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Abstract: Tool wear negatively impacts the quality of workpieces produced by the drilling process.
Accurate prediction of tool wear enables the operator to maintain the machine at the required level of
performance. This research presents a novel hybrid machine learning approach for predicting the
tool wear in a drilling process. The proposed approach is based on optimizing the extreme gradient
boosting algorithm’s hyperparameters by a spiral dynamic optimization algorithm (XGBoost-SDA).
Simulations were carried out on copper and cast-iron datasets with a high degree of accuracy.
Further comparative analyses were performed with support vector machines (SVM) and multilayer
perceptron artificial neural networks (MLP-ANN), where XGBoost-SDA showed superior performance
with regard to the method. Simulations revealed that XGBoost-SDA results in the accurate prediction
of flank wear in the drilling process with mean absolute error (MAE) = 4.67%, MAE = 5.32%,
and coefficient of determination R2 = 0.9973 for the copper workpiece. Similarly, for the cast iron
workpiece, XGBoost-SDA resulted in surface roughness predictions with MAE = 5.25%, root mean
square error (RMSE) = 6.49%, and R2 = 0.975, which closely agree with the measured values.
Performance comparisons between SVM, MLP-ANN, and XGBoost-SDA show that XGBoost-SDA
is an effective method that can ensure high predictive accuracy about flank wear values in a
drilling process.

Keywords: machine learning; flank wear prediction; XGBoost; SDA; optimization; machining parameters;
drilling process; support vector machines; artificial neural networks

1. Introduction

Production companies are attempting to boost product quality as well as to reduce operating
costs. Online real-time control and monitoring of drilling processes was proposed as an effective
method to minimize manufacturing costs [1]. The drilling process is one of the most used processes in
manufacturing across various industries such as automotive and aerospace sectors [2]. The drilling
process is produced by drilling and boring of material removal and is related to conventional drill bits
geometry. One of the common problems across processes such as drilling, milling, and turning is the
tool wear [3,4]. The worn tools lower the production quality and result in drilling holes and may lead
to damage to both the workpiece and the machine. In addition, it may result in increasing the cutting
force that results in raising the temperature and accelerate the tool wear [5,6].

There exist various types of drill tool wear such as flank wear, chisel edge wear, margin and
crater wear [7]. Numerous investigations of tool wear in drilling processes exists in literature.
Wang et al. [8] investigated the wear on three different drills (uncoated, diamond coated and AlTiN
coated carbide) used in the drilling of carbon fiber reinforced composites (CFRP). Imran et al. [9]
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studied the impact of the tool wear on the surface integrity in a micro-drilling wet and dry cutting
processes. Similarly, Xiang et al. [10] presented a finite element simulation of the drilling tool wear of
SiCp/Al6063 composites.

The prediction of tool wear is an essential tool to monitor the process and control the quality in
manufacturing process [11]. With the aid of machine learning, soft computational approach, and the
existing experimental datasets, it is possible to utilize the tool wear of various processes to a high extent
of accuracy. Recently, artificial neural networks (ANN) have been extensively utilized and proven to
be an effective tool to predict the tool wear based when trained on an experimental dataset. Due to its
proven efficiency and self-learning capabilities, it has been described in literature as a promising quick
solution for tool wear prediction. Zhao et al. [12] have presented an ANN for predicting the optimal
rate of penetration (RoP). The results have shown that ANN can be utilized to provide an accurate
prediction of the optimal RoP parameters in drilling process. Kong et al. [13] have presented a robust
machine learning prediction approach to predict the flank wear on various cutting process conditions.
The authors have utilized kernel principal component analysis with an integrated radial basis function
(KPCA-IRBF) and Gaussian regression to obtain online accurate tool wear parameters.

Similarly, Chen et at [14] have proposed a deep belief network (DBN) for predicting a cutting
tool flank wear. The proposed method was compared with state-of-art machine learning approaches
such as support vector regression (SVR) and ANN and was shown to provide superior performance in
terms of statistical metrics such as mean square error (MSE) and coefficient of determination (R2).

