure criterion to eliminate destroyed elements of concrete during the impactor penetration.
To simulate this phenomenon, the adaptive element erosion is also equipped with a general contact
mechanism. The accuracy and capability of the new framework are then evaluated by comparing with the
experimental data. As a result, the proposed microplane model at finite strains gives better agreement to
the experimental investigations than the small strain version since finite strain situation may occur in the
present impact test simulations.

The research work at hand is able to represent concrete responses in a good approximation and
reliable results compared to existing experimental investigations. However, some improvements can be
pursued to obtain a more sophisticated tool for modelling concrete structures in larger examples and
different types of loading. For instance, the adjustment of model parameters in an advanced manner is
useful to facilitate numerical simulations of other cases. Herein, the plastic parameters can be simplified
by identifying the uniaxial compressive strength of concrete. Nonetheless, determination of damage
and nonlocal parameters in each numerical example are not simple. It probably needs an optimisation
algorithm in order to find accurate values, yet indeed, computational costs may increase accordingly.
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Appendix A. Algorithmic Tangent

Algorithmic tangent moduli for the proposed model contain both elastoplastic and damage tangent
terms. Once the elastoplastic tangent is obtained, the total tangent is then taken into account by
considering damage.
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Appendix A.1. Effective Elastoplastic Tangent

The differentiation of the yield function is required to compute the effective tangent terms

δFmic = nVδSe
V + nD · δSe

D + nκδκ = 0, (A1)

with

nV =
∂Fmic

∂Se
V

, nD =
∂Fmic

∂Se
D

, nκ =
∂Fmic

∂κ
. (A2)

Next, the volumetric and deviatoric stresses are differentiated as

δSe
V = Kmic

(
δEV − δλmV − ∆λ

∂mV
∂Se

V
δSe

V − ∆λ
∂mV
∂κ

δκ

)
, (A3)

δSe
D = 2Gmic

(
δED − δλmD − ∆λ

∂mD
∂Se

D
· δSe

D

)
. (A4)

Knowing Equation (21), Equation (A3) becomes

δSe
V = Kmic

(
δEV − δλmV − ∆λ

∂mV
∂Se

V
δSe

V − ∆λ
∂mV
∂κ

δλ

)
. (A5)

Then, one can rearrange Equations (A4) and (A5) as

δSe
V

(
1

Kmic + ∆λ
∂mV
∂Se

V

)
= δEV − δλ

(
mV + ∆λ

∂mV
∂κ

)
, (A6)

(
1

2Gmic + ∆λ
∂mD
∂Se

D

)
· δSe

D = δED − δλmD. (A7)

Furthermore, Equations (A6) and (A7) can be written as

δSe
V = h1δEV − h1h2δλ, (A8)

Se
D = H3 · δED − H3 ·mDδλ, (A9)

where h1, h2, and H3 are, respectively,

h1 =

(
1

Kmic + ∆λ
∂mV
∂Se

V

)−1
, (A10)

h2 = mV + ∆λ
∂mV
∂κ

, (A11)

H3 =

(
1

2Gmic + ∆λ
∂mD
∂Se

D

)−1
. (A12)

Now, Equations (A8) and (A9) are substituted into Equation (A1) as follows

δλ =
nVh1δEV + nD · H3 · δED

(nvh1h2 + nD · H3 ·mD − ηκ)
, (A13)

or one can write in a convenient way
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δλ = h1h4nVδEV + h4nD · H3 · δED, (A14)

where h4 is
h4 = (nvh1h2 + nD · H3 ·mD − ηκ)

−1 . (A15)

Then, Equation (A14) can be substituted into Equations (A8) and (A9)

δSe
V = h1δEV − h1h2 (h1h4nVδEV + h4nD · H3 · δED) , (A16)

Se
D = H3 · δED − H3 ·mD (h1h4nVδEV + h4nD · H3 · δED) . (A17)

Subsequently, multiplying Equations (A16) and (A17) by V and DevT , respectively, one obtains

VδSe
V = h1VδEV − h1h1h2h4nVVδEV − h1h2h4V ⊗ nD · H3 · δED, (A18)

DevT · δSe
D = DevT · H3 · δED − h1h4nV DevT · H3 ·mDδEV

− h4DevT · H3 ·mD ⊗ nD · H3 · δED.
(A19)

The differentiation of the effective second Piola-Kirchhoff stress tensor for one microplane is obtained by
summing Equations (A18) and (A19) as

δSmic
e = VδSe

V + DevT · δSe
D

=
(
(1− h1h2h4nV)h1V ⊗ V − h1h4nV DevT · H3 ·mD ⊗ V

− h1h2h4V ⊗ nD · H3 · Dev + DevT · H3 · Dev

− h4DevT · H3 ·mD ⊗ nD · H3 · Dev
)

: δE.

(A20)

Now, δSmic
e is used to obtain the total tangent incorporated with damage.

