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Abstract: In the present work, an analytical equation describing the plate torsion test taking into
account the transverse shear stiffness in sandwich plates is derived and numerically validated.
Transverse shear becomes an important component if the analyzed plate or shell is thick with
respect to the in-plane dimensions and/or its core has significantly lower stiffness than the outer
faces. The popular example of such a sandwich plate is a corrugated cardboard, widely used in
the packaging industry. The flat layers of a corrugated board are usually made of thicker (stronger)
material than that used for the corrugated layer, the role of which is rather to keep the outer layers
at a certain distance, to ensure high bending stiffness of the plate. However, the soft core of such
a plate usually has a low transverse shear stiffness, which is often not considered in the plate
analysis. Such simplification may lead to significant calculation errors. The paper presents the
generalization of the Reissner’s analytical formula, which describes the torsional stiffness of the plate
sample including two transverse shear stiffnesses. The paper also presents the implementation of the
numerical model of the plate torsion test including the transverse shear stiffnesses. Both approaches
are compared with each other on a wide range of material parameters and different aspect ratios
of the specimen. It has been proved that both analytical and numerical formulations lead to an
identical result. Finally, the performance of presented formulations is compared with other numerical
models using commercial implementation of various Reissner–Mindlin shell elements and other
analytical formulas from the literature. The comparison shows good agreement of presented theory
and numerical implementation with other existing approaches.

Keywords: transverse shear stiffness; plate torsion test; corrugated cardboard; sandwich plate;
finite element method; shell element

1. Introduction

Composite materials play an important role in many practical engineering designs. They consist
of at least two materials, which are called fiber and matrix material, or are composed of more than
one layer. A special class of composite layered materials is sandwich plates; they consist of a soft core
and two outer sheets. The internal one supports the faces and provides the overall flexural stiffness
of a structure. In composite laminates or sandwich plates and shells, an important role is played by
flexural and torsional stiffness. A typical example of such a sandwich plate is the 3-layer corrugated
cardboard, in which the core is corrugated and therefore light. The role of the core called “flute” in
jargon is to provide shear stiffness while the outer sheets called “liners” ensure the flexural stiffness.
Transversal shear effect is especially important in thick plates.
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Avilés and coauthors conducted experiments on the torsion of sandwich panels and made
measurements of the shear properties [1]. The authors then proposed a shear-corrected model for the
prediction of strength of the corrugated sandwich panels [2]. Recently, Garbowski et al. presented a
modification of the formula with the coefficients having a physical meaning [3]. The results were
compared with the finite element calculations and proved that including the transverse shear effect in
the torsion analysis of corrugated boards gave better results.

Over the years, there have been many approaches in the literature for calculations or experimental
determination of the transverse stiffness of sandwich and corrugated plates. In 1978, Cohen published
a paper on the transverse shear stiffness of laminated anisotropic shells [4]. Nordstrand et al.
examined influence of the core shape on the effective transverse shear moduli [5]. The authors
compared the results with classical plate theory and finite element method (FEM) calculations.
Nordstrand conducted also investigations on post-buckling strength of orthotropic corrugated board
panels using the FEM [6]. Shi and Tong proposed an equivalent transverse shear stiffness of the
sandwich panels with honeycomb cores [7]. The panels were simply supported and subject to
edge compressive loads. In 1997, Nordstrand and Carlsson conducted two tests for measuring the
transverse shear stiffness of structural core sandwich plates [8]. They performed the block shear test
and three-point bending test and compared the results with FEM and analytical predictions. Altenbach
presented a method for determination of the transverse shear stiffness based on the solution of a
Sturm–Liouville problem [9]. This approach can be applied both for laminated and/or sandwich plates.

