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Abstract: The triggering and spreading of volumetric waves in soils, namely pressure (P) and shear
(S) waves, developing from a point source of a dynamic load, are analyzed. Wave polarization
and shear wave splitting are innovatively reproduced via a three-dimensional Finite Element
research code upgraded to account for fast dynamic regimes in fully saturated porous media.
The mathematical–numerical model adopts a u-v-p formulation enhanced by introducing Taylor–Hood
mixed finite elements and the stability features of the solution are considered by analyzing different
implemented time integration strategies. Particularly, the phenomena have been studied and
reconstructed by numerically generating different types of medium anisotropy accounting for (i) an
anisotropic solid skeleton, (ii) an anisotropic permeability tensor, and (iii) a Biot’s effective stress
coefficient tensor. Additionally, deviatoric-volumetric coupling effects have been emphasized by
specifically modifying the structural anisotropy. A series of analyses are conducted to validate the
model and prove the effectiveness of the results, from the directionality of polarized vibrations,
the anisotropy-induced splitting, up to the spreading of surface waves.
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1. Introduction

The propagation of shear (S) and compressive/pressure (P) waves in poroelastic materials
are phenomena relevant for seismology [1–6], geotechnical earthquake engineering [7–11],
reservoir management [12], and biomechanics of bones and tissues [13]. The shear wave is a polarized
transversal wave that propagates within the solid skeleton perpendicularly to the direction of the wave
propagation and it often propagates slower than the pressure wave. When a shear wave bumps into
an anisotropic medium, it may split into two or more waves with different speeds and orientations,
a phenomenon known as shear wave splitting [14]. In particular, if we consider a transversely isotropic
medium hit by a shear wave, the wave splits into two orthogonal polarized shear waves propagating
at different velocities and orientations according to the material symmetry axis which may not coincide
with the initial propagation direction.

The polarization of three-component shear wavetrains carry unique information about the internal
structure of the rock: specifically, commonly observed shear-wave splitting may contain information
about the orientation of crack distributions.

This information cannot usually be recovered from shear waves recorded at the free surface
(i.e., Rayleigh ones) because of interference with the interaction of the shear wave with the surface,
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even for nearly vertical incidence. However, shear-wave splitting in synthetic three-component vertical
seismic profiles in some cases may be interpreted directly in terms of the direction of the strike of
vertical cracks [12]. The evolution of such fluid-saturated micro-cracks under changing conditions
can be modeled by anisotropic poro-elasticity (APE). Numerical modeling with APE approximately
matches a huge range of phenomena, including the evolution of shear-wave splitting during earthquake
propagation, and enhanced oil recovery operations [15,16]. APE assumes, and recent observations
of shear-wave splitting confirm, that the fluid-saturated cracks in the crust and (probably) upper
mantle are so closely spaced that the cracked rocks are highly compliant critical systems with
self-organized criticality [17].

Estimating the orientations of cracks, and hence of preferred directions of flow, by seismic
investigations could be of crucial importance to production and reservoir engineering [12], as well as
evaluating the influence of cracks on the effective elasticity of fractured rocks [18,19]. Additionally,
polarization anomalies in seismic shear wavetrains, diagnostic of propagation through anisotropic
media, have been observed in dilatancy zones in seismic regions. Stress-induced dilatancy will open
cracks with preferred orientations, which will be effectively anisotropic to short-period seismic waves.
The polarization anomalies are due to the shear waves splitting, in propagation through anisotropic
media, into components with different polarizations and different velocities. This polarization writes
characteristic signatures into the shear wavetrains [20].

Different numerical techniques can be used for analyzing wave propagation and shear wave
splitting within a porous medium, such as finite difference/finite volume method [21], pseudospectral
method [22], and finite element [23]. From the theoretical point of view, pioneer works by Biot are to be
recalled [1], whereas in recent years the approaches by [5,10,24,25] can be of reference when analyzing
localization and softening effects in wave propagation, or [26] for the contribution of anisotropy.

Here, the triggering and spreading of compressive waves in soils from a point source of a
dynamic load are analyzed. Our focus is on the on polarization and shear wave splitting due to the
anisotropy of the permeability tensor, the anisotropy of the solid skeleton, as well as to the novel
Biot’s tensor that leads to an aniostropic effect on the hydro-mechanical coupling within the effective
stress principle. The adopted multi-field dynamics poromechanics [27] Finite Element code is an
upgraded dynamic version of a previous static one [28] able to describe the coupled hydro-mechanical
behaviour of geomaterials. Particularly, two different solvers have been implemented to perform
the time-space integration: the first considers Taylor–Hood elements together with an implicit Euler
scheme, the second adopts equal-order elements and a semi-explicit-implicit scheme. A stabilization
procedure based on the pressure projection method is used to circumvent the lack of inf-sup condition
and resolve the sharp pore pressure gradient [29–34]. Comparisons are performed by taking into
account literature examples and efficiency features are analyzed. The novel characteristics of the model
lie in the synthesis of the compressibility of the fluid phase and the anisotropic permeability, as well
as in the extension of the effective stress principle that predicts the anisotropy coupling of the partial
stress of solid skeleton and that of pore fluid. One- and two-dimensional analyses have been conducted
to validate the model against literature results, whereas a series of three-dimensional simulations are
used to show the wave propagation of porous media that exhibits different types and combination
of anisotropy.

As for notations and symbols, bold-faced letters denote tensors (including vectors which are
rank-one tensors); the symbol ’·’ denotes a single contraction of adjacent indices of two tensors
(e.g., a · b = aibi or c · d = cijdjk ); the symbol ‘:’ denotes a double contraction of adjacent indices of
tensor of rank two or higher ( e.g., C : εe = Cijklε

e
kl ); the symbol ‘⊗’ denotes a juxtaposition of two

vectors (e.g., a⊗ b = aibj) or two symmetric second order tensors (e.g., (α⊗ β)ijkl = αijβkl). Moreover,
(α⊕ β)ijkl = αjl βik and (α	 β)ijkl = αil β jk. We also define identity tensors (I)ij = δij, (I4)ijkl = δikδjl ,
and (I4

sym)ijkl =
1
2 (δikδjl + δilδkj), where δij is the Kronecker delta.
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2. Mathematical Model

This section provides a brief review on the field equations for dynamic poromechanics problems,
the finite element discretization, and the monolithic and semi-implicit scheme used to simulate the
wave propagation in porous media (Section 2.1). This review is followed by the constitutive laws
that replicate the anisotropy of the solid skeleton elasticity, and those of the hydraulic responses
(permeability), of hydromechanical coupling mechanisms (tensorial Biot’s coefficient).