Machine learning approaches and Evolutionary optimization algorithms were applied to predict
parameters in material sciences such as flank wear [15,16]. Yang et al. [16] have proposed a
co-evolutionary particle swarm optimization-based selective network ensemble (E-CPSOSEN) to
predict the flank wear in drilling operations. Several simulations were carried out and the results
were compared with ANN prediction method. The E-CPSOSEN have shown a better accuracy than
the ANN approach in terms of performance metrics. Similarly, adaptive particle swarm optimization
(APSO) to predict the tool wear in drilling process was introduced by Chen et al. [17]. The APSO was
integrated with least square support vector machine (LS-SVM) and have resulted in a better prediction
accuracy than the LS-SVM approach.

Adaptive neuro-fuzzy inference systems with genetic algorithm (ANFIS-GA) was utilized by
Saw et al. [18] for prediction of optimal tool wear in a drilling process. The ANFIS-GA was shown to
provide fast and accurate results in comparison with evolutionary optimization methods such as GA.
Nature inspired optimization techniques were also introduced as a tool to predict the tool wear such
as the DNA-based computing (DBC) that was presented by Addona et al. [19]. Patra et al. [20] have
presented an ANN for tool wear prediction in a peck drilling process and have compared the results
with the experimental datasets. The achieved predictions closely match the experimental dataset and
that validated the feasibility of the proposed approach.

Alajmi and Almeshal [21] have utilized a novel quantum particle swarm optimization of an
ANFIS model (ANFIS-QPSO) to predict the surface roughness values of the dry and cryogenic turning
process parameters. The proposed approach combines the strengths of the ANN in self-learning
and the fast convergence of QPSO in obtaining optimal parameters to provide highly accurate
prediction results. With all the aforementioned studies, it can be noted that the machine learning
approaches and specifically ANN based prediction models are promising techniques that provide
robust, highly accurate, and fast prediction of various process parameters [22–27].

In this research, we propose a novel spiral dynamic optimized extreme gradient boosting machine
learning algorithm (XGBoost-SDA) for predicting the tool wear in the drilling of copper and cast iron
workpieces. There is a gap in the literature on using XGBoost to predict flank wear in the drilling
process to the best of our knowledge. Additionally, no previous study has investigated the use of the
XGBoost-SDA approach for this purpose. The present study examines the accuracy of XGBoost-SDA
predictions of the experimental dataset of two workpieces of copper and cast iron compared with
state-of-the-art prediction algorithms such as the support vector machine (SVM) and multilayer
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perceptron ANN (MLP-ANN). In the next section, the methodology of the proposed XGBoost-SDA
approach is outlined with the nomenclature presented in Table 1. The simulation results present the
predicted results and highlight the prediction accuracy of XGBoost-SDA when compared with the
SVM and MLP-ANN approaches.

Table 1. Nomenclature.

Ra Arithmetic Surface Roughness (µm)
Rt Maximum peak to valley height (µm)
V Cutting Speed (m/min)
f Feed Rate (mm/rev)
d Depth of Cut (mm)
F Thrust Force, N
M Torque, Nm
r2 Tool Nose Radius
α major cutting edge angles
β end cutting edge angle

MAE Mean Root Square Error
RMSE Root Mean Square Error

R2 Coefficient of Determination

2. Methodology

2.1. Extreme Gradient Boosting (XGBoost) Algorithm

XGBoost is a supervised machine learning algorithm developed by [28], which has caught the
interest of researchers in various fields [29–32] due to its performance in terms of speed and accuracy.
The algorithm has yielded state-of-the-art results on many benchmark problems due to its scalability,
speed, distributed computing features and its ability to handle sparse data. XGBoost is an ensemble
algorithm that aggregates weak learners, classification, and regression trees (CART), to build a powerful
meta-learner for boosting performance. Let D =

{
(xi, yi)

}
define a dataset with n samples and m

features |D| = n, xiεRm, yiεR; the XGBoost algorithm ensembles K additive functions to predict the
outputs as:

ŷi = φ(xi) =
K∑

k=1

fk(xi) fk ε F (1)

in which the space of regression trees is denoted by F as:

F =
{

f (x) = ωq(x)