Appendix A.2. Total Tangent

From Equation (11), one can write

S =
3

4π

∫
Ω

(
1− dmic

)
Smic

e dΩ, (A21)

where Smic
e originates from

Smic
e = KmicV(EV − Ep

V) + 2GmicDevT · (ED − Ep
D). (A22)

Then, Equation (A21) is differentiated as

δS =
3

4π

∫
Ω

(
1− dmic

)
δSmic

e dΩ− 3
4π

∫
Ω

Smic
e δdmic dΩ, (A23)

where δSmic
e is obtained from Equation (A20), while δdmic is

δdmic =
∂dmic

∂E
: δE +

∂dmic

∂η̄mc
δη̄mc +

∂dmic

∂η̄mt
δη̄mt, (A24)

which is differentiated with respect to both local and nonlocal quantities in terms of compression and
tensions part, so that
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∂dmic

∂E
= (1− rwdmic

t )
∂dmic

c
∂ηmic

∂ηmic

∂E
+

∂dmic

∂rw

∂rw

∂E
+ (1− dmic

c )rw
∂dmic

t
∂ηmic

∂ηmic

∂E
, (A25)

∂dmic
c

∂ηmic =
∂dmic

c
∂γmic

c

∂γmic
c

∂η̂mic
c

(1−m)(1− rw), (A26)

∂dmic
t

∂ηmic =
∂dmic

t
∂γmic

t

∂γmic
t

∂η̂mic
t

(1−m)rw, (A27)

with the required derivatives as follows

∂dmic
c

∂γmic
c

= βc exp
(
−βcγmic

c

)
, (A28)

∂dmic
t

∂γmic
t

= βt exp
(
−βtγ

mic
t

)
, (A29)

∂γmic
c

∂η̂mic
c

=

{
1 for η̂mic

c > γc0

0 for η̂mic
c ≤ γc0

, (A30)

∂γmic
t

∂η̂mic
t

=

{
1 for η̂mic

t > γt0

0 for η̂mic
t ≤ γt0

, (A31)

∂ηmic

∂E
=

{
∂∆λ
∂E mV + ∆λ ∂mV

∂E for Ėp
V > 0

0 for Ėp
V ≤ 0

. (A32)

Meanwhile, one can obtain the derivatives of ∆λ and mV with respect to the strain tensor E as

∂∆λ

∂E
= h4 (h1nVV + nD · H3 · Dev) , (A33)

∂mV
∂E

=
∂mV
∂Se

V

∂Se
V

∂E
+

∂mV
∂∆λ

∂∆λ

∂E
, (A34)

∂Se
V

∂E
= h1 (1− h1h2h4nV)V − h1h2h4nD · H3 · Dev. (A35)

Next, one can derive damage with respect to the split factor rw as

∂dmic

∂rw
= (1− rwdmic

t )
∂dmic

c
∂rw

+ (1− dmic
c )

∂dmic
t

∂rw
+ (1− dmic

c )dmic
t , (A36)

∂dmic
c

∂rw
= − ∂dmic

c
∂γmic

c

∂γmic
c

∂η̂mic
c

(1−m)∆λmV , (A37)

∂dmic
t

∂rw
=

∂dmic
t

∂γmic
t

∂γmic
t

∂η̂mic
t

rw(1−m)∆λmV , (A38)

∂rw

∂E
=

3

∑
I=1

(
∂rw

∂EI
∂EI

∂E

)
, (A39)
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∂rw

∂EI =

(
∑3

I=1 |EI |
)

∂〈EI〉
∂EI −

(
∑3

I=1〈EI〉
)

∂|EI |
∂EI(

∑3
I=1 |EI |

)2 , (A40)

∂EI

∂E
= uI ⊗ uI , (A41)

where uI denotes the eigenvector that corresponds to the eigenvalue EI .
Finally, the macroscopic total tangent terms as well as the stress derivatives with respect to the

nonlocal quantities in terms of compression and tension parts are

∂S
∂E

=
3

4π

∫
Ω

(
1− dmic

)
δSmic

e dΩ− 3
4π

∫
Ω

Smic
e ⊗ ∂dmic

E
dΩ, (A42)

∂S
∂η̄mc

= − 3
4π

∫
Ω

Smic
e (1− rwdmic

t )
∂dmic

c
∂η̄mc

dΩ, (A43)

∂S
∂η̄mt

= − 3
4π

∫
Ω

Smic
e (1− dmic

c )
∂dmic

t
∂η̄mt

dΩ, (A44)

where
∂dmic

c
∂η̄mc

=
∂dmic

c
∂γmic

c

∂γmic
c

∂η̂mic
c

(1−m), (A45)

∂dmic
t

∂η̄mt
=

∂dmic
t

∂γmic
t

∂γmic
t

∂η̂mic
t

m, (A46)

and the derivatives of the local variable in compression and tension with respect to the Green-Lagrange
strain tensor are

∂ηmc

∂E
=

1
4π

∫
Ω

(
(1− rw)

∂ηmic

∂E
− ∂rw

∂E
∆λmV

)
dΩ, (A47)

∂ηmt

∂E
=

1
4π

∫
Ω

(
rw

∂ηmic

∂E
+

∂rw

∂E
∆λmV

)
dΩ. (A48)

All required derivatives for calculating the tangent stiffness in the element level as in Equations (63)–(66)
should be transformed to the current configuration using the push-forward operation.
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