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Abstract: By introducing a suitable renormalization process, the charge carrier and phonon dynamics
of a double-stranded helical DNA molecule are expressed in terms of an effective Hamiltonian
describing a linear chain, where the renormalized transfer integrals explicitly depend on the relative
orientations of the Watson–Crick base pairs, and the renormalized on-site energies are related to the
electronic parameters of consecutive base pairs along the helix axis, as well as to the low-frequency
phonons’ dispersion relation. The existence of synchronized collective oscillations enhancing the π-π
orbital overlapping among different base pairs is disclosed from the study of the obtained analytical
dynamical equations. The role of these phonon-correlated, long-range oscillation effects on the charge
transfer properties of double-stranded DNA homopolymers is discussed in terms of the resulting
band structure.
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1. Introduction

In physiological conditions, the DNA double helix exhibits a full-fledged three-dimensional
(3D) geometry, where every two consecutive Watson–Crick base pairs (bps) stand nearly parallel
to each other, and they are twisted by a certain angle (θ0 ' 36◦ in equilibrium conditions) around
the helix axis. In their pioneering work, Eley and Spivey pointed out that a double-stranded DNA
(dsDNA) molecule might behave as a one-dimensional (1D) aromatic crystal displaying a π-π based
electrical conductivity along the helical axis [1]. The reasoning behind this proposal was that dsDNA’s
nucleobases adenine (A), guanine (G), cytosine (C), and thymine (T) are aromatic compounds whose
atomic pz orbitals perpendicular to the plane of the base can form rather delocalized π bonding and π∗

antibonding molecular orbitals. If the orbital overlap between the bps is strong enough, this could lead
to extended electronic states along the helical axis, thereby promoting charge transfer (CT) between
consecutive bps in an efficient way over long distances through the aromatic bp stack within the
DNA helix. Accordingly, CT depends on the intimate coupling among stacked bases, as determined
by their relative separation and twist angle, and hence, any perturbation in that stacking, altering
the optimal overlapping face-to-face configuration (θ0 = 0), will significantly affect DNA charge
migration. Consequently, one expects structural fluctuations to be an important factor, influencing
charge carriers’ transport through dsDNA molecules [2–4]. In fact, at physiological temperatures,
the relative orientation of neighboring bases becomes a function of time, thereby modifying their
mutual overlapping in an oscillatory way. The motion of bases can either occur in a synchronized
manner (normal modes’ propagation) or incoherently. The role of thermal fluctuations on the CT
efficiency has been discussed in a number of previous works, where the structural fluctuations of
the DNA double helix are described by sampling the initial angular velocities and twist angles from
a Boltzmann distribution at a given temperature [5–13]. Not surprisingly, it was found that the
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uncorrelated motion of bps, randomly twisting back and forth around the helix axis due to thermal
fluctuations, generally reduces π-π stacking overlap, hence degrading the CT efficiency.

On the contrary, the presence of synchronized, collective twist motions of the Watson–Crick bps
in DNA duplexes can efficiently enhance the π − π orbital overlapping between non-consecutive
bps via a long-range, phonon-correlated tunneling effect [14,15]. In this work, we will focus on
coherent charge transport promoted by the coupling between both twist and radial vibration modes
and charge motion through duplex DNA, thereby extending previously obtained results [16]. In order
to analyze the interplay between the dsDNA low frequency bps’ dynamics and CT efficiency, we
will study the coupling between the oscillations of complementary bases along the transversal
direction and the twisting motion of each bp as a whole through the helical sugar-phosphate backbone
structure, explicitly taking into account its characteristic helical geometry, which has been shown to
be very important in biological processes, such as denaturation and transcription [17]. To this end,
we will explicitly take into account the stacking interaction, mediated by the orbital overlapping
between adjacent bps along the helix, as well as hydrogen bond stretch motions, as described in the
Peyrard–Dauxois–Bishop (PDB) model [18–20], in the phonon dynamical equations. In our approach,
the charge carrier dynamics through a helical dsDNA molecule is expressed in terms of an effective
renormalized Hamiltonian describing a diatomic linear chain, where the renormalized transfer integrals
explicitly depend on the relative orientations of the Watson–Crick bps and the renormalized on-site
energies are related to both the electronic parameters of consecutive codon units along the helix
axis, as well as the low-frequency phonon dispersion relation. The corresponding effective hopping
terms include both helical and dynamical effects in an intertwined fashion, allowing for a unified
treatment of charge-lattice coupled dynamics in a fully analytical way. Thus, we disclose a number of
remarkable symmetries of the motion equations themselves, which may be implemented with accurate
charge transfer parameters derived from quantum chemistry and molecular dynamics approaches
in a straightforward way. Our main conclusion is that a significant improvement of CT can occur
in dsDNA via charge-phonon coupling mediated by synchronized helical waves stemming from
collective, long-range correlated bps’ oscillation modes.

The paper is organized as follows. In Section 2, we introduce the model Hamiltonian describing
the lattice and electronic dynamics. The lattice contribution is expressed in cylindrical coordinates,
in order to explicitly take into account the 3D geometry of the double helix DNA molecule. Then,
we derive the π − π electronic coupling term describing the molecular orbitals’ overlap through the
helix axis in terms of these cylindrical coordinates. This term, describing the transfer integral between
successive bps, allows one to relate the dynamical behavior to the CT process by means of a suitable
tight-binding electronic model. A convenient feature of our adopted approach is that the resulting
3D fishbone model can be properly mapped into a mathematically simpler effective 1D chain model,
still retaining much physico-chemical information in the corresponding renormalization parameters.
In Section 3, we obtain the linearized canonical equations of motion for twist and radial lattice variables.
In doing so, we introduce a number of characteristic frequencies along with their related time scales.
For the sake of simplicity, in Section 3.2, we focus on the dynamics of homopolymer dsDNA molecules,
showing the presence of collective oscillations in the form of helical waves. The related dispersion
relations for the acoustic and optical branches are analytically derived, and the obtained results are
compared to some available experimental results. In this section, we also disclose a very interesting
relationship between the dynamics of the dsDNA molecule as a whole and that corresponding to its
codon building blocks. In Section 4, we solve the Schrödinger equation for the effective 1D Hamiltonian
previously introduced, making explicit use of the helical wave solutions in the transfer integral term.
In this way, the charge-phonon coupling effect is fully incorporated in the resulting 3D energy spectrum.
Finally, the main conclusions of this work are summarized in Section 5.
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2. DNA Model Hamiltonian