Analytical or numerical analysis of the composites with heterogeneous layers is not trivial.
A crucial point in the analysis of such plates, e.g., corrugated cardboards, is a method of simplification
of the heterogeneous layer. This process is called a homogenization, a method for obtaining the effective
properties of the corrugated core [10,11]. After the homogenization, the core is treated as a homogeneous
layer of the composite, which is characterized by the effective properties. These properties should
ensure a similar effect in the case of the composite with the homogenized core under external loading
like for the composite with the heterogeneous core. In 2003, Hohe proposed a homogenization method
based on strain energy for sandwich panels [12]. A crucial assumption in his approach was the
equivalence of a representative element of the heterogeneous element and the homogenous element.
Buannic et al. used a periodic homogenization method [13]. They obtained the equivalent membrane
and pure bending characteristic of periodic plates. Their approach was modified for sandwich panels
in order to incorporate the transfer shear effect in the analysis. The method presented by Biancolini [14]
was based on a micromechanical representation of the considered plate using the FEM. The stiffness
properties were obtained using the energy equivalency between the model and the equivalent plate.
Abbès and Guo showed that in order to determine a torsion rigidity of orthotropic sandwich plates,
it is possible to decompose the plates into two beams in two directions of the plate [15]. Marek and
Garbowski compared two methods of homogenizations based on the classical laminated plate theory
and the deformation energy equivalence method [16].

In analytical or numerical analysis of corrugated sandwich panels three approaches are
distinguished in the literature: classical laminated plate theory (CLPT), first order shear deformation
theory (FOSDT) and higher-order shear deformation theory (HOSDT). Notice that the CLPT do not
include the transverse shear effect. The FOSDT has been proposed by Reissner and Mindlin [17,18].
Carlsson et al. used the FOSDT in the analysis of elastic stiffness of corrugated core sandwiches [19].
Hernández-Pérez et al. applied the FOSDT to the sandwich plate twist specimen [20]. They used a
Fourier series to obtain the solution and compared the results with the FEM calculations. The approach
presented by Hernández-Pérez et al. is limited to soft-core sandwich panels, where the transverse
shear effect dominates the elastic effect. Phan and Reddy published a paper on the application of the
HOSDT for laminated composite plates [21]. In the literature, one can find also analysis of corrugated
sandwich panels using the HOSDT. Analysis of twist behavior of soft-core sandwich panels using
HOSDT has been presented by Elmalich and Rabinovitch [22]. They took into account all components
of the core stiffness. Their results have shown that the actual stress state differs significantly from that
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resulting from the CLPT. In the analysis of boxes made from corrugated cardboard, quite a different
approach is strength prediction based on empirical formulas [23], including the very popular McKee
formula [24], which is very important from a practical point of view.

In this paper, a new generalized form of the Reissner analytical formula describing the torsion of
the sandwich plate is proposed. The torsional stiffness and both transverse shear stiffness are taken
into account in these considerations. The presented formula is compared with the numerical models
and other analytical approaches existing in the literature.

2. Materials and Methods

2.1. Reissner–Mindlin Plate—Governing Equations

A plate of constant thickness t was under consideration herein. Its middle surface lies in the
plane x–y, while the “thickness direction” is related to the z-axis. It was assumed that cross sections
remain straight during deformation, but they do not necessarily remain normal to the middle surface.
The assumption is typical for shear deformable plates.

The equilibrium equations are expressed in terms of the bending moments mxx and myy, the twisting
moments mxy = myx and the shear forces qx and qy. An infinitesimal plate element dA = dx · dy
subjected to an external transversal load q is depicted in Figure 1, which shows also the stress resultants.
The plate equilibrium equations consist of the transversal equilibrium:

qx,x + qy,y = q (1)

and the rotational equilibrium in x and y:

mxx,x + myx,y − qx = 0, (2)

myy,y + mxy,x − qy = 0, (3)

where comma represents the partial derivative of the variable with respect to Cartesian coordinate
direction that appears after the comma.
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In the present study, w is the transversal displacement and θx and θy denote the rotations of the
plate cross section. Orientation of the rotations is shown in Figure 1. γx and γy denote the shear strains
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and have the same definitions of the orientations as for the rotations. The kinematic equations take the
form:

w,x = θx − γx; w,y = θy − γy. (4)

The curvatures are defined as:
κxx = −θx,x; κyy = −θy,y; (5)

κxy = κyx = −
(
θx,y + θy,x

)
/2. (6)

A linear elastic orthotropic material was assumed here. The plate bending stiffness D and the shear
stiffness Ds are expressed in terms of the material parameters: E11, E22, ν12, ν21, G12, G13, G23 and the
plate thickness t as:

D =
t3

12


E11

1−ν12ν21

ν21E11
1−ν12ν21

0

ν12E22
1−ν12ν21

E22
1−ν12ν21

0

0 0 G12

 =


D11 D12 0

D21 D22 0

0 0 D33

, (7)