2.1. Governing Equations

The porous media are here modeled following the mixture theory where the existence of an
effective medium of a size suitable for the Representative Elementary Volume (REV) is assumed.
A fully saturated porous material is then represented by a corresponding effective medium in which
the specific distributions of the fluid and solid constituents inside the REV are homogenized such that
the volume of each material point is occupied by a fraction of solid and fluid constituents (Figure 1).
The balance of mass and linear momentum equations in the dynamic regime read

˙(ρα)α + ρα∇x·vα = 0 ; (1)

ρα ˙(vα)α = ∇x· σα + ραg + hα , (2)

where: ρα = nαρα is the partial mass density of α-phase (i.e., solid S or fluid F) computed as a product
of the volume fraction nα and the intrinsic mass density of α constituent (The Stanford notation is
adopted here to indicate the partial quantities (superscript index) and intrinsic quantities (subscript
index))—with: ∑α ρα = ρ. vα being the velocity vector, σα the partial Cauchy stress tensor of α phase,
g is the gravitational acceleration, and hα is the volume specific local interaction force between the
phases, so that: ∑α hα = 0. Furthermore, the spatial gradient operator ∇x and the material time
derivative ˙(∗)α are referred to as:

∇x(∗) = ∂(∗)
∂x

; (3)

˙(∗)α =
dα(∗)

dt
=

∂(∗)
∂t

+∇x(∗) · vα , (4)

No thermal effects nor mass exchanges between phases are taken into account; the bulk modulus
of the α-phase can be defined as:

Kα = ρα
dpα

dρα
(5)

where pα is the intrinsic Cauchy pressure of the α-phase.

REV Upscaling

dV F

dV S

dV

nF = dV F /dV

nS = dV S/dV

∑
α n

α = nS + nF = 1

Porosity

Solid fraction

Figure 1. REV for fully saturated porous material.
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2.2. Constitutive Laws

2.2.1. Effective Stress Law for Anisotropic Elasticity

It is assumed to consider a homogeneous, linear elastic, anisotropic porous medium so that the
stress–strain law can be written as:

σ = C : ε (6)

where C is the fourth-order elastic constitutive tensor of the mixture and its components depend on
the material symmetries; when adopting Voigt notation:

σ̄ =
[
σxx σyy σzz σxy σyz σzx

]T
; ε̄ =

[
εxx εyy εzz εxy εyz εzx

]T
; (7)

a transversely isotropic material is characterized by the 6 × 6 compliance matrix:

S̄ =




1/Eh −νhh/Eh −νvh/Ev 0 0 0
−νhh/Eh 1/Eh −νvh/Ev 0 0 0
−νhv/Eh −νhv/Eh 1/Ev 0 0 0

0 0 0 1/Ghh 0 0
0 0 0 0 1/Ghv 0
0 0 0 0 0 1/Gvh




(8)

The model exhibits symmetry along any direction h belonging to the isotropy plane and different
material properties along the normal direction v. The independent constants are: Eh, Ev, Ghv, νhh, νhv,
being the other terms given by:

νhv/Eh = νvh/Ev ; Ghh = Ehh/(2(1 + νhh)). (9)

Generally, the symmetry axes for an anisotropic material with respect to the reference system are
not coaxial with the global axes so that the elastic matrix has all non-zero elements; hence, to express
stress and strain measures into the reference system, the 6× 6 transformation matrix is adopted:

M̄ =




r2
11 r2

21 r2
31 2r11r21 2r21r31 2r11r31

r2
12 r2

22 r2
32 2r12r22 2r22r32 2r12r32

r2
13 r2

23 r2
33 2r13r23 2r23r33 2r13r33

r11r12 r21r22 r31r32 r11r22 + r21r12 r21r32 + r31r22 r11r32 + r31r12

r12r13 r22r23 r32r33 r12r23 + r22r13 r22r33 + r32r23 r12r33 + r32r13

r11r13 r21r23 r31r33 r11r23 + r21r13 r21r33 + r31r23 r11r33 + r31r13




; R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 (10)

so that:
C̄glob = M̄C̄loc M̄T , or S̄glob = M̄−T S̄loc M̄−1 ; (11)

with the bar above the symbols indicating the matrix version of the tensor quantities.

2.2.2. Tensorial Nature of Biot’s Coefficient

Here, the effective stress principle is adopted, where the Biot’s effective stress coefficient is not a
scalar but a second-order tensor with different eigenvalues (see Cowin and Doty [26], Carroll [35]):

σS
E = σ + ApF ; A =

(
I − C SS

)
: 1, (12)

where σS
E is the effective stress tensor, σ = σS + σF is the total stress tensor sum of the two

partial stresses, pF is the Cauchy pore pressure, 1 and I are the unit and the identity tensors,
respectively, whereas Ss refers to the solid skeleton. Equation (12) represents an extension of the
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classical effective stress concept, based on the assumption of isotropy for both porous material and
solid phase. The expression comes from analyzing the constitutive stress–strain behaviour of the
REV by assuming structural (anisotropic porous geometry), intrinsic (anisotropic solid material) or
both anisotropies. As described in Cowin and Doty [26], the Biot’s effective stress tensor could have
six nonzero components if the material symmetry of compliance tensor SS is less than transversely
isotropic and/or its axis of symmetry are not coaxial with axis of the transversely isotropic model of
the porous material C. If both porous material and its solid skeleton are isotropic, we obtain that:

A = B1 ; B =
[
1− (K/KS)

]
(13)

where B is the classic Biot’s effective stress coefficient [36], equal to one if incompressibility of the solid
skeleton is assumed.

2.2.3. Darcy’s Law

By assuming laminar flow, the generalized form of Darcy’s law is considered, relating the fluid
mass flow rate to the pore pressure gradient:

nFwF = −KF(∇x pF − ρFg) (14)

where wF = vF −wS is the relative velocity and wF = nFwF the Darcy velocity. The quantity KF is
the second-order specific permeability tensor:

KF = kF/γF = K̂F/µF (15)

where γF = ρFg is the fluid intrinsic unit weight, µF is the fluid viscosity, kF is the hydraulic
conductivity tensor, and K̂F is the intrinsic permeability. The latter is a second-order tensor of which
the eigenvalues and spectral directions can be determined from experimental filtration tests or through
3D tomography images and geometrical analyses as used in Sun et al. [37].