}
q : Rm

→ T, ω ∈ RT (2)

with q as the tree structure, T andω representing the number of leaf nodes and associated weights
respectively. To minimize the prediction error, we defined the regularized objective function as:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω( fk) (3)

with l as a differentiable convex loss function that defines the error between the actual and predicted
values whereas Ω presents the penalization function defined as:

Ω( fk) = γT +
1
2
λ
∣∣∣|w|∣∣∣2 (4)

The selection of hyperparameters of the XGBoost greatly impacts the model’s predictive accuracy.
Table 2 presents the hyperparameters of the XGBoost algorithm. Finding the optimal balance between
these parameters by trial and error could be challenging. To overcome this challenge, we propose a
novel XGBoost-SDA model to predict the tool wear of a drilling process.
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Table 2. XGBoost hyperparameters.

Parameter Description

D maximum tree depth

γ Regularization parameter to define the number of nodes in each tree

K Number of trees

η Learning rate

λ Regularization parameter

N Number of samples

In the next section, the spiral dynamic optimization algorithm is introduced and the integration
with XGBoost to optimize the hyperparameters is presented.

2.2. Spiral Dynamics Optimisation Algorithm (SDA)

A spiral dynamic algorithm (SDA) is a metaheuristic algorithm, which was developed by Tamura
and Yasuda [33] and is inspired by the spiral phenomena in nature. SDA was proven to outperform
many metaheuristic search algorithms in its convergence speed and accuracy, due to its diversification
and intensification search approach. In diversification it searches for good solutions within the
search space while intensification is used to search for the optimal values around the best solutions.
Table 3 presents the nomenclature of the SDA parameters. Algorithm 1 presents the SDA steps to
obtain the optimal solution.

Table 3. Spiral dynamic algorithm (SDA) optimization parameters.

Parameter Description

θ Rotation angle, 0 ≤ θ ≤ 2π

kmax Maximum iteration number.

R Convergence rate of distance between a point and the origin, 0 ≤ r ≤ 1

Ri, j Rotation matrix between xi and xj planes

M Dimension of the search space

Assuming R is a rotation matrix for the n-dimension SDA algorithm where it is defined as

Rn
i, j(θi, j) =

i j

i

j



1
. . .

1
cosθi, j · · · − sinθi, j

1
...

. . .
...

1
sinθi, j · · · cosθi, j

1
. . .

1



(5)

The n-dimension spiral dynamic model is expressed using the rotational matrix as:

xi(k + 1) = Sn(r,θ)xi(k) − (Sn(r,θ) − In)x∗ (6)
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where

Sn(r,θ)x(k) =
n−1∏
i=1

(
i∏

j=1

Rn
n−i,n+1− j(θn−i,n+1− j)) (7)

The n-dimension SDA optimization algorithm is then written as

Algorithm 1: Spiral dynamics optimization algorithm

Step 0: Preparation
Select the number of search points m ≥ 2
0 ≤ θ < 2π , 0 < r < 1 of Sn(r,θ) and maximum number of iterations kmax

Step 1: Initialization
Set initial points xi(0) ε Rn, i = 1, 2, . . . , m in the feasible region randomly and centered x∗

with x∗ = xig (0) with ig = argmin
i

f (xi(0)), i = 1, 2, . . . , m

Step 2: Update x

xi(k + 1) = Sn(r,θ)xi(k) − (Sn(r,θ) − In)x∗ for i = 1, 2, . . . , m

Step 3: Update x∗

x∗ = xi g(k + 1) with ig = argmin
i

f (xi(0)), i = 1, 2, . . . , m

Step 4: Check for the termination criteria
If k = kmax then terminate; otherwise set k = k + 1 and return to Step 2.

In this research, we propose a novel hybrid XGBoost-SDA algorithm for predicting the tool wear.
Figure 1 illustrates the proposed XGBoost-SDA flowchart.
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(XGBoost-SDA).