Ds = tα
[

G13 0
0 G23

]
=

[
A44 0

0 A55

]
, (8)

where E11 is the effective stiffness modulus in the x direction, E22 is the effective stiffness modulus in
the y direction, ν12 is the effective Poisson’s ratio in the 1–2 (xy) plane, v21 = v12E22/E11, G12 is the
effective shear modulus in 1–2 (xy) plane, G13 is the effective transverse shear modulus in the 1–3 (xz)
plane, G23 is the effective transverse shear modulus in the 2–3 (yz) plane, D11 and D22 are bending
stiffnesses in two orthogonal directions, D33 is the twisting stiffness, A44 is the transverse shear stiffness
in the 1–3 (xz) plane and A55 is the transverse shear stiffness in the 2–3 (yz) plane. The shear correction
parameter, α, describes the non-constant distribution of shear stresses through the plate thickness.
For a homogenous orthotropic plate with constant thickness, the standard value of α = 5/6 was
adopted [17,18].

The relation between bending moments and the curvatures can be expressed as:
mxx

myy

mxy

 =


D11 D12 0
D21 D22 0

0 0 D33



κxx

κyy

κxy

, (9)

and the shear forces are related to the shear strains by:{
qx

qy

}
=

[
A44 0

0 A55

]{
γx

γy

}
, (10)

where D11, D12 = D21, D22, D33, A44 and A55 are defined in Equations (7) and (8).

2.2. Torsion of Orthotropic Plates with Transversal Shearing

The foregoing constitutive equations incorporate a limiting-type orthotropy assumption due
to sample size considered (a � b, see Figure 2a), which causes myy and qy to be reactive quantities,
which enables a simple conversion from plate theory to a beam theory, in a physically justifiable way.
This assumption leads to [25,26]:

T
β

=
4D33b

a
1

1 + 12 D33
A44

1
b2

. (11)

This formula represents the torsional stiffness of the sample including transversal shear stiffness along
one of the direction, see Figure 2a, where T is the torque and β is the angle of rotation; a and b are
dimensions of the sample.
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Figure 2. Two mechanical test setups to measure transversal shear stiffness of the sample: (a) via torque
and angle of rotation and (b) via pair of force and vertical displacement (plate torsion test).

Substituting the torque with a pair of forces, see Figure 2b, and modifying the above equation to
incorporate both transversal shear stiffnesses, we received the following analytical form:

R
w

=
16D33b

ab
1

1 + 12D33
(

1
A55

1
a2 +

1
A44

1
b2

) . (12)

From hereon, this analytical approach will be abbreviated as AA. Here, R is the reaction force, while w
is the vertical displacement. In the inverse form, the expression reads:

w
R

=
ab

16D33
+

3
4

(
1

A55

b
a
+

1
A44

a
b

)
(13)

Determining the transversal shear stiffness of the sample from a static torsion plate test has been
recently studied by the authors [3]. The study extended the work of Aviles et al. [2], where the additive
form of w/R was used, in which nonphysical constant c was used. In the paper [3], constant c was
replaced by the term k1k2, where k1 and k2 are described by material properties and sample geometry
(this approach is abbreviated as AKK (approach k1 k2) in forthcoming sections), so the final form of the
expression reads:

w
R

=
ab

16D33
+

k1k2
√

A44A55
, (14)

where
k1 = 2

5

(
b
a +

7
5

)
i f b > a,

k1 = 2
5

(
a
b +

7
5

)
i f a ≥ b,

(15)

k2 = 3
5

(
a
b

G23
G13

)2/5
i f G23 > G13,

k2 = 3
5

(
b
a

G13
G23

)2/5
i f G13 > G23,

k2 = 1 i f G13 = G23.

(16)

Further research showed that despite the fact that AKK [3] has good agreement with simple,
but commonly used numerical solutions, it can be replaced with an exact solution AA, which is
represented by Equation (13) or the numerical approach presented in one of the following subsections.
The accuracies of the selected methods are checked on various examples in Section 3.