3. Numerical Implementation

3.1. Galerkin Form

The subsequent set of coupled partial differential equations (PDEs) is hence obtained:

˙(uS)S = vS ; (16)

ρS ˙(vS)S = ∇x·
[
σS

E −
(

A− nF1
)

pF

]
+ ρSg +

(nF)2γF

KF wF − pF∇x(nF) ; (17)

ρF ˙(vF)S + ρF∇x(vF)wF = −nF∇x(pF) + ρFg − (nF)2γF

KF wF ; (18)

nS

KS

˙(pS)S +∇x· vS +
nF

KF
˙(pF)S +

1
ρF
∇x·

(
ρFwF

)
= 0 . (19)

where the unknowns of the coupled problem are uS, vS, vF, and pF. This set of equations represents
the three-field formulation (it is recalled that vS are secondary unknowns and the first equation
is written to compute them). Furthermore, if we consider that the porous material is subjected to
low and relatively small frequencies (≤ 30 Hz in the geomechanical problems), we can assume that

˙(uS)S ≈ ˙(uF)S, and ˙(wF)S ≈ 0 so we can rearrange the equations and obtain the classical two-field
formulation for consolidation problems with uS and pF. The governing equations become:
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˙(uS)S = vS ; (20)

ρ ˙(vS)S = ∇x·
(
σS

E − ApF
)
+ ρg; (21)

nS

KS

˙(pS)S +∇x· vS +
nF

KF
˙(pF)S +

1
ρF
∇x·

(
ρFwF

)
= 0 . (22)

By considering a finite domain Ω of the mixture with its boundary Γ and a set of independent test
functions, the weak formulation for the previous PDEs can be written as:

GvS

(
uS, vS, δuS

)
=
∫

Ω
δuS ·

[
˙(uS)S − vS

]
dv = 0 ; (23)

GuS

(
uS, vS, vF , pF , δuS

)
=
∫

Ω
∇x(δuS) ·

[
σS

E −
(

A− nF I
)

pF

]
dv +

∫

Ω
δuS ·

[
− (nF)2γF

KF wF + pF∇x(nF)
]
dv

+
∫

Ω
δuS ·

{
ρS[ ˙(vS)S − g

]}
dv−

∫

∂ΩS
δuS · tSda = 0 ; (24)

GvF

(
uS, vS, vF , pF , δvF

)
=−

∫

Ω
∇x·(δvF)nF pFdv−

∫

∂ΩF
δvF · tFda

+
∫

Ω
δvF ·

{
ρF

[
˙(vF)S − g +

(
∇x vF +

nFγF

KF

)
wF

]}
dv = 0 ; (25)

HpF

(
vS, vF , pF , δp

)
=
∫

Ω
δpA :∇x vSdv +

∫

Ω
δpΛ ˙(pF)Sdv−

∫

Ω
∇x(δp) ·

(
nFwF

)
dv +

∫

∂Ωp
δp · v̄da = 0 . (26)

where δuS, δuF, δvF, and δp are the test functions used as weight. The quantities tS and tF are the
surface tractions of the single phases acting on the Neumann boundary and v̄ is the volume flux of the
fluid going through the boundary of the mixture. The compressibility modulus Λ is computed as:

Λ =
nS

KS
+

nF

KF
− A : C : A =

nS

KS
+

nF

KF
− 1 : CSSCS : 1; (27)

this expression is the same as Equation (8.5) in Cowin [38].
In order to write the Galerkin formulation in a compact way, Equations (23)–(26) and all the field

variables are collected within vectors:

G u =




GvS

GuS

GvF

GpF


 , u =




uS
vS
vF
pF


 , δu =




δuS
δuS
δvF
δpF


 , ˙(u)S =




˙(uS)S
˙(vS)S
˙(vF)S
˙(pF)S


 , u0 =




uS0
vS0
vF0

pF0


 . (28)

The spatial discretization is carried out via the Finite Element Method, referring to the following
discrete unknown variables and test functions, respectively:

uh(x, t) = ūh +
Nu

∑
i=1

Nui(x)ui(t), δuh(x) =
Mu

∑
i=1

Mui(x)δui(t); (29)

where ūh represents the solution on the Dirichlet boundary, Nu and Mu are the numbers of nodes,
and Nui and Mui indicate the shape functions at node i depending only on the position x. The final
three-field variational problem can be re-written via the Petrov–Galerkin formulation G u(δuh, uh) = 0
using the previous test and trial functions.
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3.2. Matrix Form and Time Discretization

By omitting the superscript h for vectors u and δu and indicating with f S, f F and f p the
space-discrete Neumann boundary terms, the subsequent matrix formulation can be obtained:

G h
u =




I 0 0 0
0 M22 0 0
0 0 M33 0
0 0 0 M44







u̇S
v̇S
v̇F
ṗF


+




0 −I 0 0
K21 K22 K23 K24

0 K32 K33 K34

0 K42 K43 0







uS
vS
vF
pF


−




0
aS + f S
aF + f F

f p


 = 0 (30)

The system (30) is composed by a set of pure differential equations where the time evolution for
all the primary variables can be written as a first-order ordinary differential equation:

G h
u = Mu̇ + Ky− f = 0; u̇ = g(t, u), and y(t0) = y0 (31)

This formulation can be solved via implicit time integration schemes or explicit ones. In the latter
case, the stability constraint must be taken into consideration when choosing the time step size. In the
case where both solid and fluid constituents are incompressible, the system (30) becomes a differential
algebraic one, where the fourth relation turns into a volume balance equation for the mixture acting as
an algebraic incompressibility constraint. In order to solve a saddle point problem, the time integration
schemes must be upgraded by special numerical techniques to maintain the stability of the numerical
solution. Following Markert et al. [39], two numerical time integration strategies have been adopted:
the first one is an implicit monolithic scheme together with mixed order interpolation for the primary
variables; the second one is a semi-explicit/implicit splitting scheme together with an equal order
interpolation for the unknowns.

3.2.1. Implicit Monolithic Schemes

Different types of implicit schemes exist and it is possible to subdivide them mainly into two
classes: one step and multi-step methods. Thanks to the lower computational cost and memory
storage of the variables, only the first class is considered here. In Algorithm 1, the pseudo code of the
generalized trapezoidal scheme inside a Newton–Raphson procedure is shown. By considering the
integration variable θ = 1, the Backward Euler scheme is obtained; this method is first order accurate
but small time steps are mandatory in order to reduce the artificial numerical damping leading to
wrong solution (see Jansen et al. [40]). For θ = 1/2, the second-order accurate Crank–Nicholson
scheme comes out, and with θ = 0 the Explicit Forward Euler scheme appears.