Two kinds of order coexist in biological DNA, each one related to two separate subsystems in
the DNA helix, namely the nucleobase and backbone systems [21]. The informative chemical order
determined by the sequence of Watson–Crick bps can be suitably characterized by ab-initio quantum
chemistry calculations [22,23], which properly highlight the emergence of molecular orbitals, as is
shown in Figure 1b. In order to describe most basic properties of dsDNA molecules, we must consider
a model Hamiltonian accounting for different scales of time and space by means of an adequate choice
of generalized coordinates including both electronic and dynamic degrees of freedom. According to
the Born–Oppenheimer approximation, the lattice and charge dynamics of a dsDNA molecule can
be split in terms of the general Hamiltonian H = Hl + He, where Hl describes the double strand
dynamics, and He describes the CT across nucleobases, as illustrated in the structural lattice model
and the electronic tight-binding model depicted in Figure 1a,c, respectively.
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Figure 1. (a) Diagram of the dsDNA lattice model showing the harmonic bonds between adjacent
bps through the sugar-phosphate backbone (zig-zag lines) and between complementary bases due to
H-bonds (solid lines). (b) Full-atom dsDNA model with surfaces of constant charge density for the
states corresponding to the π-like LUMO (in red) of the C bases and the HOMO (in blue) of the G
bases of a polyG-polyC molecule in the dry conditions A form (Courtesy of Emilio Artacho) [23]. (c)
Diagram of the dsDNA electronic model showing the π-π channel transfer integrals tXY

n,n±1 (cylindrical
rods), the interstand transfer integrals between complementary bases tXY

⊥ (perpendicular bars), the
glucosidic transfer integrals tP between nucleobases (spheres) and sugar-phosphate groups (cubes),
and the on-site energies of these groups γj.

2.1. Lattice Hamiltonian94

In our lattice model we treat each nucleotide (base + sugar + phosphate) as a point mass, helically
arranged and mutually connected by means of elastic rods describing: (1) the sugar-phosphate
backbone along a given strand, and (2) the interstrand H-bonding between complementary bases
(see Figure 1a) [24–26]. We explicitly take into consideration the mass difference among the four
nucleobases, namely, mG = 347.05, mC = 307.05, mA = 331.06, mT = 322.05 amu, and so we realize that
the mass of each bp as a whole is essentially the same, i. e., M ≡ mG + mC ∼= mA + mT ∼= 653.5± 0.5
amu. Adopting the reference frame indicated in Figure 1a the position of the nth nucleobase can be
expressed as xn = rn cos ϕn, yn = rn sin ϕn, and zn = cϕn, where n labels the considered bp along
the dsDNA, rn and ϕn are usual cylindrical coordinates, and c = h0/θ0, where h0 ' 0.34 nm is the
equilibrium distance between two successive bp planes along the Z axis in the B-DNA form, and θ0

is the equilibrium relative angular separation between neighboring bps. We note that in this model

Figure 1. (a) Diagram of the dsDNA lattice model showing the harmonic bonds between adjacent
bps through the sugar-phosphate backbone (zig-zag lines) and between complementary bases due to
H-bonds (solid lines). (b) Full-atom dsDNA model with surfaces of constant charge density for the states
corresponding to the π-like lowest unoccupied molecular orbital (LUMO, in red) of the C bases and the
highest occupied molecular orbital (HOMO, in blue) of the G bases of a polyG-polyC molecule in the
dry conditions A form (Courtesy of Emilio Artacho) [23]. (c) Diagram of the dsDNA electronic model
showing the π-π channel transfer integrals tXY

n,n±1 (cylindrical rods), the interstrand transfer integrals
between complementary bases tXY

⊥ (perpendicular bars), the glucosidic transfer integrals tP between
nucleobases (spheres) and sugar-phosphate groups (cubes), and the on-site energies of these groups γj.

2.1. Lattice Hamiltonian

In our lattice model, we treat each nucleotide (base + sugar + phosphate) as a point mass, helically
arranged and mutually connected by means of elastic rods describing: (1) the sugar-phosphate
backbone along a given strand and (2) the interstrand H-bonding between complementary bases
(see Figure 1a) [24–26]. We explicitly take into consideration the mass difference among the four
nucleobases, namely, mG = 347.05, mC = 307.05, mA = 331.06, and mT = 322.05 amu, and so,
we realize that the mass of each bp as a whole is essentially the same, i.e., M ≡ mG +mC ∼= mA +mT ∼=
653.5± 0.5 amu. Adopting the reference frame indicated in Figure 1a, the position of the nth nucleobase
can be expressed as xn = rn cos ϕn, yn = rn sin ϕn, and zn = cϕn, where n labels the considered bp
along the dsDNA, rn and ϕn are the usual cylindrical coordinates, and c = h0/θ0, where h0 ' 0.34 nm
is the equilibrium distance between two successive bp planes along the Z axis in the B-DNA form,
while θ0 is the equilibrium relative angular separation between neighboring bps. We note that in this
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model, the distance between successive bps along the Z direction is proportional to the twist angle.
In this way, the helical structure is naturally preserved during the dynamical evolution, in agreement
with dispersion relation data reported from inelastic X-ray scattering measurements [27]. Thus, we can
express the Euclidean distance between adjacent bases along a given strand as:

dn,n±1 =
√

c2θ2
n,n±1 + (R0 + ρn±1)

2 + (R0 + ρn)
2 − 2 (R0 + ρn±1) (R0 + ρn) cos θn,n±1 (1)

where we defined θn,n±1 = ± (ϕn±1 − ϕn) as the relative angle between two neighboring bps,
and ρn = rn − R0 is the radial displacement about the equilibrium position (R0 = 1 nm). We will
further assume that the location of the dsDNA as a whole remains fixed, so that the center of
mass is constant for each bp. Therefore, the radial displacements about the equilibrium position
satisfy the relationship ρ̄n = λnρn, where λn ≡ mn/m̄n, and henceforth, the upper bar denotes
the physical magnitudes of the complementary bases. Therefore, d̄n,n±1 for the opposite strand can
be obtained by simply replacing ρn with ρ̄n in Equation (1). In equilibrium, both distances reduce

to the value l0 = dn,n±1|eq. = d̄n,n±1
∣∣
eq. =

√
h2

0 + 4R2
0 sin2 (θ0/2) ' 0.685 nm, where we adopted

θ0 = π/5.2 ' 34.6◦.
When describing the phonon dynamics of DNA at a molecular scale, one can disregard the inner

degrees of freedom of the bases, since we can separate the fast vibrational motions of atoms about their
equilibrium positions from the slower motions of molecular groups. Accordingly, we can write the
dsDNA molecule lattice Hamiltonian as [16]:

Hl =
1

2M

N

∑
n=1

(
P2

ρn

λn
+

P2
ϕn

ξ2 + λnρ2
n + 4R0ρnmn M−1

)
+ UH + US + UB, (2)

where n runs over the number N of bps, Pρn and Pϕn are the conjugate momenta of the nth bp radial

and twist variables, respectively, and ξ =
√

c2 + R2
0 ' 1.147 nm is related to the helical geometry of

the system, so that ξθn,n±1 measures the helix arc length providing the shortest path between two
points along a helical coil. In the limit of small radial and twist oscillations (rn ' R0, θn,n+1 � 1),

Equation (1) reads dn,n±1 =
√

R2
0 + c2 θn,n±1 ≡ ξθn,n±1, so that the Euclidean distance coincides with

the helix arc length in this case [14].
The three elastic potential terms in Equation (2) describe the different interactions between the

bases within the framework of the PDB model [18,19], namely:

UH =
N

∑
n=1

Dn

[
e−

αn
2 (1+λn)ρn − 1

]2
, (3)

represents the radial stretching of the hydrogen bonds connecting complementary bases in the
opposite strands of the double helix by means of Morse potentials of depth Dn and width αn [19,28].
This potential term includes both the attraction due to the H-bonds forming the bps and the repulsion of
the negatively charged phosphates in the backbone of the two strands, which is, in turn, screened by the
surrounding solvent water molecules and positively charged counterions. The sequence dependence
can be considered by adopting different values for the model parameters Dn and αn, accounting for
the different number of H-bonds in the G≡C and A=T bps [29]. The potential term:

US =
1
8

N−1

∑
n=1

kS
n,n+1

(
1 + e−

b
2 u+

n,n+1
) (

u−n,n+1

)2
, (4)

with u±n,n+1 = (1 + λn) ρn ± (1 + λn+1) ρn+1, describes the stacking interaction between adjacent bps,
whose role is to inhibit configurations with large relative radial displacements between neighboring
pairs. This interaction is characterized by the exponential term that effectively modulates an
otherwise harmonic radial oscillation. This term accounts for local constraints in nucleotide motions,
measured in terms of the stacking stiffness kS

n,n+1 and the interaction range b parameter, resulting
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in long-range cooperative elastic effects due to the distortion of hydrogen bonds and the overlap of
the π-type orbitals [28]. The description of the radial degree of freedom via the non-linear potentials
given by Equations (3) and (4) is more realistic than a purely harmonic approach and has been
successful in capturing denaturation, as well as transcription initiation processes in several DNA
model chains [19,30–32]. Finally, the term:

UB =
kB
2

N−1

∑
n=1

[
(dn,n+1 − l0)

2 +
(
d̄n,n+1 − l0

)2
]

, (5)

describes the harmonic interaction between neighboring bases along each backbone’s strand.

2.2. The π-π Electronic Coupling

The radial and twist oscillations of bps have a significant impact on the molecular orbitals’ overlap
throughout the π-stacking, so that the resulting electronic transfer integrals’ values explicitly depend
on the dynamical degrees of freedom ρn, ρn±1, and θn,n±1. The π and π∗ molecular orbitals are formed
by the C, N, and O atomic pz orbitals perpendicular to the bps and pointing along the helical axis,
as is illustrated in Figure 2. The pz orbitals from different bps couple by ppσ > 0 and ppπ < 0
hybridization, the different signs arising from the respective atomic orbital’s lobe sign. According to
the Slater–Koster theory, the transfer matrix element between two pz orbitals on neighboring bps is
given by the combination of ppσ and ppπ hybridization contributions as Vij = Vppσ sin2 ζ + Vppπ cos2 ζ,
where ζ measures the rise angle between successive bps (sin ζ = hij/dij), and:

Vppx = ηppx
h̄2

md2
ij

exp (−dij/Rc) (6)

where ηppπ and ηppσ describe the hybridization matrix elements, m is the electron mass, dij=
√

l2
ij + h2

ij
is the Euclidean distance between atoms belonging to neighboring nucleobases, and Rc describes the
exponential tails of the atomic wave functions [33,34].

Version November 9, 2020 submitted to Materials 5 of 18

harmonic radial oscillation. This term accounts for local constraints in nucleotide motions, measured
in terms of the stacking stiffness kS

n,n+1 and the interaction range b parameter, resulting in long-range
cooperative elastic effects due to the distortion of hydrogen bonds and the overlap of the π-type
orbitals [28]. The description of the radial degree of freedom via the non-linear potentials given by
Eqs.(3) and (4) is more realistic than a purely harmonic approach and has been successful in capturing
denaturation as well as transcription initiation processes in several DNA model chains [19,30–32].
Finally, the term

UB =
kB
2

N−1

∑
n=1

[
(dn,n+1 − l0)

2 +
(
d̄n,n+1 − l0

)2
]

, (5)

describes the harmonic interaction between neighboring bases along each backbone’s strand.110

2.2. The π - π electronic coupling111

The radial and twist oscillations of bps have a significant impact on the molecular orbitals overlap
throughout the π-stacking, so that the resulting electronic transfer integrals values explicitly depend
on the dynamical degrees of freedom ρn, ρn±1 and θn,n±1. The π and π∗ molecular orbitals are formed
by the C, N and O atomic pz orbitals perpendicular to the bps and pointing along the helical axis,
as it is illustrated in Figure 2. The pz orbitals from different bps couple by ppσ > 0 and ppπ < 0
hybridization, the different signs arising from the respective atomic orbital’s lobes sign. According to
the Slater-Koster theory the transfer matrix element between two pz orbitals on neighboring bps is
given by the combination of ppσ and ppπ hybridization contributions as Vij = Vppσ sin2 ζ + Vppπ cos2 ζ,
where ζ measures the rise angle between successive bps (sin ζ = hij/dij), and

Vppx = ηppx
h̄2

md2
ij

exp (−dij/Rc) (6)

where ηppπ and ηppσ describe the hybridization matrix elements, m is the electron mass, dij=
√

l2
ij + h2

ij112

is the Euclidean distance between atoms belonging to neighboring nucleobases, and Rc describes the113

exponential tails of the atomic wave functions.[33,34]114

Z

n+1

n

n+1,n
dij

lij

hij

YX

rn+1
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Figure 2. The pz atomic orbitals overlapping between neighboring nucleobases is described in terms of
their Euclidean distance dij, which is determined by the relative twist and radial variables θn,n+1, rn+1,
and rn. https://link.aps.org/doi/10.1103/PhysRevB.76.245123.