The process starts by splitting the dataset into training and testing datasets. The training dataset
presents 70% of the data to train the algorithm, while the remaining 30% are used for testing and
validating the algorithm for the prediction performance and accuracy. An initial XGBoost algorithm
is trained by the training data and the hyperparameters and the prediction accuracy is evaluated
by calculating the root mean square error (RMSE). The hyperparameters are then fed into the SDA
algorithm to find the best hyperparameter values with those that correspond to the lowest RMSE
value. The optimal hyperparameters are then used to initialize a new XGBoost algorithm, referred to
as XGBoost-SDA, to predict the tool wear values of the testing data set with the lowest RMSE.
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3. Results and Discussion

In this section, the analyzed performance of the XGBoost -SDA algorithm enabled tool wear
prediction model for drill wear prediction is reported. Tables 4–6 present the experimental dataset,
performance metrics of XGBoost-SDA and the prediction results of the flank wear for a copper
workpiece respectively with 49 experimental trials. While Tables 7–9 present the experimental dataset,
performance metrics of the XGBoost-SDA and the flank wear prediction results of a cast iron workpiece
respectively with 63 experimental trials.

The various trials provides combination of input parameters of spindle speed, drill diameter,
feed rate, thrust force, and torque. Figure 2 presents the pair-wise relationship between the various
inputs and the flank wear of the drilling process. It can be observed that the thrust force and torque
have a linear relationship with the flank wear output variable; whereas the drill diameter, feed rate
and spindle speed are in a non-linear relationship with the flank wear output variable.

Table 4. Experimental data for Copper workpiece [17].

Trial Spindle Speed
(rpm)

Drill Diameter
(mm)

Feed Rate
(mm/rev)

Thrust Force
(N)

Torque
(Nm)

Measured Flank Wear
(mm)

1 315 5 0.36 592 7.72 0.10

2 315 5 0.5 1210 13.39 0.08

3 315 5 0.71 1282 16.66 0.10

4 315 7.5 0.36 1866 12.74 0.16

5 315 7.5 0.5 1688 15.19 0.14

6 315 7.5 0.71 1828 17.15 0.12

7 315 10 0.36 3303 25.33 0.20

8 315 10 0.5 3413 29.54 0.21

9 315 10 0.71 3920 36.22 0.24

10 400 5 0.13 267 3.1 0.05

11 400 5 0.18 451 3.96 0.09

12 400 5 0.25 505 1.96 0.07

13 400 7.5 0.13 853 11.27 0.09

14 400 7.5 0.18 646 12.64 0.10

15 400 7.5 0.25 1051 16.54 0.10

16 400 10 0.13 2518 23.52 0.19

17 400 10 0.18 3921 26.78 0.20

18 400 10 0.25 4010 29.25 0.26

19 500 5 0.13 245 2.5 0.03

20 500 5 0.18 275 2.75 0.06

21 500 5 0.25 386 2.9 0.10

22 500 7.5 0.13 510 7.1 0.06

23 500 7.5 0.18 595 4.41 0.08

24 500 7.5 0.25 539 5.39 0.11

25 500 10 0.13 1925 19.253 0.11

26 500 10 0.18 3860 25.1 0.20

27 500 10 0.25 740 27.44 0.21

28 630 5 0.13 186 2.94 0.08

29 630 5 0.18 187 2.64 0.07

30 630 5 0.25 285 2.15 0.03

31 630 7.5 0.13 488 5.86 0.09

32 630 7.5 0.18 524 3.95 0.10

33 630 7.5 0.25 441 4.41 0.10

34 630 10 0.13 1258 10.11 0.12

35 630 10 0.18 1470 13.23 0.13
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Table 4. Cont.

Trial Spindle Speed
(rpm)

Drill Diameter
(mm)

Feed Rate
(mm/rev)

Thrust Force
(N)

Torque
(Nm)

Measured Flank Wear
(mm)

36 630 10 0.25 3077 5.68 0.18

37 800 5 0.5 1087 11.27 0.09

38 800 7.5 0.36 1666 8.66 0.13

39 800 7.5 0.5 1440 19.3 0.13

40 800 10 0.36 2234 22.34 0.16

41 800 10 0.5 2548 24.1 0.19

42 1000 5 0.36 421 4.21 0.06

43 1000 5 0.5 651 6.17 0.07

44 1000 7.5 0.36 554 5.39 0.10

45 1000 7.5 0.5 784 7.35 0.10

46 1000 7.5 0.71 970 8.05 0.12

47 1000 10 0.36 1460 12.25 0.14

48 1000 10 0.5 1960 18.13 0.13

49 1000 10 0.71 2009 20.58 0.17
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Figure 2. Pairwise relationship of different inputs with the flank wear of the copper workpiece.