Note that the last equation of the coupled system (30) is modified by inserting the expression of
Darcy’s velocity derived from the fluid momentum balance in order to improve the numerical stability
of the scheme.
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Algorithm 1: Newton–Raphson Algorithm.

Initialization: un =
[
uSn vSn vFn pn

]T
= 0, Fn =

[
0 f Sn f Fn qn

]T
= 0

for n = 1 : nend
Fn+1 = Fn + θ∆F, un+1 = un,
for i = 1 : imax

∆ui
n+1 = ui

n+1 − un

Compute matrix: Mii, Kii
Compute residual:

Ri+1 =




0
rvS

rvF

rpF


 = Fn+1 +




0
a2

a3

a4


−




I 0 0 0
0 M22 0 0
0 0 M33 0
0 0 M43 M44




∆ui
n+1

∆t −




0 −I 0 0
K21 K22 K23 K24

0 K32 K33 K34
0 K42 K43 K44



[
θui

n+1 + (1− θ)un

]

Check residual:
if Ri+1 < toll
break
end

Compute Jacobi matrix:
J = M/∆t + θK
Compute Y-increment:
du = J−1Ri+1

Update solution:
ui+1

n+1 = ui
n+1 + du

end
end

3.2.2. Semi-Explicit/Implicit Splitting Scheme

This scheme solves the coupled problem using a splitting procedure applied in the field of porous
mechanics by Huang et al. [41,42]. Through this scheme, the system of equations is split into an implicit
and a subsequent explicit step. This method is restricted by a critical time-step to guarantee stability
and accuracy of the solution. The splitting separates the linear momentum balances from the mass
balance of the mixture and decouples the displacement and velocity fields from the pore-fluid pressure
field. To this aim, the time discretization of the governing equations is to be developed before the
spatial one together with the definition of an intermediate velocity giving an approximation of the
velocities of the phases in the next time step. By following the same procedure of Markert et al. [39],
the time discretization and splitting procedure starts with the implicit discretization of the solid velocity.
Equation (16) becomes through the trapezoidal rule:

(uSn+1 − uSn)

∆tn
=

1
2
(vSn+1 + vSn) ; (32)

assuming that nα ≈ nα
0 , ∇x nα ≈ 0 (small strain assumption); by explicitly considering the solid extra

stress tensor σS
En = σS

E(uSn) and implicitly the pore-fluid pressure term pF together with the relative
velocities through the intermediate velocities v∗S and v∗F, the momentum balance equation for solid
phase is rearranged and split as follows:

ρS (v
∗
S − vSn)

∆tn
= ∇x· σS

En −
(

A− nF1
)
∇x(pFn) + ρSg +

(nF)2γF

KF w∗F ; (33)

ρS (vSn+1 − v∗S)
∆tn

= −
(

A− nF1
)
∇x(pFn+1 − pFn) . (34)
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The momentum balance for the fluid becomes:

ρF (v
∗
F − vFn)

∆tn
+ ρF(∇x v∗F)w

∗
F = −nF∇x(pFn) + ρFg − (nF)2γF

KF w∗F ; (35)

ρF (vFn+1 − v∗F)
∆tn

= −nF∇x(pFn+1 − pFn) ; (36)

where ρF(∇x v∗F)w
∗
F is a convective term. The mass balance is expressed as:

Λ
pFn+1 − pFn

∆t
+ A : ∇x(vSn+1) +

1
ρF
∇x·

(
ρFwFn+1

)
= 0 . (37)

Rebuilding the weak formulation, for the solid phase:

∫

Ω
δuS ·

[
(v∗S − vSn)

∆tn
− g

]
nSρSdv−

∫

Ω
δuS ·

(nF)2γF

KF w∗Fdv

+
∫

Ω
∇x(δuS) ·

[
σS

En −
(

A− nF1
)

pFn

]
dv−

∫

∂ΩS

δuS · tS
nda = 0 ; (38)

∫

Ω
δuS ·

[
ρS (vSn+1 − v∗S)

∆tn
+
(

A− nF1
)
∇x(pFn+1 − pFn)

]
dv = 0 ; (39)

for the fluid phase:

∫

Ω
δvF ·

[
(v∗F − vFn)

∆tn
− g

]
nFρFdv +

∫

Ω
δvF · nF∇x(pFn)dv +

∫

Ω
δvF ·

nFγF

KF w∗Fdv = 0 ; (40)

∫

Ω
δvF ·

(vFn+1 − v∗F)
∆tn

nFρFdv−
∫

Ω
∇x·(δvF)nF(pFn+1 − pFn)dv−

∫

∂ΩF

δvF · tF
n+1da = 0 ; (41)

with the mass balance:
∫

Ω
δpA :∇x v∗Sdv +

∫

Ω
δpΛ

(pFn+1 − pFn)

∆tn
dv−

∫

Ω
∇x(δp) ·

(
nFwF

)
dv +

∫

∂Ωp
δp · v̄n+1da = 0 . (42)

From the weak formulation the corresponding matrix equations are built following the scheme
of Algorithm 2 and the expressions of all the matrices are plotted in Appendix A. After initialization,
the procedure starts by explicitly computing the intermediate velocities v∗; then, the pore-fluid
pressure is calculated and subsequently the velocity corrections and finally the solid displacements
uSn+1. Clearly, each time-step requires an iteration check to be satisfied:

∥∥∥ui+1
n+1 − ui

n+1

∥∥∥ < toll, with the
critical time-step given by (for a 3D linear FE):

∆tcr =
∆hx∆hy∆hz

cx
p∆hx + cy

p∆hy + cz
p∆hz

cr
p =

√
Crr

ρS , r = x, y, z, (43)

with Crr elastic matrix component of the porous material.
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Algorithm 2: Prediction/Correction Algorithm.