Figure 2. The pz atomic orbitals overlapping between neighboring nucleobases are described in terms
of their Euclidean distance dij, which is determined by the relative twist and radial variables θn,n+1,
rn+1, and rn. Reprinted figure with permission from Maciá, E. Physical Review B, 76, 245123, 2007.
Copyright (2007) by the American Physical Society.
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The π-π coupling generally involves one base (say, Y) of the (n + 1)th bp and another base (say, X)
of the nth bp, both belonging to the same strand (i.e., 5’-XY-3’), so that the π-π transfer integral between
successive bps along the dsDNA helix is then given by:

tXY
n,n+1 =

N1

∑
i=1

N2

∑
j=1

Vn,n+1
ij cn+1

i cn
j , (7)

where N1 and N2 are the number of pz orbitals in the bps n + 1 and n, respectively, and cn
j is the jth

linear combination of atomic orbitals (LCAO) coefficient of the π molecular frontier orbital (HOMO
or LUMO) of bp n. Making use of Equation (6) in Equation (7), assuming that the mean distances
among atoms belonging to different nucleobases can be roughly approximated as

〈
dij
〉
' d and〈

l2
ij

〉
' l2

n,n±1 = r2
n + r2

n±1 − 2rnrn±1 cos θn,n±1, respectively, we obtain: [14]

tXY
n,n±1(ρ, θ) = tXY

0

[
1− η̄

d2

(
(R0 + ρn)

2 + (R0 + ρn±1)
2 − 2 (R0 + ρn±1) (R0 + ρn) cos θn,n±1

)]
, (8)

where:

tXY
0 = ηppσ

h̄2

md2 exp (−d/Rc)
N1

∑
i=1

N2

∑
j=1

cn+1
i cn

j , (9)

is the transfer integral corresponding to the optimal face-to-face geometry (i.e., θn,n±1 ≡ 0, ρn = 0, ∀n)
and η̄ ≡ 1 + |ηppπ |/ηppσ = 1 + 2.26/5.27 ' 1.429 [35]. In the B-DNA form equilibrium configuration
(θn,n±1 ≡ θ0, ρn = 0, ∀n), Equation (8) reads:

tXY
n,n±1(0, θ0) = tXY

0

[
1− η̄

(
2R0

l0
sin

θ0

2

)2
]

. (10)

Since η̄ > 0, we get tXY
n,n±1(0, θ0) < tXY

0 , hence indicating that by explicitly considering helical
geometry in the equilibrium configuration, the π − π base coupling strength is significantly reduced
below that corresponding to the optimal face-to-face geometry. If we relax the equilibrium structure,
allowing for the propagation of low frequency twist oscillations (acoustic modes), though keeping the
radial variable describing H-bonding stretch oscillations fixed (no optical modes), Equation (8) can be
approximated as:

tXY
n,n±1(0, θn,n±1) ' tXY

0

(
1− χθ2

n,n±1

)
, (11)

for small enough twists (cos θn,n±1 ' 1 − θ2
n,n±1/2), where the dimensionless parameter

χ ≡ η̄(R0/l0)2 ' 2.92 measures the electron-phonon coupling strength. Despite its approximate
nature, Equation (11) reasonably reproduces the main features of the transfer integral versus twist
angle dependence derived from detailed quantum-chemistry calculations in the regime of low
energies [12,14]. If we now allow for radial oscillations, still keeping within the small twist angle
regime, Equation (8) adopts the form:

tXY
n,n±1(vn,n±1, θn,n±1) ' tXY

0

[
1− χ

(
(vn − vn±1)

2 + (1 + vn)(1 + vn±1)θ
2
n,n±1

)]
, (12)

where vn ≡ ρn/R0. Finally, in the limit vn � 1, Equation (12) can be approximated as:

tXY
n,n±1(vn,,n±1, θn,n±1) ' tXY

0

[
1− χ

(
(vn − vn±1)

2 + θ2
n,n±1

)]
, (13)

where only terms up to the second order are retained.
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2.3. Electronic Hamiltonian

In order to obtain a realistic description of the rich dsDNA physico-chemistry, keeping at the same
time the convenient mathematical simplicity, we will exploit the three-step renormalization approach
sketched in Figure 3.
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model shown in (a) into the 3D fishbone model shown in (b), and then into the effective 1D diatomic
and polyatomic lattice models displayed in (c) and (d), respectively, the latter corresponding to a chain
made of codon triplets building blocks.

In the fist step, the Watson-Crick bps present in the triplet codon shown in Figure 3a are
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Figure 3. Sketch illustrating the three-step renormalization process mapping the 3D dsDNA electronic
model shown in (a) into the 3D fishbone model shown in (b), then into the effective 1D diatomic and
polyatomic lattice models displayed in (c) and (d), respectively, the latter corresponding to a chain
made of codon triplet building blocks.

In the fist step, the Watson–Crick bps present in the triplet codon shown in Figure 3a are
renormalized to obtain the tight-binding model depicted in Figure 3b. The renormalized on-site
energies and transfer integrals are respectively given by [36,37]: εij = tij

⊥ = ε ji, which describes the
charge carrier hopping from one base to its complementary base within the same bp [38], and:

τj = tP +
ε j

tP
(E− γj), j = {G, C, A, T}, (14)

are the effective transfer integrals between the bps and the sugar-phosphate groups, where tP is the
glycosidic bond transfer integral, E is the charge carrier energy, γj measure the sugar-phosphate
groups’ on-site energies, and ε j are the on-site energies of the corresponding nucleobases. In general,
γj will depend on the nature of the neighboring base, as well as the presence of water molecules
and/or counterions attached to the backbone. Thus, the renormalized model parameters εij and
τj entail substantial physicochemical information concerning nucleotide interactions and backbone
gating effects [36,39].

