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Abstract: This paper presents a numerical two-scale framework for the simulation of fiber reinforced
concrete under impact loading. The numerical homogenization framework considers the full balance
of linear momentum at the microscale. This allows for the study of microscopic inertia effects affecting
the macroscale. After describing the ideas of the dynamic framework and the material models applied
at the microscale, the experimental behavior of the fiber and the fiber–matrix bond under varying
loading rates are discussed. To capture the most important features, a simplified matrix cracking
and a strain rate sensitive fiber pullout model are utilized at the microscale. A split Hopkinson
tension bar test is used as an example to present the capabilities of the framework to analyze different
sources of dynamic behavior measured at the macroscale. The induced loading wave is studied
and the influence of structural inertia on the measured signals within the simulation are verified.
Further parameter studies allow the analysis of the macroscopic response resulting from the rate
dependent fiber pullout as well as the direct study of the microscale inertia. Even though the material
models and the microscale discretization used within this study are simplified, the value of the
numerical two-scale framework to study material behavior under impact loading is demonstrated.

Keywords: computational homogenization; microscopic inertia; SHCC; ECC; HPFRCC; fiber pullout;
impact

1. Introduction

Strain-hardening cementitious composites (SHCC), also called engineered cementitious
composites (ECC), represent a novel type of high-performance fiber reinforced cementitious composites
(HPFRCC) consisting of fine grained cementitious matrices and high-performance polymer microfibers
typically in a volume content of 2%. The micromechanically regulated material design of SHCC
accounts for the mechanical and physical properties of the cementitious matrix, of the reinforcing fibers
and of their bond (see [1,2]). This ensures a strain-hardening tensile behavior of SHCC accompanied
by the formation of multiple, fine cracks under increasing deformation. The high strain capacity prior
to failure localization, notable damage tolerance and outstanding energy dissipation capacity make
SHCC promising as the main material for new structural elements and as strengthening layers applied
on existing structures subject to earthquake, impact or blast [3,4].

Given the pronounced rate sensitivity of SHCC in terms of tensile strength and strain capacity,
a targeted material design for applications involving dynamic loading requires a proper understanding
of the governing mechanisms and phenomena at the micro- and mesoscales [5]. Furthermore, the sound
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upscaling and application of the meso-level findings in the structural design involving SHCC should
be supported by adequate numerical scale-linking models. This is due to the fact that the assessment
and discrimination of various structural effects as inertia phenomena and complex fracture-mechanical
mechanisms is hardly possible based on structural tests alone (see [6–8]). Multiscale methods represent
a powerful tool to link the mesoscale and structural scale within the corresponding composite material.

The general idea of computational homogenization methods is to use a fine discretization
of the microscale as material input for a coarse macroscopic problem. This can reduce the
computational cost significantly, while including fine micromechanical details. There are various
frameworks that consider the dynamic effects of the microscale. There is the method of asymptotic
expansion (e.g., [9–12]) which is mainly based on the original work of Bensoussan et al. [13]
and then the more general theory of elastodynamic homogenization by Willis [14], applied by,
e.g., the authors of [15–17]. Both methods are limited to elastic, periodic media. A more general
approach is the micro-macro simulation based on a representative volume element (RVE). When the
finite element method (FEM) is used on both scales in a scale-coupled manner, it is called the
FE2 method. A comprehensive introduction to this theory including dynamics was given by
de Souza Neto et al. [18]. Within the FE2 method, there are still different approaches, usually optimized
to special conditions. The framework in [9] considers a quasi-static microstructure but then applies
an additional body force at the macroscale to account for microinertia effects. This framework was
extended by Karamnejad and Sluys [19] to account for localizations at the microscale under impact
loading. Further FE2 type schemes calculate the full balance of linear momentum at the microscale.
In [20], an explicit, periodic, small strain framework is presented for modeling resonant elastic
metamaterials. This was extended to an implicit time integration method by Liu and Reina [21].
By splitting the problem into a purely static and a special dynamic boundary value problem (BVP)
in [22,23], the assumption of linear elasticity is used to improve the computational performance.
To better capture a wider range of applied frequencies, the work of Sridhar et al. [24] uses a
Floquet–Bloch transformation to build a base of eigenmodes to analyze elastic, periodic metamaterials.