High speed steel drill bits with different diameters (5, 7.5, and 10 mm) were used for drilling holes in the
mild steel and copper workpieces. The spindle speed was incremented in six equally spaced intervals from 315
to 1000 rpm. Similarly, the feed rate was also varied in six steps from 0.13 to 0.71 mm/rpm. However, the type
of wear in this machining process is adhesion due to its predominant wear factor in the drill cutting edges [34].

Different combinations of input parameters of spindle speed, feed rate and drill diameter were used to
perform 49 trials of drilling process. The spindle speed values are within the range between 250–500 rpm
and were varied in four steps. In addition, the feed rate was varied from 0.13 to 0.36 mm/rev in four steps.
The drill diameter values were of 9, 10, 11, and 12 mm and were used to drill 15 mm thickness of cast iron
workpiece. These three process parameters were used in 63 different combinations, and the corresponding
output of the experimental setup noted in terms of thrust force, torque, and flank wear.

A comparison between the results of the proposed method (XGBoost-SDA) with SVM and MLP-ANN
is provided in Tables 5 and 8. The comparison highlights the statistical performance metrics of each method
such as mean absolute error (MAE), root mean square error (RMSE) and the coefficient of determination (R2).
In order to demonstrate the performance of XGBoost-SDA algorithm for tool wear prediction, two illustrative
cases (copper and cast-iron workpiece), with datasets acquired from [17], were used in this simulation and
its performance was compared with results and methods of the SVM and a MLP-ANN.

Table 5. Performance comparison of XGBoost-SDA, support vector machines (SVM), and multilayer
perceptron artificial neural networks (MLP-ANN).

Metric XGBoost-SDA SVM MLP-ANN

MAE 4.67% 5.31% 8.87%

RMSE 5.32% 6.07% 10.86%

R2 0.9973 0.9952 0.9849
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Tables 6 and 9 present a comparison of the predicted values from the XGBoost-SDA, SVM,
and MLP with the experimental values of the copper and cast iron workpieces, respectively. The results
show that the predicted tool wear obtained by XGBoost-SDA closely matches the actual values of the
measured tool wear compared to the SVM and MLP methods, which visually confirmed how well the
XGBoost-SDA fitted the validation dataset.

Table 6. Prediction results of the flank wear in the drilling process (Copper Workpiece).

Trial Measured Flank Wear XGBoost-SDA MLP-ANN SVM

1 0.10 0.10 0.10 0.11

2 0.08 0.09 0.08 0.09

3 0.10 0.10 0.11 0.11

4 0.16 0.16 0.16 0.16

5 0.14 0.15 0.15 0.15

6 0.12 0.13 0.13 0.13

7 0.20 0.22 0.22 0.22

8 0.21 0.22 0.23 0.21

9 0.24 0.25 0.26 0.24

10 0.05 0.05 0.05 0.06

11 0.09 0.09 0.10 0.09

12 0.07 0.07 0.07 0.07

13 0.09 0.09 0.09 0.09

14 0.10 0.10 0.10 0.10

15 0.10 0.10 0.11 0.11

16 0.19 0.20 0.20 0.19

17 0.20 0.21 0.22 0.21

18 0.26 0.28 0.26 0.28

19 0.03 0.03 0.04 0.03

20 0.06 0.06 0.06 0.06

21 0.10 0.10 0.11 0.10

22 0.06 0.06 0.07 0.07

23 0.08 0.08 0.09 0.08

24 0.11 0.11 0.11 0.11

25 0.11 0.11 0.11 0.12

26 0.20 0.21 0.22 0.21

27 0.21 0.23 0.23 0.22

28 0.08 0.08 0.09 0.09

29 0.07 0.08 0.08 0.07

30 0.03 0.03 0.03 0.03

31 0.09 0.10 0.11 0.09

32 0.10 0.11 0.11 0.11

33 0.10 0.10 0.11 0.10

34 0.12 0.13 0.13 0.13

35 0.13 0.13 0.14 0.13

36 0.18 0.19 0.22 0.20

37 0.09 0.09 0.10 0.09

38 0.13 0.13 0.14 0.13

39 0.13 0.13 0.13 0.13

40 0.16 0.17 0.18 0.16

41 0.19 0.19 0.21 0.20

42 0.06 0.07 0.08 0.06

43 0.07 0.07 0.08 0.07

44 0.10 0.11 0.10 0.11
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Table 6. Cont.