We note that the model depicted in Figure 3b can be properly regarded as a 3D generalization
of the so-called fishbone model in 2D [40,41]. Accordingly, in the second renormalization step,
the sugar-phosphate groups contribution is decimated [36,40,42], so that the original dsDNA molecule
is mapped into the equivalent 1D binary lattice shown in Figure 3c, where the renormalized on-site



Materials 2020, 13, 5119 8 of 19

energies labeled α and β correspond to the Watson–Crick complementary bps, and they are explicitly
given by (E 6= γj):

ε̃XY
n (E, ρ, θ) = tXY

n,n±1(ρ, θ) +
τ2

X
E− γX

+
τ2

Y
E− γY

≡ tXY
n,n±1(ρ, θ) + εXY

n (E), (15)

where tXY
n,n±1(ρ, θ) accounts for the aromatic base stacking between adjacent nucleotides, given by

Equations (8)–(13). Therefore, the renormalized on-site potentials ε̃XY
n (E) explicitly depend on the

charge carrier energy, as well as on the angular and radial coordinates describing dsDNA oscillations,
thereby enclosing all the relevant physicochemical information of the considered system. In this
way, one obtains a realistic description, including 14 electronic model parameters, {ε j, tj, γj, tGC

⊥ , tAT
⊥ },

fully describing CT throughout dsDNA molecules in terms of just two main functions, namely, εXY
n (E)

and tXY
n,n±1(ρ, θ), in a unified way in terms of the effective 1D Hamiltonian:

H̃1D
e =

N

∑
n=1

(
tXY
n,n+1(ρ, θ) + εXY

n (E)
)

c†
ncn −

N−1

∑
n=1

tXY
n,n+1(ρ, θ)(c†

n+1cn + c†
ncn+1), (16)

where c†
n (cn) is the creation (annihilation) operator for a charge at the nth site in the chain. In this way,

the Hamiltonian given by Equation (16) provides a realistic treatment of CT mechanisms in dsDNA
under physiological conditions, properly taking into account the influence of the dynamical state of the
macromolecule on the CT efficiency. It is worth noting that epigenetic processes such as methylation
(the addition of a methyl group (-CH3) to one of the bases) will modify the on-site nucleobase energy
and its effective mass alike, thereby changing both the mass ratio parameter λ among nucleotides
and their γ parameter value. While the role of methylation-related on-site energy changes has been
discussed in several recent works [43–45], the role of methylation-related dynamical effects in the CT
efficiency has not. Due to the presence of both an on-site energy term (εXY

n (E)) and a transfer integral
term (tXY

n,n±1(ρ, θ)) in the diagonal term of the effective Hamiltonian given by Equation (16), one should
expect the possible existence of resonance effects involving both electronic and dynamical physical
parameters in an intertwined fashion.

3. Dynamical Equations of Motion

3.1. General Expressions

From the lattice Hamiltonian given by Equation (2), we can straightforwardly obtain the canonical
equations of motion:

(
ξ2 + P(ρn)

)
ϕ̈n = − kB

M

[(
1− l0

dn,n−1

)
fn−1 −

(
1− l0

dn,n+1

)
fn+1 +

(
1− l0

d̄n,n−1

)
f̄n−1 −

(
1− l0

d̄n,n+1

)
f̄n+1

]
,

where P(ρn) = λnρ2
n +

4mn
M R0ρn ' λnρ2

n + 2R0ρn and:

fn±1 ≡ (R2
0 + R0(ρn + ρn±1) + ρnρn±1) sin θn,n±1 + c2θn,n±1,

f̄n±1 ≡ (R2
0 + R0(λnρn + λn±1ρn±1) + λnλn±1ρnρn±1) sin θn,n±1 + c2θn,n±1, (17)

along with:

ρ̈n =
Dnαn

M
1 + λn

λn
(e−

αn
2 (1+λn)ρn − 1)e−

αn
2 (1+λn)ρn

+
kS

8M
1 + λn

λn

{
u−n−1,n

[
2 + e−

b
2 u+

n,n−1

(
2 +

b
2

u−n−1,n

)]
+ u−n+1,n

[
2 + e−

b
2 u+

n+1,n

(
2 +

b
2

u−n+1,n

)]}

− kB
M

[
λ−1

n

(
1− l0

dn,n−1

)
gn−1 + λ−1

n

(
1− l0

dn,n+1

)
gn+1 +

(
1− l0

d̄n,n−1

)
ḡn−1 +

(
1− l0

d̄n,n+1

)
ḡn+1

]
,
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where:

gn±1 ≡ R0 + ρn − (R0 + ρn±1) cos θn,n±1,

ḡn±1 ≡ R0 + λnρn − (R0 + λnρn±1) cos θn,n±1, (18)

and as a first approximation, we assumed all the stacking stiffness parameters to take on the same
value (i.e., kS

n,n+1 = kS ∀n). In obtaining Equations (17) and (18), we neglected non-linear contributions
related to the ϕ̇nρ̇n and ϕ̇2

n terms. Keeping only linear terms in the Taylor series of the functions
appearing in the above expressions, we get the linearized equations of motion:

ϕ̈n + ω2
ϕ (2ϕn − ϕn−1 − ϕn+1) = ω2

ϕl−1
B u−n+1,n−1, (19)

where we reasonably assumed 2R0ρn � ξ2 and introduced the twist frequency:

ω2
ϕ ≡

2kB
M

(
f0

ξl0

)2
, (20)

along with the characteristic length lB ≡ 2 f0/g0, with f0 = c2θ0 + R2
0 sin θ0 ' 0.759 nm2 and g0 =

R0 (1− cos θ0) ' 0.177 nm, so that lB ' 8.575 nm (i.e., about 25 bps) and:

ρ̈n + ω2
ϕρ,nρn −

1
2

ω2
ϕS,n−1ρn−1 −

1
2

ω2
ϕS,n+1ρn+1 =

aB
2
(1 + λ−1

n )ω2
ϕ (ϕn−1 − ϕn+1) , (21)

where aB ≡ g0ξ2/ f0 ' 0.307 nm is a characteristic length whose value is comparable to the equilibrium
bps separation h0. We introduced the coupled frequencies:

ω2
ϕρ,n ≡

(1 + λn)2

λn
(ω2

H,n + ω2
S) +

1 + λ2
n

λn
b2

Bω2
ϕ, (22)

and:

ω2
ϕS,n±1 ≡

(1 + λn)(1 + λn±1)

λn
ω2

S −
1 + λnλn±1

λn
b2

Bω2
ϕ, (23)

where bB ≡ aB/ξ = g0ξ/ f0 ' 0.267 is a dimensionless factor. Therefore, ωϕρ,n depends on the twist
frequency, as well as the radial stretch H-bonding and lateral stacking oscillations of bps, whose
characteristic frequencies are ω2

H,n = Dnα2
n/(2M), and ω2

S = kS/M, respectively. The site label in
ωϕρ,n arises from the presence of the λn factor, as well as the fact that ω2

H,n is site dependent, due to
the different Morse potential parameters values for G≡C and A=T bps. On the other hand, ωϕS,n±1
involves lateral stacking and twist oscillations. In this case, the site label dependence involves all
the λk terms. The set of coupled Equations (19) and (21) describes the dynamics of general dsDNA
molecules, where two kinds of bps can be arranged either periodically or aperiodically [21,46–49].