Initialization: uSn = 0, vn = 0, pn = 0
for n = 1 : nend

f n = f n + ∆ f , vP = vn, pP = pn,
∆uS = ∆tvP

S , uSn + ∆uS
for i = 1 : imax

Compute matrix: M, Kii, K̄ii
Compute prediction velocities:[

v∗S
v∗F

]
=

[
M22
∆t + K22 −K23

−K32
M33
∆t + K33

]−1{[M22
∆t 0
0 M33

∆t

] [
vP

Sn
vP

Fn

]
+

[
−K21 K24

0 −K̄34

] [
uP

Sn
pP

n

]
+

[
a2

a3

]
+

[
f Sn
0

]}

Compute pore fluid pressure:[
0

p∗n+1

]
=

[
0

pP
n

]
+

[
I 0
0 K̄44

]−1{[
0 0
−K42 K43

] [
v∗S
v∗F

]
−
[

0
f̄ Pn+1

]}

Compute velocities correction:[
vSn+1
vFn+1

]
=

[
v∗S
v∗F

]
+

[
M22
∆t 0
0 M33

∆t

]−1{[
0 K̄24
0 −K34

] [
0

pn+1 − pP
n

]
+

[
0

f Pn+1

]}

Compute solid displacements:
uSn+1 = uSn + 1

2 ∆t
(
vSn+1 + vSn

)

ri = uSn+1 − uP

if ri < toll
break
end

Update prediction variables:
vP = vn+1, uP

S = uSn+1, ∆uS = uSn+1 − uSn,
end

end

4. Numerical Examples

In this section, some numerical analyses are described, accounting for different types of anisotropy
affecting P- and S-wave motion within porous media.

Particularly, waves propagation and interaction are studied, influenced by (1) the induced
anisotropy related to volumetric-deviatoric coupling effects and (2) the inherent anisotropy of
transversely isotropic elasticity for the solid skeleton, the anisotropy of the permeability tensor, and the
anisotropic hydro-mechanical coupling effect captured by the tensorial Biot’s approach. The numerical
analyses have been developed via GeoMatFEM [28], a MATLAB research software suitable for coupled
geo-mechanical simulations and now upgraded to a dynamic version. Two benchmarks are included
to validate the implementation.

4.1. Benchmark Cases with Isotropic Elastic Materials

The code has been validated against two numerical examples:

1. fully saturated soil column under harmonic load (cf. de Boer et al. [43]);
2. wave propagation within a two-dimensional soil domain (cf. Markert et al. [39]).

The soil column model shown in Figure 2a is considered, with a vertical discretization of 10 Finite
Elements/meter subjected to a vertical harmonic load Figure 2b. The material parameters are shown
in Table 1.

The results obtained by adopting different solvers together with the analytical solution are
depicted in Figure 3. The Implicit Backward Euler scheme B.E. (coupled with mixed elements),
the semi-explicit/implicit scheme S.E. (with linear equal order elements), both considering the
uvp–formulation and the classical up–formulation), have been taken into account. For the two implicit
schemes, a time step dt = 0.5× 10−3 s has been adopted, while, for the semi-explicit/implicit scheme,
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a dt = 2.5× 10−4 s has been assumed. All of the numerical solutions give equal results in terms of
compaction (see Figure 3a) and pore pressure (see Figure 3c); slight differences are observable in the
peak values of the fluid velocity on surface (see Figure 3b), but this is due to the choice of the exit error
tolerance of the schemes, while, for the effective stress (see Figure 3d), the differences come from the
fact that they are computed at Gauss points 0.0225 m away from the reference surface.

Table 1. Material parameters for benchmarks (1) and (2).

Parameter Values S.I. unit

E 14.52 × 106 Pa
ν 0.30

nF
0 0.33

kF 10−2 m/s
ρS 2000 kg/m3

ρF 1000 kg/m3

tZ = f(t)

pF = 0

uy=0
vFy=0
∂ypF =0

ux=0
vFx=0
∂xpF =0

uz=0
vFz=0
∂zpF =0

10m

2m 2m

x

z

y

(a) Mesh and Boundary conditions

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

Time [s]

L
o
ad

[N
/
m

2
]

f(t) = 103
[
1− cos(20πt)

]

(b) External harmonic load

Figure 2. 1D model (benchmark (1)).

As regards Benchmark (2), the F.E. domain together with the boundary conditions are shown
in Figure 4a. The material parameters are the same as in the previous example (see Table 1) and the
soil is subjected to an impulsive load Figure 4b, with H(t− τ) Heaviside function and τ = 0.04 s the
duration of the impulse.

Figure 5 reports the main results by varying the numerical solver, i.e., the implicit Backward Euler
scheme with mixed elements, considering both uv and uvp–formulation, the Semi-explicit/Implicit
scheme with linear (L) and quadratic (Q) equal order elements. A composite time integration
scheme between the trapezoidal rule and 2nd–order backward difference scheme (TR-BDF2) has
been additionally adopted: this scheme is inserted in the Runge–Kutta method (s-stage DIRK) together
with mixed elements. In Markert et al. [39], this scheme was applied for the first time in the field
of multiphase porous mechanics, the propriety of such a method is that it satisfies all the stability
requirements and it is second order accurate: for these reasons, its results have been taken as a
reference solution. The same mesh discretization composed by 4 hexahedral elements per square meter
is assumed for all the models; furthermore, for the three implicit schemes and for the semi-explicit one
with linear elements, the time step dt = 10−3 s has been adopted, while for the semi-explicit scheme
with quadratic elements, dt = 2.5 10−4 s has been assumed in order to satisfy the CFL stability condition.

Figure 5a shows the vertical displacements of node C; all the numerical solutions coincide,
even considering pore pressure at node B (see Figure 5d) except for the lowest peak value. Figure 5c
describes the quasi-elliptical (or “eight type”) motion of node A due to the Rayleigh wave generated
by the impulsive load. As confirmed by Markert et al. [39], the uvp–formulation with a Backward
Euler scheme provides stiff results due to the fact that this type of scheme possesses a strong artificial
damping (see Jansen et al. [40]), while the up–formulation overestimates the displacements field due to
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the assumption of zero relative acceleration between the two phases. The results of the semi-explicit
scheme are closer to the solution of TR-BDF2 scheme and the one with quadratic interpolation appears
to be the best.

Figure 6 depicts the time sequence of displacements contour and deformed mesh for the
semi-explicit scheme with quadratic finite elements. The slow pressure wave (P, generating radial
compression) and the shear wave (S, with shear type deformation) propagating in the soil domain are
accompanied by the Rayleigh wave (R–wave) moving at the surface of the medium.
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(a) Compaction
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(b) Fluid velocity at top surface
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(c) Pore pressure 1 m under the top surface
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(d) Vertical effective stress 1 m under the top surface

Figure 3. Solutions for Benchmark (1).

tZ = f(t)pF = 0

uy=0
vFy=0
∂ypF =0
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vFx=0
∂xpF =0
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vFz=0
∂zpF =0

10m
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(a) Mesh and Boundary conditions
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f(t) = 105sin(25πt)
[
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]
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(b) External impulsive load

Figure 4. 2D model (Benchmark (2)).



Materials 2020, 13, 4988 13 of 27

0 0.05 0.1 0.15 0.2
−1

−0.8

−0.6

−0.4

−0.2

0

·10−2

Time [s]

u
S
z
[m

]

(uvp) TR-BDF2

(up) B.E.