Trial Measured Flank Wear XGBoost-SDA MLP-ANN SVM

45 0.10 0.10 0.12 0.10

46 0.12 0.13 0.12 0.12

47 0.14 0.14 0.16 0.15

48 0.13 0.14 0.14 0.13

49 0.17 0.18 0.18 0.18

However, as can be seen in Tables 5 and 8 all of the algorithms performed well, with slight
performance measures, in predicting the flank wear values of the drilling process. It should be noted
that XGBoost-SDA showed considerably better predictive performance, which outperformed SVM,
and MLP-ANN in terms of the three performance indicators. Moreover, in the case of the copper
workpiece, to ensure the reliability and efficiency of the XGBoost-SDA compared to the SVM and
MLP-ANN methods, it should be noted that the model resulted in a mean absolute error (MAE) of
4.67% that reflected the efficacy of the XGBoost-SDA model to predict the flank wear values to a
credible extent. In addition, the RMSE (Root Mean Square Error) value was 5.32% and the coefficient
of determination R2 was 0.9973 for the copper workpiece. For the cast iron workpiece, the results were
5.25% for RMS, 6.49% for MAE, and 0.9756 for R2, which reflects the good fit of the predicted values
against the measured flank wear values.

Figures 3–5 illustrate the predicted flank wear values, the absolute error and the R2 plot of a
copper workpiece. Similarly Figures 6–8 present the predicted flank wear values, the absolute error
and the R2 plot of a cast iron workpiece.

Figures 3 and 6 show the experimental flank wear values versus the predicted values that were
observed. The predicted data points for the 49 trails for the copper workpiece and 63 trails for the cast
iron agree with the experimental data, indicating the fitness of the model. They illustrate a comparison
plot between the experimental and predicted flank wear values. Simulations were carried out to
highlight the improvement of the proposed XGBoost-SDA over the SVM and MLP-ANN methods.
Figure 4 presents a comparison of the errors in predicting flank wear for the XGBoost-SDA compared
with the SVM and MLP-ANN for the copper workpiece. In predicting flank wear, the error with the
XGBOOST-SDA model was the lowest (4.67%). It was found that the predictive XGBoost-SDA model
was capable of better predictions of tool flank wear in the drilling process than the SVM and MLP-ANN
models if they had been trained within the range. Additionally, it is noted that MLP-ANN resulted in
higher prediction errors due to the fact that MLP-ANN requires tuning the number of layers as well as
the number of neurons per layer.
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Figures 5 and 8 show the measured flank wear values versus the predicted flank wear values of a
drilling process for the copper and cast-iron workpieces. The predicted and actual values were close
to the absolute line for the XGBoost-SDA, SVM, and MLP-ANN models. The predicted flank wear
obtained by XGBoost-SDA closely matches the actual values of measured flank wear, which visually
endorses how well the XGBoost-SDA fits the validation dataset. It can be seen that the XGBoost-SDA,
SVM, and MLP-ANN models could follow the tracks of actual tool wear effectively for both cases.
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Figure 5. Measured Flank wear values vs. predicted Flank wear values of a drilling process of a
copper workpiece.

Figure 7 shows the comparison of errors in predicting flank wear for the XGBoost-SDA compared
with the SVM and MLP-ANN for the cast iron workpiece. In predicting flank wear the error with
the XGBOOST-SDA model was the lowest (5.25%). It was found that the predictive XGBoost-SDA
model was capable of better predictions of tool flank wear in the drilling process than the SVM and
MLP-ANN models if they had been trained within the range.
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Table 7. Experimental Data for Cast Iron workpiece [17].