The framework applied in the article at hand is presented in [25]. It is also of FE2 type, but has a
more general approach. The formulations are compatible with standard FE architecture. To enable the
analysis of micromechanical processes such as plasticity or fiber pullout, as well as to incorporate effects
of geometric nonlinearities, the framework uses a finite-strain formulation. In addition, a kinematic
scale link is proposed which would allow the study of arbitrary crack paths. The framework is
applicable to lower frequencies, which makes it suitable for impact investigations.

This paper applies the developed homogenization method in [25] to study full sized SHCC
specimens under tensile impact loading, while simultaneously including the most relevant
microstructural mechanisms, such as matrix cracking and fiber pullout. To the best of the authors
knowledge, this is the first application of a multiscale framework which considers microinertia
for a simulation of fiber reinforced concrete to study the dynamic effects arising at the microscale.
In this paper, the experimental behavior of the constituents under different loading rates are presented
first. Subsequently, an overview of the dynamic FE2 framework is given, followed by a detailed
discussion of the material models used at the microscale. These aspects are combined into simulations
of split Hopkinson tension bar tests on SHCC samples, to showcase the possibilities of a dynamic
multiscale analysis.

2. Materials and Experimental Results

The microstructure simulated in this paper corresponds to a high-strength SHCC described
in detail in previous studies by Curosu and Mechtcherine [26,27]. The cementitious matrix has
a fine-grained nature with aggregates consisting of a relatively small content of fine sand with
particle sizes between 0.06 and 0.2 mm. The density of the SHCC is approximately 2135 kg/m3 [26,28].
The high-strength SHCC under investigation and the constitutive matrix have a Young’s modulus
of 29 GPa, while the compressive strength ranges between 130 and 140 MPa [26–28]. The tensile
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strength of the cementitious matrix under quasi-static loading is approximately 3.4 MPa [27].
The use of high-performance polymer micro-fibers in SHCC, such as ultra-high-molecular-weight
polyethylene (UHMWPE, shortened to PE), is motivated by their small diameter, high tensile strength,
moderate Young’s modulus and relatively high elongation capacity. All these properties are beneficial
for strain-hardening and steady-state cracking [2]. The PE fibers in the high-strength SHCC under
consideration have an average diameter of 20µm and a cut-length of 12 mm. The nominal tensile
strength as provided by the producer is approximately 2500 MPa, the Young’s modulus is 80 GPa and
the elongation at break is 3.5%. The PE fibers exhibit a hydrophobic nature and no chemical adhesion
to cementitious matrices [28]. Their bond is of frictional nature, whereas their uneven surface texture
ensures additionally a mechanical interlock during crack-bridging [5]. The geometric, surface and
mechanical properties of the applied PE fibers enable a controlled pullout behavior, and a balanced
post-peak softening behavior of SHCC under tension [28].

The mechanical properties of the fibers were assessed in single-fiber pullout experiments,
performed in an amplified piezoelectric actuator at displacement rates ranging from 0.005 to 50 mm/s
(strain rates between 0.001 and 1 s−1). The free length of the fibers in the tension experiments was
5 mm [5,26]. Additionally, pullout tests were performed in the same testing setup under identical
displacement rates as the single-fiber tension tests, whereas the embedment length was 2 mm.
For details regarding specimen preparation and testing configuration, see [5]. The single-fiber tension
experiments demonstrated a pronounced non-linear tensile behavior and rate-dependent tensile
strength, Young’s modulus and elongation capacity of the PE fibers. At higher displacement rates,
the fibers yielded an increase in tensile strength and Young’s modulus, but a decrease in elongation
capacity (see Figure 1). The results of the single-fiber pullout experiments are presented in Figure 2.
Note that the stroke in the testing device was limited to 1 mm and the fibers could not be pulled out
completely from the matrix specimens. The entire pullout pattern for this fiber–matrix combination
under quasi-static loading can be found in [28]. The pullout curves show an increase in bond strength
and slip-hardening degree with increasing displacement rate. Given the frictional bond and mechanical
anchorage of the hydrophobic fibers in the cementitious matrix, the increased pullout resistance with
increasing displacement rates was traced back to the rate-sensitive Young’s modulus of the fibers.
Assuming a rate independent Poisson’s ratio, the dynamically enhanced Young’s modulus limited
the radial contraction of the loaded fibers and consequently the reduction in interfacial confinement
during pullout.
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Figure 1. Results of PE fiber tension tests at different strain rates; data from [5,26].
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Figure 2. Results of PE fiber in pullout tests at different displacement/loading rates; data from [5,26].