(uvp) B.E.

(uvp) S.E. L

(uvp) S.E. Q

(a) Compaction at node C.
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(b) Vertical fluid velocity at node C.
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(c) Motion of node A.
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(d) Pore pressure at node B.

Figure 5. Solutions 2D wave propagation.

4.2. Dynamic Poroelastic Responses of Isotropic Porous Media

3D analyses are needed to evaluate the seismic waves in the soil motion and thus to evaluate the
predictive capabilities of the F.E. code. For comparison, we first simulate the wave propagation in a
fully saturated, homogeneous, and isotropic poroelastic material and analyze the results. Only the
semi-explicit-implicit procedure is used due to the robustness of this scheme to solve dynamic problems
with a suitable time step size. Furthermore, the splitting procedure provides for a faster solver and
requires less computational effort to solve the system of equations.

A solid square prism of soil (dotted lines of Figure 7) subjected to an impulsive pressure load
applied on an area of 1 m2 on the top surface has been considered. Taking advantage of the symmetry
of the problem, one quarter of the prism has been modeled only; bottom and lateral surfaces are
assumed impermeable, frictionless and restrained along the normal direction, whereas the top surface
permeable. The FE model is composed by 8820 , 21 × 21 × 20 3D, linear and equal order elements,
with material parameters listed in Table 2. The external vertical impulsive load is the same as in the
2D benchmark case (Figure 4b), with equal duration; a time step size ∆t = 10−3 s is used in order to
respect the CFL condition.

Three different soil compressibilities: Ks = ∞, Ks = 5.2 × 109 Pa and Ks = 5.2 × 107 Pa,
corresponding to three different Biot’s coefficients (Equation (13)): B = 1.0, B = 0.998 and B = 0.846,
have been taken into account. No appreciable variations in terms of soil displacement and velocities
at node A (Figure 8a,b) are visible, with slight differences in terms of fluid velocity (Figure 8c).
Far from the impulsive load, the smallest solid compressibility causes wider movements especially
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along the propagation direction of the impulsive load. When considering an isotropic material,
the Rayleigh waves along X and Y presents the same shape and magnitude (see Figure 8d). In Figure 8e,
the pore-fluid pressure evolution at nodes E and G is plotted: in case of incompressibility, the peak
pressure occurs simultaneously with the external load and then dissipates during the analysis. In the
case of larger compressibility, a delay in the peak appears.

(a) t = 0.05 s (b) t = 0.1 s

(c) t = 0.15 s (d) t = 0.20 s

Figure 6. Deformed mesh (amplified by scale factor 500) and contours of norm of soil displacements

‖uS‖ =
√

u2
Sx + u2

Sz for benchmark (2).

tZ = f(t)pF = 0
uy=0
vFy=0
∂ypF =0

ux=0
vFx=0
∂xpF =0

uz=0
vFz=0
∂zpF =0

10m

21m 21m

x

z

y

A

D
C

B

E

F

G

H

Soil domain
Node coordinates: [m]

A=(10.5, 10.5, 10)
B=(5, 10.5, 10)
C=(5, 5, 10)
D=(10.5, 5, 10)
E=(10.5, 8, 8)
F=(10.5, 0, 0)
G=(8, 10.5, 8)
H=(0, 10.5, 0)

Figure 7. Three-dimensional soil model.
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(c) Vertical fluid velocity at node A.
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(d) Surface motion at nodes B and D.
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(f) Surface motion at node C.

Figure 8. 3D isotropic soil model.

By considering the highest compressibility (Ks = 5.2×107 Pa), the deformation states of Figure 9
show once again the triggering and evolution of shear and Rayleigh waves, already visible through
2D analysis.
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Table 2. Material parameters for the 3D model.

Parameter Values S.I. Unit

E 12.0 × 106 Pa
ν 0.25

nF
0 0.33

kF 10.0−2 m/s
ρS 2000.0 kg/m3

ρF 1000.0 kg/m3

KF 5.2 × 109 Pa

(a) t = 0.05 s (b) t = 0.1 s

(c) t = 0.15 s (d) t = 0.20 s

Figure 9. Isotropic soil model with Ks = 5.2 107Pa: deformed meshes (amplified by scale factor 500)
and contours of norm of soil displacements vector ‖uS‖ =

√
u2

Sx + u2
Sy + u2

Sz.

4.3. Dynamic Poroelastic Responses with Transversely Isotropic Porous Media

The behavior of an anisotropic and fully saturated porous material replicated by an elastic
transversely isotropic constitutive model for both solid material (intrinsic) and porous matrix
(structural) is here considered (see Figure 10a), with material parameters shown in Table 3.

4.3.1. Effect of Different Rotation in a Transversely Isotropic Symmetry Axis of Soil Material

Due to structural anisotropy, half of the full 3D domain (dashed blue line) has been taken
into account. We assume to rotate by α the y-axis of the isotropy plane (solid phase and porous
material) with respect to the y-axis of the global reference system (see Figure 10). A series of analyses
have been performed changing from α = 0◦ to 90◦, as shown in Figure 10b. From Equation (11),
the rotation of the isotropic plane activates the coupling components of the elastic (or compliance)
tensor as schematically represented in Figure 11, and then it will conduct to different soil responses.
The coaxiality assumption between the structural and intrinsic tensor leads to obtaining, as usual,
a constant Biot’s coefficient tensor A = BI = 0.998I, so the fluid pressure interacts only with the
volumetric stresses. The permeability tensor is also anisotropic and coaxial with the direction of
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material anisotropy; the permeability constants are shown in Table 3, the lowest permeability assumed
along the z-direction.

x y

z

Solid phase
Soil REV

Reference system

Isotropy plane

(a) Isotropy plane of porous material
coaxial with the isotropic plane of solid
phase.

x y

z

α

Solid phase
Soil REV

Isotropy plane

(b) Rotated isotropy plane of porous
material coaxial with the isotropy plane
of solid phase.

x y

z

α

Solid phase
Soil REV

Isotropy plane

(c) Isotropy plane of porous material
non-coaxial with the isotropy plane of
solid phase.

Figure 10. Schematic diagram of transversely isotropic soil models.

C̄(α) =




C11 C12 C13 0 C15 0
C21 C22 C23 0 C25 0
C32 C32 C32 0 C35 0
0 0 0 C44 0 C46

C51 C52 C53 0 C55 0
0 0 0 C64 0 C66




direct coefficients relating normal strains
with stresses on the same directions

couplings normal strains – stresses
referring different directions

couplings shear strains – normal stresses

couplings shear strains – stresses referring
to different planes

direct coefficients relating shear strains
with stresses referring to the same planes

Figure 11. Subdivision of the elastic matrix.