2.3. Reissner–Mindlin Composite Laminated Plate

Assuming the xyz coordinate system, the displacement field for composite laminated plates reads:

u(x, y, z) = −zθx(x, y), (17)
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v(x, y, z) = −zθy(x, y), (18)

w(x, y, z) = w0(x, y), (19)

where u, v and w are three unknown mid-surface displacements of the plate, while θx and θy are two
rotations of the normal on the plane xz and yz from Equation (19):

θx = w,x + φx; θy = w,x + φy, (20)

noting that γx = −φx and γy = −φy.
In both the xz and yz vertical planes, the normal rotation was obtained as the sum of two

rotations: (i) the corresponding slope of the middle plane of the plate and (ii) the additional rotation
φ, which results from the lack of orthogonality of the normal to the middle plane after deformation,
see Figure 3. Therefore, the rotations θx and θy cannot be calculated from the deflection only and
become independent variables. This is the fundamental difference between Reissner–Mindlin and
Kirchhoff–Love plate theories.
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Relationships between strains (membrane—ε, bending—κ and shear—γ) and displacements read:

ε = ε+ zκ, (21)

ε =


εx

εy

γxy

 =


u,x

v,y

u,y + v,x

 = −z


θx,x

θy,y

θx,y + θy,x

, (22)

κ =


κx

κy

κxy

 = −


θx,x

θy,y

θx,y + θy,x

 = −


w,xx

w,yy

w,xy

, (23)

γ =

[
γxz

γxy

]
=

[
w,x + u,z

w,y + v,z

]
=

[
w,x − θx

w,y − θy

]
=

[
−φx

−φy

]
. (24)
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The stress–strain relations in local coordinates are given by:


σx

σy

σxy

 =


E11

1−ν12ν21

ν21E11
1−ν12ν21

0
ν12E22

1−ν12ν21

E22
1−ν12ν21

0

0 0 G12



εx

εy

γxy

, (25)

{
σxz

σyz

}
=

5
6

[
G13 0

0 G23

]{
γxz

γyz

}
, (26)

or in the compact form
σ = C ε, (27)

τ = Cs γ. (28)

The strain energy, U, reads

U =
1
2

∫
A

(
εTD∗ε+ γTD∗s γ

)
dA, (29)

where

D∗ =

[
A B
B D

]
, (30)

D∗s = Ds (31)

and A, B, D and Ds are stiffnesses of the plates given by:

(A, B, D) =

∫ h
2

−
h
2

(
1, z, z2

)
C(z)dz, (32)

Ds =

∫ h/2

−h/2
Cs(z)dz. (33)

For an n-layer laminate with homogeneous orthotropic material within each of the k-th layers
(Figure 4), Equations (32) and (33) can be rewritten

A =
n∑

k = 1

(zk+1 − zk)Ck, (34)

B =
n∑

k = 1

1
2

(
z2

k+1 − z2
k

)
Ck, (35)

D =
n∑

k = 1

1
3

(
z3

k+1 − z3
k

)
Ck, (36)

Ds =
n∑

k = 1

(zk+1 − zk)Csk, (37)

where Ck and Csk. are the in-plane constitutive matrix, defined in Equations (25) and (26), for the k-th
layer.
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The matrix B becomes 0 if the laminate consists of homogeneous material, or the properties of a
material are symmetrical with respect to the middle plane (z = 0). The membrane and bending effects
were then uncoupled and the neutral plane coincided with the plane xy. This means that the bending
moments did not cause any membrane strains and the normal forces did not cause any curvature.

The work, V, done by the in plane and transverse load is given by:

V = −

∫
A

q w dA. (38)

The energy functional, Π, of the plate was finally obtained as follows:

Π = U + V =
1
2

∫
A

(
εTD∗ε+ γTD∗s γ

)
dA−

∫
A

q w dA. (39)

2.4. FEM Formulation of the Laminate Plate Element

For decades a finite element (FE) analysis has been a popular method for modeling advanced
engineering problems. Due to its popularity and universality, the developers of FE software more
and more often provide their users new functions, extending its capabilities. Following this trend,
the software often allows one to include users’ material or element subroutines tailored for particular
needs. Therefore, the FEM approach in comparison to the analytical approach is easier to be applied in
the modern engineering tools. In the laminated plate element, the field variables, d, were approximated
according to the associated node values as follows:

d =

Nn∑
j = 1

N j(x, y)d j, (40)

where Nn represents number of nodes in the element; N j(x, y) is a shape function associated with node
j;

dT
j =

[
u j v j w j θxj θyj

]
(41)

is the displacement vector of the node degrees of freedom.
The membrane, bending and shear strains associated to the displacement in Equation (40) can be

therefore obtained as follows:
ε =

∑
j

Bm
j d j, (42)