3.2. Dynamics of Homopolymer dsDNA Macromolecules

For the sake of simplicity, we will consider in this section the homopolymer case (i.e., polyA-polyT
or polyG-polyC chains). In this case, the renormalized chain shown in Figure 3c becomes an effective
monoatomic lattice (i.e., α ≡ β), where the renormalized on-site potentials depend on both the
electron energy E and the phonon wavevector q, due to the presence of the π-π transfer integral
in Equation (15). In addition, λn = λXY, Dn = DXY ≡ D and αn = αXY ≡ α (see Table 1), so that
the frequencies ωH,n ≡ ωH , ωϕρ,n ≡ ωϕρ and ωϕS,n±1 ≡ ωϕS are no longer site dependent. Hence,
Equations (19)–(21) can be rewritten as (henceforth, we will drop the subscript XY in the λ parameters
for the sake of clarity):

ϕ̈n + ω2
ϕ (2ϕn − ϕn−1 − ϕn+1) = Aλω2

ϕ(ρn+1 − ρn−1), (24)
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ρ̈n +
1
2

ω2
ϕρ(2ρn + ρn−1 + ρn+1)−

1
2

ω2
HS(ρn−1 + ρn+1) = Bλω2

ϕ (ϕn−1 − ϕn+1) , (25)

where Aλ ≡ (1 + λ)l−1
B and Bλ ≡ aB(1 + λ−1)/2 are constants, and we introduced the frequency

ω2
HS ≡ µ(ω2

H + 2ω2
S), describing the coupling between the stacking and H-bond radial stretch

oscillations, where µ ≡ λ−1(1 + λ)2 can take on two values. Making use of the model parameters
listed in Table 1, we obtain the values listed in Table 2 for the characteristic frequencies just introduced,
along with their related time scales.

Table 1. Geometrical, dynamical, lattice model, and electronic model parameters adopted in the dsDNA
homopolymer model studied in this work. The same effective Morse potential is used to describe
H-bonding in both GC and AT bps. The spring constant kB is difficult to estimate, and different possible
values, ranging from 0.04 to 0.5 eV Å−2, have been reported in the literature [50–55].

Geometrical Dynamical Lattice Electronic (eV) Electronic (eV)

θ0 = π/5.2 rad M = 653.5 amu b = 0.5 Å−1 [25,56] tGC
⊥ = 0.01 [38,57,58] εG = 7.8− 8.2 [39,59]

h0 = 0.34 nm λGC = 1.130 α = 5 Å−1 [24,56,60] tAT
⊥ = 0.02 [38] εA = 8.2 [59]

l0 = 0.68 nm λAT = 1.028 D = 0.15 eV [30,56,60] tGG
0 = 0.08 [38,59,61] εC = 8.9 [59]

R0 = 1.00 nm µGC = 4.015 kS = 0.7 eV Å−2 [30] tAA
0 = 0.09 [38,58,59] εT = 9.0− 9.1 [39,59]

ξ = 1.15 nm µAT = 4.001 kB = 0.04 eV Å−2 [56] tP = 1.5 [62] 0 ≤ γ ≤ 12 [14,62]

Table 2. Characteristic frequencies and scale times in the lattice dynamics of dsDNA polyG-polyC
homopolymers. The νϕρ, νϕS, and νHS values for polyA-polyT homopolymers are slightly smaller by
just about 4 GHz.

Oscillation ωk (1012 rad s−1) νk (THz) τk (ps)

Twist ωϕ 1.07 0.17 5.87
Stacking ωS 3.26 0.52 1.93

H-Bonding ωH 5.34 0.85 1.18
Twist-Stacking ωϕS 6.52 1.04 0.96
Twist-Radial ωϕρ 12.53 2.00 0.50

Stretch-Stacking ωHS 14.13 2.25 0.45

From the data listed in Table 2, we see that the time scale of angular motions, determined by the
twist frequency, amounts to ∼6 ps, which are an order of magnitude slower than those corresponding
to the twist-radial coupled oscillations. The time scale related to bps’ H-bond and stacking motions
occupy an intermediate position, whereas coupled oscillations involving stretch and stacking motions
are about 2.6 times quicker than the H-bond-mediated stretch oscillations alone. For the sake of
comparison, the transition times reported for intrastrand hole transfer in ds-GTnGGG oligonucleotides
range from τ = 0.5 ps for n = 1 to τ = 315 ps for n = 4 [63]. Quite interestingly, the electrical response
of biological dsDNA chains to light irradiation has been recently investigated in order to engineer a
DNA based molecular switch. In these experiments, it was observed that the electrical current turns
on when the frequency of the incident light is above the 2 THz threshold [64], a value that coincides
with that listed for νϕρ in Table 2. On the other hand, it is worth mentioning that the νHS frequency
value listed in Table 2 is smaller than the 2.83 and 3.04 THz frequencies experimentally observed by
optical Kerr-effect spectroscopy in ds-GGCGGCCCGCGCGGGCCGCC and ds-ATTATTATTATATTA
oligonucleotides, respectively. These oscillations are consistent with delocalized optical phonon modes
with a wavelength extending throughout the molecule as a whole, and they are assumed to be related
to the H-bonding dynamics between the two strands [65–67].

The mathematical structure of Equations (24) and (25) clearly indicates the correlated nature of
next-neighboring bps dynamics. It is then convenient to zoom out our perspective and focus our
attention on the dynamics of consecutive triplets of bps along the double-helix, which are closely related
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to the so-called codon units in genomics. To this end, we properly add up the dynamical equations
corresponding to the consecutive bps corresponding to sites n− 1, n, and n + 1, grouping the resulting
expression in terms of the collective variables xn ≡ 2ϕn − ϕn−1 − ϕn+1 and yn ≡ 2ρn − ρn−1 − ρn+1,
to obtain:

ẍn + ω2
ϕ (2xn − xn−1 − xn+1) = Aλω2

ϕ(yn+1 − yn−1), (26)

ÿn +
1
2

ω2
ϕρ(2yn + yn−1 + yn+1)−

1
2

ω2
HS(yn−1 + yn+1) = Bλω2

ϕ (xn−1 − xn+1) . (27)

Remarkably enough, we realize that Equations (26) and (27), describing the codon dynamics
as a whole, are formally identical to Equations (24) and (25), which describe the motion of their
constituent bps, since they are invariant upon the simultaneous variable exchange ϕn ↔ xn and
ρn ↔ yn. This property can be regarded as expressing a renormalization of the dynamical equations
when going from the bp local scale to the longer triplet codon scale. Quite interestingly, the very
mathematical structure of the codon dynamics prescribed by Equations (26) and (27) guarantees
that we will obtain similar dynamical equations by grouping codons in successive triplets of nested
codon units recurrently, all the way up to the entire DNA molecule itself. Accordingly, the set of
Equations (24) and (25) exhibits a self-similar symmetry upon triplet renormalization operation, so
that by solving this fundamental dynamical equation set, we are actually disclosing the main features
of the dynamics of the entire dsDNA macromolecule as a whole.