Both the single-fiber tension and pullout experiments served as experimental basis for the
calibration of the micromechanical parameters in the developed numerical model. Due to the
limitations imposed by the testing facilities and measuring techniques, the micromechanical
experiments implied displacement rates considerably lower than the crack opening speeds in SHCC
subject to tensile impact loading in Hopkinson bar tests [5,29], which served for validation purposes
in the presented numerical study. Thus, for the modeling of SHCC, the derived micromechanical
parameters at higher strain/displacement rates were extrapolated assuming a linear rate dependency.
The discrepancy between these assumptions and the effective rate dependencies could be assessed in
the numerical parameter study presented in Section 5.

3. Numerical Two-Scale Framework Accounting for Microscopic Inertia

This section provides an overview of the assumptions the applied numerical multiscale
framework is based on and presents the resulting formulations necessary for an implementation
of the homogenization scheme. A more detailed description of the full derivation is given in [25].
The proposed framework is an FE2 homogenization method with the key characteristic that it considers
the full balance of linear momentum at the microscale. This enables the direct analysis of full dynamic
fields at the microscale, while simultaneously allowing the study of resulting effects at the macroscale.
Depicted is the two-way coupling, where each macroscopic integration point is associated with a
separate microscopic RVE simulation. The macroscopic values are required as input for the microscopic
boundary value problem (BVP). By using appropriate averaging relations and kinematic links,
a consistent scale bridging for dynamic loading is established. After solving for microscopic
equilibrium, the homogenized fields of stress P (here in terms of the first Piola–Kirchhoff
stress tensor) and the homogenized inertia force vector f

ρ
are passed to the macroscopic

problem, along with four essential tangent moduli AP,F
, AP,u

, A f,F
and A f,u

, representing the
derivatives of stress and body force with respect to deformation gradient F and displacement
u, respectively. In the following, values associated with the macroscale are indicated by
a bar •. To enable the analysis of versatile micromechanical phenomena, a finite-strain
formulation is used. The (undeformed) reference and the (deformed) current configuration
are linked by the displacement u = x − X, where X ∈ B refers to the coordinates in the
undeformed reference configuration and x ∈ S to the coordinates in the deformed configuration.
The transformation between the configurations in terms of vector elements is described by the
deformation and displacement gradients, respectively, F = ∂X x = 1 + H and H = ∂X u, such that
x = FX. To simplify the notation, the origin of the microscopic coordinates is chosen as the geometrical
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center of the RVE, with
∫
B X dV = 0. This choice has no influence on the results. Under the assumption

of scale separation, the microscopic deformation x can be split into a sum of terms,

x = u + FX + ũ. (1)

Two terms result directly from the macroscale: a constant part u, which describes the macroscopic
rigid body translations, and a homogeneous part FX, defined in terms of the macroscopic deformation
gradient. ũ denotes the microscopic displacement fluctuation field, which is the field the microscopic
BVP is solved for. Analogously, the microscopic deformation gradient can be written as

F = F + H̃ with H̃ = ∂X ũ. (2)

To account for the microscale dynamics, an extended version of the Hill–Mandel condition of
macro homogeneity also called the Principle of Multiscale Virtual Power is adopted, as base for the
derivation of the framework (cf. [18,30]). It ensures that the virtual work of the macroscale coincides
with its respective microscopic volume average. The resulting averaging equation for the effective
macroscopic stress P and the effective macroscopic body force vector f are given as

P = 〈P− f ⊗ X〉 and f = 〈 f 〉 . (3)

Herein, 〈•〉 = 1
V
∫
B •dV is an abbreviation for the volume average of a microscopic quantity.

A principal ingredient of the Hill–Mandel condition is the assumption of a clear separation of scales.
This stipulates that the fluctuations of mechanical fields at the microscale must be significantly smaller
than those of the macroscopic problem. For dynamic homogenization, this signifies in practice that
additionally the principal wavelength of the applied macroscopic loading must be sufficiently larger
than the size of the RVE. For dealing with time derivatives, the Newmark method [31] is applied—a
widely used implicit numerical time integration method of first order. First, the microscopic element
formulations are viewed in more detail. Subsequently, the respective macroscopic element equations
are given.