Trial Spindle Speed
(rpm)

Drill Diameter
(mm)

Feed Rate
(mm/rev)

Thrust Force
(N)

Torque
(Nm)

Measured Flank Wear
(mm)

1 250 9 0.13 1212.4 11.47 0.16

2 250 10 0.13 1677.3 16.01 0.12

3 250 11 0.13 1394.6 13.88 0.17

4 250 12 0.13 1578.2 15.62 0.2

5 250 9 0.18 1752.6 17.23 0.18

6 250 10 0.18 1869.7 18.64 0.18

7 250 11 0.18 2156.8 21.72 0.17

8 250 12 0.18 2163.4 21.41 0.17

9 250 9 0.25 2077.1 20.35 0.13

10 250 10 0.25 2824.2 28.11 0.17

11 250 11 0.25 2885.6 28.04 0.18

12 250 9 0.36 2816.7 28.22 0.14

13 250 10 0.36 3323.1 33.08 0.14

14 250 11 0.36 3001.4 29.14 0.17

15 250 12 0.36 3311.2 33.11 0.19

16 315 9 0.13 1185.2 11.43 0.15

17 315 10 0.13 1627.3 15.8 0.11

18 315 11 0.13 1342.9 13.61 0.13

19 315 12 0.13 1524.6 15.28 0.17

20 315 9 0.18 1707.8 16.97 0.16

21 315 10 0.18 1827.6 18.27 0.16

22 315 11 0.18 2097 21.03 0.16

23 315 12 0.18 2121.8 21.17 0.14

24 315 9 0.25 2025.8 20.06 0.11

25 315 10 0.25 2786.7 27.84 0.16

26 315 11 0.25 2753.8 27.68 0.16

27 315 12 0.25 2612.6 26.21 0.21

28 315 9 0.36 2778 27.82 0.12

29 315 10 0.36 3284.2 32.95 0.15

30 315 11 0.36 2860.1 28.55 0.15

31 315 12 0.36 3270 32.99 0.17

32 400 9 0.13 1150.9 11.22 0.12

33 400 10 0.13 1215.6 11.18 0.08

34 400 11 0.13 1318.6 13.04 0.11

35 400 12 0.13 1464.3 14.39 0.16

36 400 9 0.18 1486.4 15.01 0.15

37 400 10 0.18 1547.7 15.71 0.15

38 400 11 0.18 2067 20.71 0.14

39 400 12 0.18 2114.6 18.64 0.13

40 400 9 0.25 1642.8 16.36 0.1

41 400 10 0.25 1715.2 17.08 0.14

42 400 11 0.25 2538.9 25.42 0.15

43 400 12 0.25 2558.6 23.58 0.17

44 400 9 0.36 1721.3 17.64 0.11

45 400 10 0.36 1782.6 17.95 0.12

46 400 11 0.36 2752.7 27.66 0.12

47 400 12 0.36 2924.3 24.92 0.15

48 500 9 0.13 1088.1 10.67 0.1

49 500 10 0.13 1188.3 11.06 0.07

50 500 11 0.13 1254.9 12.54 0.1
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Table 7. Cont.

Trial Spindle Speed
(rpm)

Drill Diameter
(mm)

Feed Rate
(mm/rev)

Thrust Force
(N)

Torque
(Nm)

Measured Flank Wear
(mm)

51 500 12 0.13 1277.8 13.28 0.14

52 500 9 0.18 1435.1 14.66 0.13

53 500 10 0.18 1504.8 15.11 0.12

54 500 11 0.18 1556.8 18.32 0.13

55 500 12 0.18 1624.3 18.51 0.11

56 500 9 0.25 1588.3 16.04 0.06

57 500 10 0.25 1668.9 16.85 0.11

58 500 11 0.25 1724.3 23.41 0.14

59 500 12 0.25 1856.3 23.51 0.1

60 500 9 0.36 1669.8 17.12 0.09

61 500 10 0.36 1754.8 17.69 0.08

62 500 11 0.36 1869.4 24.65 0.09

63 500 12 0.36 2005.4 24.78 0.1

Table 8. Performance comparison of XGBoost-SDA, SVM, and MLP-ANN.

Metric XGBoost-SDA SVM MLP-ANN

MAE 5.25% 6.51% 7.13%

RMSE 6.49% 8.07% 8.83%

R2 0.9756 0.9633 0.9553

Table 9. Prediction results of the flank wear in drilling process (Cast Iron Workpiece).