Table 3. Transversely isotropic soil: material parameters for the 3D model.

Parameter Values S.I. Unit

Ex, Ey 9 × 106 Pa
Ez 15 × 106 Pa

νxy, νyx 0.25
νyz, νxz 0.21
νzx, νzy 0.35

Gxy = Ex
2(1+νxy)

3.6 × 106 Pa

G23, G31 6.0 × 106 Pa
nF

0 0.33
kF

x, kF
y 10−2 m/s

kF
z 10−4 m/s

ρS 2000 kg/m3

ρF 1000 kg/m3

Km 7.14 × 106 Pa
KS 3.57 × 109 Pa
KF 2.2 × 109 Pa

A summary of the main results considering three different rotations is shown in Figure 12.
By increasing α, the soil stiffness along with z decreases, and it increases along with y. This leads to an
increase in peak values of the vertical displacement at node A (Figure 12a) and in the solid velocity
field (Figure 12b), together with a decrease in the peak values of fluid velocity at node A (Figure 12c).
Evidently, by considering no rotation of the isotropic plane, α = 0, the motion of nodes B and D is the
same (black continuous line; Figure 12d,e), while increasing α leads to different motions. This allows
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for obtaining two different Rayleigh waves along x and y, being Rayleigh waves linear combinations
of P- and S- waves at the surface. In Figure 12f, the surface motion at node C is plotted: it can be
observed that, by increasing α, a horizontal motion orthogonal to the wave propagation appears,
so along direction x=y, representing a Love wave (horizontal shifting) that consequently is coupled
with the Rayleigh one.
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(a) Vertical displacement at node A.
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(b) Vertical soil velocity at node A.
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Figure 12. Transversely isotropic soil model. Displacements and velocities.
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In Figure 13, the pore pressure evolution is reported for two different pairs of nodes (close and far
from the impulsive source respectively, see Figure 7) belonging to orthogonal directions: a comparison
with the isotropic case leads to observing that the behavior is now strongly different (and no longer
superimposed, see Figure 8e), with aligned peak values evidencing a high speed pressure velocity.
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(a) Cauchy pore pressure at nodes E and F.
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(b) Cauchy pore pressure evolution at nodes G and H.

Figure 13. Cauchy pore pressure evolution in time: solid line for nodes E and G, marked line for nodes
F and H.

By analyzing soil deformation (Figure 14) where α = 90◦, the different shear waves propagate
with different speed and magnitude within the soil medium; hence, the shear wave on the plane YZ
reaches the boundary before the one on the XZ plane.

(a) t = 0.05 s (b) t = 0.1 s

(c) t = 0.15 s (d) t = 0.20 s

Figure 14. Transversely isotropic soil model with α = 90◦: deformed meshes (amplified by scale
factor 500) and contours of norm of soil displacements vector ‖uS‖ =

√
u2

Sx + u2
Sy + u2

Sz.

An alternative way to appreciate the shear wave splitting is plotting the effective shear stresses
evolution along two planar orthogonal directions a = {∀(x, y, z) ∈ R3|x ∈ R, y = 10.5 m, z = 9.5 m}
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and b = {∀(x, y, z) ∈ R3|y ∈ R, x = 10.5 m, z = 9.5 m}, Figure 15, considering two different rotations
of the material axis. For α = 0.0◦ (continuous solid line), the propagation of effective shear stresses
along a and b is the same, see, in fact, solid lines of Figure 15a,b and those of Figure 15c,d; whereas,
considering α = 45◦ (marked dashed line), a different behavior is visible. By varying the angle,
the shear stress τxy speed decreases along a but increases along b. In the case of mutual stresses τxz

and τyz, both speeds increase in different ways.

0 0.05 0.1 0.15 0.2
−6000

−4000

−2000

0

2000

Time [s]

τ x
y
[P
a]

X = 7m
X = 8m
X = 9m

(a) Propagation of τxy along the a direction.

0 0.05 0.1 0.15 0.2
−6000

−4000

−2000

0

2000

Time [s]

τ x
z
[P
a]

X = 7m
X = 8m
X = 9m

(b) Propagation of τxz along the a direction.
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(c) Propagation of τyx along the b direction.
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(d) Propagation of τyz along the b direction.

Figure 15. Transversely isotropic soil models. Effective Cauchy stress component calculated along the
horizontal directions: solid line for model with α = 0◦, marked line for model with α = 45◦.

Particularly, Figure 16 summarizes the reported behavior, i.e., normalized peak stresses and their
relative velocity show and confirm a measure of shear wave splitting.

4.3.2. Effect of Biot’s Effective Stress Coefficient Tensor on Wave Propagation

By adopting the same geometric model as before, a series of analyses have been additionally
performed by fixing the material parameters of the porous material and rotating the plane of isotropy
of the solid phase (intrinsic anisotropy), from α = 0◦ to 90◦ as shown in Figure 10c. This assumption
leads to obtaining a full Biot’s coefficient tensor:

A(α) = I − C ·
[
M−T(α)SS(0◦)M−1(α)

]
=




a11 0 0
0 a22 a23

0 a23 a33


 (44)
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with M(α) the fourth-order transformation tensor and SS(0◦) the fourth-order compliance constitutive
tensor of the solid phase only. In this case, two non zero extra-terms are obtained and, together with
the values on the diagonal, the fluid part interacts with the deviatoric stress of the soil. For the initial
case of α = 0◦, the material parameters of the intrinsic transversely isotropic model are listed in Table 4.
The anisotropic permeability remains the same as in the previous analyses, and it is coaxial with the
symmetry axis of the structural anisotropy.
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Figure 16. Shear wave splitting along the horizontal axis.

Table 4. Intrinsic transversely isotropic model: material parameters.

Parameter Values S.I. Unit

Ex, Ey 1.8 × 107 Pa
Ez 3.0 × 107 Pa

νxy, νyx 0.25
νyz, νxz 0.21
νzx, νzy 0.35

Gxy 7.2 × 106 Pa
Gyz, Gzx 1.2 × 107 Pa

By varying the Biot’s tensorial coefficients through α, no differences are appreciable in terms
of vertical displacements (Figure 17a) and vertical fluid velocity (Figure 17b) at node A, while two
different plane motions at nodes B and D are clearly visible. These latter graphs allow us to catch the
Rayleigh waves spreading horizontally and to estimate the splitting of the shear waves. In case of high
compressibility, different fluid pressure velocities are shown (see Figure 17e,f), the values being no
longer aligned as previously evidenced.