κ =
∑

j

Bb
j d j, (43)

γ =
∑

j

Bs
jd j, (44)
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where

Bm
j =


N j,x 0 0 0 0

0 N j,y 0 0 0
N j,y N j,x 0 0 0

, (45)

Bb
j =


0 0 0 N j,x 0
0 0 0 0 N j,y
0 0 0 N j,y N j,x

, (46)

Bs
j =

[
0 0 N j,x N j 0
0 0 N j,y 0 N j

]
. (47)

Substituting Equations (40) and (42)–(44) into Equation (39) leads to:

Π =
1
2

d
[∫

A
BTD∗ BdA +

∫
A

STD∗s SdA
]
d−

[∫
A

qwdA
]
d, (48)

where BT =
[
(Bm)T

(
Bb

)T
]
, ST = (Bs)T. By using Lagrange’s equations for the energy expression

in Equation (48), the characteristic equation of the system was obtained as follows:

K d = P, (49)

where

K =

∫
A

(
BTD∗B + STD∗sS

)
dA, (50)

P =

∫
A

q N dA. (51)

It is noted that the shear locking phenomenon can appear in Equations (50) and (51) as the plate
thickness decreased. To overcome this adverse the Reissner–Mindlin plate quadrilateral element with
assumed transverse shear strain fields was adopted here. We used the plate element with 4 nodes with
linear shear field, which initially was developed by Bathe and Dvorkin [27,28]. Its formulation bases
on auxiliary transverse shear modes proposed by MacNeal [29,30] and Hughes et al. [31]. Later Donea
and Lamain [32] and Onate et al. [33,34] derived the element using assumed strain concepts.

A standard 4-noded Q4 element [33,34] is characterized by a bilinear interpolation of deflections
and rotations. The assumed transverse shear strain field is defined here in the natural system ξ, η as

γξ = α1 + α2η, (52)

γη = α3 + α4ξ, (53)

E =

[
1 η 0 0
0 0 1 ξ

]
. (54)

The αi parameters can be found by taking the natural transverse shear strains γξ at the all four
middle-edge points shown in Figure 5, with

γξi
= (α1 + α2η) cos βi + (α3 + α4ξ) sin βi; i = 1, . . . , 4, (55)
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where βi is the angle between the ξi and ξ axis. This leads to:


α1

α2

α3

α4

 = P−1



γ1
ξ

γ2
ξ

γ3
ξ

γ4
ξ


, (56)

where

P =


1 −1 0 0
0 0 1 1
−1 −1 0 0

0 0 1 −1

; P−1 =
1
2


1 0 −1 0
−1 0 −1 1

0 1 0 1
0 1 0 −1

. (57)

The strains γi
ξ

are related to γi
ξ
, γi

η by



γ1
ξ

γ2
ξ

γ3
ξ

γ4
ξ


=


1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1





γ1
ξ

γ1
η

...
γ4
ξ

γ4
η


= T γ̂′. (58)
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The relationship between the Cartesian transverse shear strains at the middle-edge points and the
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^
γ
′

=


J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4



γ̂1

...
γ̂4

 = Z
^
γ;

^
γ

i
=

 γi
xz

γi
yz

. (59)
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The Cartesian transverse shear strains at the four sampling points are then related to the nodal
displacements by:

γ̂ =


B1

s

B2
s

B3
s

B4
s


a(e) = Bs a(e). (60)

The substitute transverse shear strain matrix was obtained by

¯
Bs = J−1 E P−1 T Z

^
Bs. (61)

Here, the element is described as QLLL (for quadrilateral, bilinear deflection and rotations and
linear transverse shear strain fields). The element satisfies conditions [35–37]

nθ + nw ≥ nγ, (62)

nγ ≥ nw, (63)

where nθ, nw and nγ are the number of variables included in the interpolation of the rotations,
the deflection and the transverse shear strains, respectively. In order to preserve the element from
spurious mechanisms the full 2 ×2 quadrature for all terms were used in computation of the stiffness
matrix. Since the shear forces and bending moments are constant along each natural direction, the fine
meshes are required for certain applications.