Inspired by previous results [14,15], we look for solutions to Equations (24) and (25) of the
form ϕn = ϕ0ei(ωt−nqξ) and ρn = ρ0ei(ωt−nqξ), describing a helical wave propagating throughout
the dsDNA with frequency ω and wave vector q, where ϕ0 ' 8◦= 0.14 rad and ρ0 ' 0.05 nm are
the twist and radial oscillation amplitudes at ambient temperature, respectively [68]. In so doing,
Equations (24) and (25) can be expressed in the matrix form:

(
2ω2

ϕ[1− cos(qξ)]−ω2 2iAλω2
ϕ sin(qξ)

−2iBλω2
ϕ sin(qξ) ω2

ϕρ −ω2
ϕS cos(qξ)−ω2

)(
ϕ0

ρ0

)
=

(
0
0

)
. (28)

The solution to Equation (28) requires the matrix determinant to identically vanish, thereby
leading to a biquadratic equation whose solutions yield the dispersion relations for the acoustic and
optical phonon branches given by:

ω2
± =

1
2
(G(q) + H(q))± 1

2

√
(H(q)− G(q))2 + 16Cλω4

ϕ sin2(qξ), (29)

where G(q) ≡ 4ω2
ϕ sin2(qξ/2), H(q) ≡ ω2

ϕρ − ω2
ϕS cos(qξ), and Cλ ≡ AλBλ. The exact dispersion

relations given by Equation (29) are plotted in Figure 4, though they can be very well approximated by
the simpler expressions:

ν2
− = 4ν2

ϕ sin2
(

qξ

2

)
ν2
+ = µ

[
ν2

H + 2ν2
S sin2

(
qξ

2

)]
, (30)

which extend previously reported results [25,30]. As we see, the acoustic branch is completely
determined by twist oscillations, whereas the optical branch depends on both stretch and stacking
oscillations. In particular, the q = 0 bandgap, ∆ν(0) ≡ ν+(0) − ν−(0) =

√
µνH ' 1.70 THz

('7 meV), is fixed by the H-bond frequency value. The maximum bandgap width occurs for
q∗ = π/ξ ' 2.732 nm−1, with ∆ν(q∗) = νHS − 2νϕ ' 1.91 THz. The sound velocity obtained from
the acoustic dispersion curve is 1.2 km s−1, a figure smaller than the experimentally reported values
ranging from 1.7 to 4.3 km s−1, depending on the employed technique [69].

An interesting subject that can be addressed within the framework presented in this work refers
to the behavior of the correlated oscillations when the DNA molecule is bonded with other small
molecules. Generally speaking, the presence of ligands attached onto the sugar-phosphate backbone
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simultaneously affects the electronic properties and the mass distribution in a local region of the
DNA molecule. This twofold effect can be properly accounted for in terms of a change in the γ value
parameter, which modifies the electronic bandgap according to Equation (40) and a change in the
values of parameters λ and M, thereby modifying the frequency values given by Equations (20)–(23).
Thus, any effective bp mass increase leads to a slow down of frequencies ωϕ, ωH , and ωS, along with
their related coupled frequencies. In addition, the reduction of the twist frequency value makes the
acoustic dispersion relation slope decline, so that the sound speed is reduced as well, ultimately
leading to a lower thermal conductivity around the place where the small molecule has been bonded.
On the other hand, a smaller ωϕ value will widen the gap between the acoustic and optical branches
(see Figure 4).
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4. Charge Transfer through dsDNA Homopolymers

Making use of the helical wave complex expressions for the variables ϕn(t) and ρn(t) into
Equation (13), we get:

tXY
n,n±1(ρn, θn,n±1) ' tXY

0

[
1− 4χA2

0 sin2
(

qξ

2

)]
, (31)

where A2
0 ≡ ϕ2

0 + (ρ0/R0)
2 ' 0.02, so that 4χA2

0 ' 0.26 eV and tXY
n,n±1 > 0, ∀q. The resulting

transfer integrals become site independent, which is a natural consequence of the synchronized
motion mediated by helical waves propagating in the dsDNA molecule. Accordingly, we can write
tXY
n,n±1(ρn, θn,n±1) = tXY(q) ≡ tXX(q) in the homopolymer case, and the Schrödinger nearest-neighbor

tight-binding equation corresponding to the electronic Hamiltonian given by Equation (16) reads:

[E− εXY(E)− tXX(q)]ψn − tXX(q)(ψn+1 + ψn−1) = 0, (32)

where ψn is the electronic wave function at site n. Equation (32) can be expressed in the matrix form:

(
ψn+1

ψn

)
=

(
E−εXY(E)

tXX(q) − 1 −1

1 0

)(
ψn

ψn−1

)
≡ M(E, q)

(
ψn

ψn−1

)
, (33)
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and within the framework of the transfer matrix formalism, the charge carrier dispersion relation of a
dsDNA molecule containing N bps is given by (assuming periodic boundary conditions):

cos(κNh0) =
1
2

tr [MN(E, q)] ≡ 1
2

tr

[
1

∏
n=N

M(E, q)

]
=

1
2

tr
[

MN(E, q)
]

, (34)

where κ is the charge carrier wavevector. Since det M(E, q) = 1, we can use the Cayley–Hamilton
theorem for unimodular matrices in order to calculate the required power matrix as MN(E, q) =

UN−1M(E, q)−UN−2 I, where I is the identity matrix and Um(x) ≡ sin [(m + 1)φ]/ sin φ, with x ≡
cos φ ≡ trM/2, are Chebyshev polynomials of the second kind, satisfying the recurrence relationship
Um+1 − 2xUm + Um−1 = 0. In this way, we obtain [21]:

MN(E, q) = UN−1

(
2x −1
1 0

)
−UN−2

(
1 0
0 1

)
=

(
UN −UN−1

UN−1 −UN−2

)
. (35)

Taking into account the relationship Um − Um−2 = 2 cos(mφ), the charge carrier dispersion
relation can then be expressed as:

E = εXY(E) + tXX(q)(1 + 2 cos(κh0)). (36)

According to Equation (15), the εXY(E) function entails detailed information regarding the
electronic structure model of the dsDNA molecule. X-ray experiments indicated that counterions
condense around the nucleic acid chain in a tightly-bound layer, in agreement with early model
calculations [70]. Therefore, a homogeneous charge distribution through the backbone can be assumed
as a first approximation, that is γj ≡ γ. In that case, we can write:

εXY(E) = 2
[
t2
P + aXY(E− γ) + bXY(E− γ)2

]
(E− γ)−1, (37)

where aXY ≡ εX + εY and bXY ≡ (ε2
X + ε2

Y)/(2t2
P). Thus, plugging Equations (31) and (37) into

Equation (36), we obtain the charge carrier dispersion relation in the explicit polynomial form:

BXY
2 E2 +

[
BXY

1 + F(κ, q)
]

E + 2BXY
0 − γF(κ, q) = 0, (38)

where BXY
2 ≡ 2bXY − 1, BXY

1 ≡ γ(1 − 4bXY) + 2aXY, and BXY
0 ≡ γ(γbXY − aXY) + t2

P, and we
introduced the auxiliary function:

F(κ, q) ≡ tXX
0

[
1− 4χA2

0 sin2
(

qξ

2

)]
[1 + 2 cos(κh0)]. (39)

The resulting energy spectrum structure consists of two slightly asymmetric bands, E±(κ, q),
with relatively small widths (W±), separated by a gap, Eg(0, q), whose value depends on the phonon
wavevector q, as is illustrated in Figure 5 and Table 3 for the particular case γ = 0. By inspecting
Figure 5, we can clearly appreciate that the phonon coupling gives rise to a systematic reduction of
the bandgap width Eg(0, 0) as q increases up to the value q∗ = π/ξ (see Figure 4), thereby enhancing
the CT efficiency. Thus, the bandgap relative variation amounts to about 9% (6.5%) for polyG-polyC
(polyA-polyT), respectively, as compared to the Eg(0, 0) value. We note that the bandgap values
listed in Table 3 are remarkably smaller than those usually reported in other studies [71–76]. Indeed,
the dsDNA electronic structure is very sensitive to the precise value of the sugar-phosphate on-site
energy. Thus, for the general case γ 6= 0, the bandgap width can be explicitly expressed as:

Eg(0, 0) =
1

2bXY − 1

√
(3tXX

0 − γ + 2aXY)2 − 8(2bXY − 1)t2
P, (40)
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so that a semiconductor-semimetal transition can be promoted by properly tuning the adopted γ

value [36].
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0 − γ + 2aXY)2 − 8(2bXY − 1)t2
P, (40)

so that a semiconductor-semimetal transition can be promoted by properly tuning the adopted γ value
[36].
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Figure 5. Electronic band structure for a polyG-polyC homopolymer. We have used the electronic
model parameter values listed in Table 1 and the choice γ = 0 eV. The wavevectors k and q are
measured in nm−1, and q∗ = π/ξ ' 2.732 nm−1. The band structure of a polyA-polyT homopolymer
is very similar (see Table 3) with the center of mass of the bands shifted upwards in energy by about
0.02. eV

Table 3. PolyG-PolyC and PolyA-PolyT band structure properties (measured in meV). We have adopted
the values γ = 0, aGC = 16.6 eV, aAT = 17.4 eV, bGC = 30.9, bAT = 33.6.

Homopolymer W+ W− Eg(0, 0) Eg(0, q∗)

PolyG-PolyC 29.7 24.4 80.3 73.0
PolyA-PolyT 22.0 16.6 93.5 87.4

5. Conclusions206

The physical picture inspiring this work relies on the fact that the presence of collective,207

orchestrated oscillation motions of bps within the DNA double helix structure can efficiently enhance208

the π− π orbital overlapping between bps along the backbone chain, hence promoting charge transfer209

Figure 5. Electronic band structure for a polyG-polyC homopolymer. We used the electronic model
parameter values listed in Table 1 and the choice γ = 0 eV. The wavevectors k and q are measured
in nm−1, and q∗ = π/ξ ' 2.732 nm−1. The band structure of a polyA-polyT homopolymer is very
similar (see Table 3) with the center of mass of the bands shifted upwards in energy by about 0.02 eV.

Table 3. PolyG-polyC and polyA-polyT band structure properties (measured in meV). We adopted the
values γ = 0, aGC = 16.6 eV, aAT = 17.4 eV, bGC = 30.9, and bAT = 33.6.

Homopolymer W+ W− Eg(0, 0) Eg(0, q∗)

PolyG-PolyC 29.7 24.4 80.3 73.0
PolyA-PolyT 22.0 16.6 93.5 87.4

5. Conclusions

The physical picture inspiring this work relies on the fact that the presence of collective,
orchestrated oscillation motions of bps within the DNA double helix structure can efficiently enhance
the π− π orbital overlapping between bps along the backbone chain, hence promoting charge transfer
via a long-range, phonon-correlated tunneling effect involving bps, which are relatively far apart.
This property is intimately related to the helical geometry of the nucleobases’ arrangement along
the duplex chain, which makes possible that a local hopping process, involving a relatively small
number of neighboring nucleotides, ultimately extends over the entire DNA chain as a consequence of
the synchronized nature of the resulting helical wave. The possible presence of these helical waves
may be relevant in the study of CT properties in dsDNA polymers exhibiting extensive chemically
homogeneous regions along their strands, such as those reported in genomic studies of the telomere
sequences of certain invertebrates [77] or in tandem repeats [78], involving mononucleotide triplet
motifs (AAA, TTT, GGG, or CCC) [79]. Indeed, the existence of DNA-mediated charge migration has
been related to the understanding of the damage recognition process, including the presence of lesions
and mismatches. Furthermore, since CT dependence can be sensed electrically, it can be exploited
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for nanotechnological applications through base modifications or DNA-protein binding or with the
task of designing nanoscale sensing of genomic mutations, opening new challenges for emerging
nanobiotechnologies [80–83]. In addition, the fundamental dynamical mechanisms reported in this
work are expected to also take place in other π−π molecular wires, such as G based quadruplexes [84].
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The following abbreviations are used in this manuscript:

dsDNA double-stranded DNA
bp base pair
CT charge transfer
A adenine
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G guanine
T thymine
PDB Peyrard–Dauxois–Bishop
HOMO highest occupied molecular orbital
LUMO lowest occupied molecular orbital
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