By considering a rotation of 90◦ (this one only for sake of brevity), Figure 18, the splitting of the
shear wave is again visible, although less evident than in the previous section. The deformed mesh and
the Euclidean norm of the displacements in different time steps of the analysis are plotted considering
the solid phase rotated by 90◦ with respect to the symmetry axis of transversely isotropic model of
the mixture (structural anisotropy). A higher solid stiffness phase along Y leads to a decrease in the
effective stress along the same direction, provoking a slower shear waves along Y and faster along X.

The results in terms of effective shear stresses (Figure 19a) confirm the behavior already
appreciable when rotating the structural anisotropy; when choosing e.g., the second invariant of
the Biot’s coefficient tensor as reference (Figure 19b), it can be noticed that higher angles correspond to
lower values, with an anomalous splitting mechanism.
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(a) t = 0.05 s (b) t = 0.1 s

(c) t = 0.15 s (d) t = 0.20 s

Figure 18. Transversely isotropic soil model with constitutive model of solid phase rotated by α = 90◦:
deformed meshes (amplified by scale factor 500) and contours of norm of soil displacements vector
‖uS‖ =

√
u2

Sx + u2
Sy + u2

Sz.
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5. Discussion

The results indicate that the numerical model is able to replicate the following physical
phenomena, i.e.,:

(i) the p-waves produce polarized vibrations along the direction of propagation (particles move
along the wave’s direction of propagation) and subsequent compression and extension
deformations along the same direction: they are visible along the vertical direction under the
impulsive load (Figures 6 and 9), even considering the anisotropic models (in this case they are
coupled with the shear contribution, Figures 14 and 18);

(ii) p-waves are faster than s-waves: in all the models in fact the domain borders are reached in
different times;

(iii) s-waves generate polarized vibrations on a plane containing the direction of propagation and
shear deformation (Figures 6, 9, 14 and 18);

(iv) the s-wave decouples into a wave polarized on the horizontal plane and into another one on the
vertical plane: visible in the curves of effective shear stresses, Figure 15;

Particularly, for s-waves, it has been evidenced that, when propagating vertically, they are
always polarized on a vertical plane, whereas, in case of horizontal propagation, one component of
the wave belongs to an horizontal plane, the other on a vertical plane. This particularly happens
when isotropy or transversely isotropy with vertical isotropy axis is assumed; otherwise, they show
inclined polarizations.

With regard to the surface waves, the Rayleigh waves have been properly reproduced: such waves
propagate according to cylindrical wavefronts; the resulting motion on the vertical plane is retrograde
elliptical (Figures 12d,e and 17c,d) (compare, e.g., with Yang and Li [44]). If considering Love waves
(Figure 12f, the generated horizontal vibrations clearly appear polarized along a direction orthogonal
to the propagation one (shear deformations).

Even the geometric attenuation of the waves seems to be properly reconstructed: their energetic
content being reduced at a far distance from the source, the amplitude of the medium displacement
correspondingly decreases (geometric damping): this is evidenced in the effective shear stress curves
themselves, Figures 15 and 19a,b. More importantly, when numerically reproducing an anisotropic
soil domain, the physical phenomenon of waves splitting appears to be reproduced as well (Figures 16
and 19c,d) with generation of waves with different intensity and speed.

6. Conclusions

The propagation of waves in soils, developing from a point source of a dynamic load, have been
analyzed with attention focused on polarization and shear wave splitting due to anisotropy of
the permeability tensor, anisotropy of the solid skeleton, as well as to a novel Biot’s tensor.
The mathematical-numerical model adopts a u–v–p formulation enhanced by the introduction of
Taylor–Hood mixed finite elements and comparisons with different integration strategies have revealed
to prefer a semi-explicit/implicit scheme with equal order interpolation due to its satisfied stability
requirements. The numerical implementation of both an anisotropic permeability tensor together
with a Biot’s tensor has allowed for boosting the contribution of anisotropy when reproducing waves
polarization and splitting: the conducted analyses have correctly reproduced, to recall a few details,
polarized vibrations along the direction of propagation produced by P-waves, polarized vibrations
on a plane containing the direction of propagation and shear deformation generated by S-waves,
the generation of surface waves, and, more importantly, waves splitting due to intrinsic or structural
anisotropy, with enhanced effects when considering the coupling between the volumetric fluid pressure
and shear stresses.
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Appendix A

In the following, Ψ, Φ, and P indicate the interpolation functions of the nodal unknown for solid
displacements and velocities, fluid velocities, and pore fluid pressure, respectively, while∇ refers to
the gradient operator. The matrices listed within the text are hence described in the following:

M22 =
∫

Ω
ΨTρSΨdv ; K21 =

∫

Ω
∇ΨTC∇Ψdv ; K22 =

∫

Ω
ΨT (nF)2γF

kF Ψdv ;

K23 =
∫

Ω
ΨT (nF)2γF

kF Φdv ; K24 =
∫

Ω
∇ΨT(Ā− nFm

)
Pdv ; K̄24 =

∫

Ω
ΨT(A− nF1

)
∇Pdv ;

M33 =
∫

Ω
ΦTρFΦdv ; K32 =

∫

Ω
ΦT (nF)2γF

kF Ψdv ; K33 =
∫

Ω
ΦT (nF)2γF

kF Φdv ;

K34 =
∫

Ω
∇ΦTnFPdv ; K̄34 =

∫

Ω
ΦTnF∇Pdv ; (A1)

K42 =
∫

Ω
PT Av∇Ψdv +

∫

Ω
∇PTnFΨdv K43 =

∫

Ω
∇PTnFΦdv ; K̄44 =K̄a

44 + K̄b
44 ;

a2 =
∫

Ω
ΨTρS gdv ; a3 =

∫

Ω
ΦTρF gdv ;

f Sn =
∫

∂ΩS

ΨTtS
nda ; f Fn+1 =

∫

∂ΩF

ΦTtF
n+1da ; f̄ pn+1 =

∫

∂Ωp
PT v̄n+1da ;

where:

K̄a
44 =

∫

Ω
∇PT∆t

((A− nF1
)2

ρS +
nF1
ρF

)
∇Pdv ; K̄b

44 =
∫

Ω
PT Λ

∆t
Pdv . (A2)

and Ā = [A11, A22, A33, A12, A23, A31]
T is the Biot coefficient tensor in Voight notation.
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