Trial Measured Flank
Wear XGBoost-SDA MLP-ANN SVM

1 0.16 0.17 0.17 0.17

2 0.12 0.13 0.13 0.13

3 0.17 0.17 0.20 0.17

4 0.2 0.21 0.20 0.21

5 0.18 0.19 0.20 0.20

6 0.18 0.19 0.19 0.18

7 0.17 0.17 0.17 0.19

8 0.17 0.17 0.18 0.18

9 0.13 0.14 0.14 0.13

10 0.17 0.19 0.19 0.18

11 0.18 0.18 0.18 0.19

12 0.14 0.15 0.14 0.15

13 0.14 0.15 0.14 0.15

14 0.17 0.18 0.19 0.18

15 0.19 0.19 0.20 0.21

16 0.15 0.15 0.16 0.16

17 0.11 0.12 0.11 0.11

18 0.13 0.14 0.14 0.13

19 0.17 0.20 0.20 0.18

20 0.16 0.17 0.17 0.16

21 0.16 0.16 0.19 0.18
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Table 9. Cont.

Trial Measured Flank
Wear XGBoost-SDA MLP-ANN SVM

22 0.16 0.17 0.17 0.18

23 0.14 0.14 0.16 0.15

24 0.11 0.11 0.12 0.12

25 0.16 0.18 0.16 0.18

26 0.16 0.17 0.18 0.17

27 0.21 0.22 0.23 0.25

28 0.12 0.12 0.12 0.14

29 0.15 0.16 0.16 0.15

30 0.15 0.16 0.17 0.18

31 0.17 0.18 0.17 0.18

32 0.12 0.12 0.13 0.12

33 0.08 0.08 0.08 0.09

34 0.11 0.11 0.12 0.12

35 0.16 0.17 0.17 0.16

36 0.15 0.16 0.16 0.16

37 0.15 0.17 0.16 0.16

38 0.14 0.14 0.14 0.16

39 0.13 0.13 0.13 0.13

40 0.1 0.10 0.11 0.10

41 0.14 0.15 0.14 0.16

42 0.15 0.16 0.16 0.16

43 0.17 0.18 0.19 0.17

44 0.11 0.12 0.11 0.11

45 0.12 0.13 0.14 0.12

46 0.12 0.14 0.12 0.12

47 0.15 0.16 0.17 0.15

48 0.1 0.10 0.11 0.11

49 0.07 0.07 0.08 0.07

50 0.1 0.11 0.12 0.11

51 0.14 0.15 0.14 0.15

52 0.13 0.13 0.15 0.13

53 0.12 0.12 0.13 0.14

54 0.13 0.14 0.14 0.15

55 0.11 0.11 0.12 0.12

56 0.06 0.06 0.06 0.06

57 0.11 0.12 0.11 0.12

58 0.14 0.14 0.14 0.14

59 0.1 0.10 0.11 0.11

60 0.09 0.10 0.09 0.10

61 0.08 0.09 0.08 0.08

62 0.09 0.10 0.09 0.09

63 0.1 0.11 0.11 0.10
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4. Conclusions

In this research we have presented a novel hybrid XGBoost-SDA prediction model for the flank
wear of a drilling process. The strengths of XGBoost combined with the fast and accurate SDA showed
superior performance in terms of the accurate prediction of flank wear for copper and cast-iron datasets.
Simulations showed that XGBoost-SDA outperformed the state-of-the-art SVM and MLP-ANN models in
terms of MAE, RMSE and the coefficient of determination R2. These characteristics are important for
estimating flank wear with a given set of machine parameters and experimental trials. The predicted
flank wear values were matched with the measured values in order to demonstrate the efficiency of the
XGBoost-SDA. The predicted outcomes were found to be in close agreement with the experimental values.
In the drilling of the copper workpiece, the MAE between experimental and predicted surface roughness
values was 4.67%, while for the cast iron workpiece the MAE was 5.25%. A comparison of prediction
accuracy between SVM, MLP-ANN, and the proposed XGBoots-SDA was carried out; it showed that the
XGBoost-SDA resulted in greater accuracy in terms of the performance values in the drilling processes.
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