The product AP−1T in Equation (61) is

E P−1 T =
1
2

[
1− η 0 0 0 | 1 + η 0 0 0

0 0 0 1 + ξ | 0 0 0 1− ξ

]
, (64)

The assumed transverse shear strain field can be also written in the direct form:

γξ =
1
2
(1− η)γ1

ξ +
1
2
(1 + η)γ3

ξ, (65)

γη =
1
2
(1 + ξ)γ2

η +
1
2
(1− ξ)γ4

η. (66)

3. Results

The efficiency of the analytical approach AA presented in the paper was verified in reference to
several models using different methods, both numerical and analytical. Results from the numerical
methods were obtained from the commercial FE software, namely Abaqus FEA, which enables a few
types of FEs to model plates. Results from the AKK method [3] was used in the comparison as the
example of the quasi-analytical method, see Equation (14).

To verify the method in a broad application, key geometrical and material parameters of the
samples were changed in a wide range. The following parameters were analyzed: the aspect ratio of
the sample and the shear stiffnesses, i.e., D33, A44 and A55. On the basis of preliminary tests, it was
concluded that two sizes of samples should be analyzed for corrugated materials, in which a × b
equals, e.g., 75 mm× 75 mm and 125 mm× 25 mm; the aspect ratios equal 1:1 and 5:1, respectively.
Regarding torsion stiffness, D33 had two values, namely, D33 = 450 Nmm and D33 = 900 Nmm.
The transversal shear stiffness, A44 and A55, varied from 5 to 250 N/mm, with a few selected values
in between.

These parameters were used as an input for different methods, which are marked in the study as
STRI65, S32, S34, S4/S4R, QLLL, AA and AKK. In all of those methods, the force was applied in the
corners, like in Figure 2b. STRI65 refers to the FE model, in which two 6-node triangular thin shell
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FEs, using five degrees of freedom per node, were used, see Figure 6a. S32 refers to the FE model,
in which two 3-node triangular general-purpose shell FEs were used, see Figure 6b. S34 refers to the
FE model, in which four 3-node triangular general-purpose shell FEs were used, see Figure 6c. S4/S4R
refers to the FE models, in which one 4-node general-purpose shell FE was used with full and reduced
integration scheme, respectively, see Figure 6d. QLLL refers to the FE model, in which 4-node shell
FE presented in [33,34] was used, see Equations (52)–(66) and Figure 5. AA refers to the analytical
approach presented in this paper, see Equation (12), while AKK refers to the analytical approach
presented in the paper of Garbowski, Gajewski and Grabski [3]. The results obtained from application
all these methods are shown in Figures 7–12. All data used for generation the plots are included in
Supplementary Materials.
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In the first row of each graph (Figures 7–12), the reaction forces, R, are presented for particular
parameters of a × b, D33, A44 and A55, while in the second row these reaction forces in reference
to the analytical solutions of the AA model, see Equation (12), R/Rre f , are shown. In Figures 7
and 8, square samples of 75 mm × 75 mm were assumed, while in Figures 9–12 the samples were
rectangular—125 mm× 25 mm. In Figures 7, 9 and 10, the assumed value of D33 equaled 450 Nmm
while in Figures 8, 11 and 12, D33 equaled 900 Nmm. On the horizontal axis, the variability of A44 is
shown in Figures 7–9 and Figure 11, while the variability of A55 is shown in Figures 10 and 12.

4. Discussion

The results demonstrated in Section 3 applied to a variety of cardboard structures, which is
reflected in a wide shear stiffness represented by the output reaction forces. In this study, the reaction
forces were in the range from 0.5 to 2.5 N. Such comprehensive verification allows several useful
conclusions to be drawn for a more robust modeling of the corrugated cardboard structures. First,
it should be noted that the analysis with the QLLL element produced results that were perfectly
consistent with the analytical solution AA, see Figures 7–12. This fact was observed in each of the 196
analyzed cases. S34 method was usually the second-best FE method under consideration, comparing
its accuracy with respect to the reference analytical solution, for instance see Figure 7a or Figure 12b.
This was not always obvious, e.g., see Figure 11a, or true, e.g., see Figure 9b or Figure 10a.

In the results, there were crucial differences while comparing rectangular (125 mm× 25 mm) and
square (75 mm× 75 mm) samples. The biggest divergence from the analytical solution were observed
in STRI65 and S4/S4R methods for rectangular sample, especially in cases, when the sample had a
large transversal shear stiffness along short dimension and small transversal shear stiffness along
long dimension, see Figure 11b (A44 = 5 N/mm), and Figure 12a (A55 > 50 N/mm). In these cases,
the difference in relation to the reference solution was even four times greater. Moreover, for these
cases, the reaction force was relatively low, i.e., about 0.5 N. The STRI65 and S4/S4R approached greatly
overestimated transversal shear stiffness of the samples.

On contrary, also in rectangular samples, if the material had large transversal shear stiffness along
longer dimension of the sample, the differences between all methods and the reference solution were
very low, see Figures 10b and 12b. In all these methods, apart from the S34 case, the reactions changed
their relation to the reference solution by crossing the value of 1.0. In other words, the analyzed
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methods for some values of A55 overestimated the analytical solution and for other values of A55,
underestimated. Going further, while considering AKK in the rectangular samples; the method in 50%
of cases may be considered as equally good comparing to the S34 method, but both methods were
worse than S32. In the other 50% of cases, AKK was worse than S32 and S34, which were in these cases
equally good methods. In all cases, AKK was more accurate than STRI65 and S4/S4R.

In the results for square samples, over an entire range of transversal shear stiffness considered,
AKK was competitive to the S34 method, but usually slightly worse. In these cases, the S32 method
was usually much worse than AKK or S34. This was shown, for example, in Figure 8a.

It is worth noting that for the square sample, due to the symmetry of the material (A44 vs. A55),
and thus the symmetry of the results, these plots were not presented to avoid repetition.

One of the limitations of the study was considering the finite ranges of the material parameters of
D33, A44 and A55. The ranges adopted here, even if they did not appear to be physically reasonable
for the typical properties of corrugated board, may be of interest when analyzing sandwich panels
made of other materials. Another limitation was fixing the two sets of in-plane dimensions and only
one thickness of the samples. The selection of the samples dimensions was followed by a practical
laboratory tests of corrugated board [38], while the selected thickness is one of the most commonly
used in the corrugated cardboards packaging industry.

5. Conclusions

In the paper, the classic governing equations of the Reissner–Mindlin plate were presented with a
particular application to composite laminates. The formula for torsion of the orthotropic plate including
transversal shear stiffness was defined and compared with the recent considerations from the literature.
Transverse shear is an important component if the analyzed plate is thick with respect to the in-plane
dimensions and/or its core has significantly lower stiffness than the outer faces. Different methods
for modeling such a plate, both numerical and analytical, were selected to compute their accuracies
comparing to the exact, analytical solution. Numerical methods used varied in the type of finite
element used and number of elements taken into consideration. To cover a wide range of material
properties, the computations were performed for selected in-plane and transversal shear moduli.
Samples with two different aspect ratios, rectangular and square, were tested.

It was concluded that the 4-noded Reissner–Mindlin plate quadrilateral with assumed linear
transverse shear strain field gave the best performance. Results obtained via this method were exact
with the analytical solution. The results from other methods, with 6-node triangular elements or
4-node quadrilateral elements (both, with full integration or reduced), with commonly used finite
elements were essentially worse. In the worst cases, the overestimation of the force was even up to four
times. In this comparison, the 3-node triangular element performance was surprisingly moderately
good. Moreover, the differences between rectangular and square samples were significant. It should be
noted that in rectangular samples, if the material had a large transversal shear stiffness along a longer
dimension of the sample, the differences of all methods to the reference solution were very low.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/21/5016/s1.
All computational results are presented in CSV files, including the data, based on which Figures 7–12 were
generated. In these files, 1st and 2nd columns are a and b dimensions of the box, respectively, 3rd column is the
thickness of the wall, the materials parameters: G12, G13, G23, D33, A44 and A55. are given in the columns 4th to
9th, respectively. The columns 10th–16th include results of the calculations using: STRI65, S32, S34, S4/S4R, QLL,
AKK and AA, respectively.
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