3.1. The Microscopic Problem

To allow a full dynamic analysis at the microscale, the microscopic balance of linear momentum
is given by

Div P + f = 0. (4)

This paper models impact loading, where gravitational forces are negligible compared to the
inertia forces. Therefore, only the inertia part of the body forces f ρ is considered here. The relevant
body force vector is defined as f := f ρ = −ρ0ü with ρ0 denoting the density of the microscale
components in the undeformed configuration. Following the standard FEM algorithm, the global
tangent stiffness matrix K̂ is assembled from the element matrix,

k̂e = ke +
1

β∆t2 me, with (5)

ke =
∫
Be

BeTABe dV and me =
∫
Be

Neρ0NeT
dV, (6)

where Ne is the classical element matrix of shape functions, Be denotes the B-matrix containing the
derivatives of the shape functions and A is the matrix representation of the material tangent modulus,
defined as A = ∂FP. β is one of the two Newmark parameters. Throughout this work, the parameters
are set as β = 0.25 and γ = 0.5. Analogously to the stiffness matrix, the global residuum matrix R̂ is
obtained by the assembly of the element-wise counterparts in matrix representation,



Materials 2020, 13, 4934 6 of 19

r̂e =
∫
Be

(
BeT

P + Neρ0ü
)

dV. (7)

After including Dirichlet boundary conditions, the resulting discrete system of equations at the
microscale reads

K̂∆D̃ = R̂. (8)

The macroscopic displacements and deformation gradient and their time derivatives are used to
define boundary conditions on the RVE (cf. (1)). To ensure a consistent application of the macroscopic
values, certain constraints need to be enforced at the microscale. The first kinematic link concerns the
deformation gradient, F = 〈F〉. It postulates that the volume average of the microscopic deformation
gradient must be equal the deformation gradient at the macroscale. This is prescribed by applying
periodic boundary conditions on the RVE. To enable a dynamic framework, it needs to be ensured that
no arbitrary rigid body motions are possible. Within this work, a simple solution is used for the second
kinematic constraint. By applying the macroscopic displacements u to the corners of the RVE and
simultaneously forcing the microscopic displacement fluctuations to be zero, a direct coupling of the
macroscopic displacements is achieved. This constraint is chosen a priori and might not be optimal for
all problems; however, for the problem at hand, it is well suited. A softer and more general constraint
which applies the macroscopic displacements as the volume average using Lagrange multipliers is
presented in [25].

3.2. The Macroscopic Problem

After identifying the formulations at the microscale based on macroscopic values, the bilateral
coupling is realized by defining the respective macroscopic values depending on the microscopic
fields (cf. (3)). In the same way as for the microscale, the complete macroscopic balance of linear
momentum including inertia is considered. Here, the weak form of linear momentum is given without
the contributions of external traction as,

G :=
∫
B

δF : P dV +
∫
B

δuT f
ρ

dV = 0. (9)

Once more, only body forces related to inertia are regarded, such that f := f
ρ
= 〈 f ρ〉. To apply

the standard Newton–Raphson scheme, the linearized balance of linear momentum is obtained as

LinG = G + ∆G = 0 with ∆G =
∫
B

δF : ∆P dV +
∫
B

δuT∆ f
ρ

dV. (10)

Within the multiscale framework, the macroscopic values of stress P and inertia f
ρ

are defined
in terms of the microscale. Furthermore, the microscopic fields depend on both the macroscopic
acceleration ü as well as the macroscopic deformation gradient F. Therefore, the effective macroscopic
stress and inertia for any given point at the macroscale are sensitive to both its displacement as well
as the respective deformation gradient. This is a special property arising from the consideration
of the microscale dynamics. From this observation, it follows directly that the linearized terms are
expanded as

∆P =
∂P
∂F

: ∆F +
∂P
∂ü
· ∆ü and ∆ f

ρ
=

∂ f
ρ

∂F
: ∆F +

∂ f
ρ

∂ü
· ∆ü. (11)

The four emerging sensitivities are defined as

AP,F
= ∂FP, AP,u

= ∂üP, A f,F
= ∂F f

ρ
and A f,u

= ∂ü f
ρ
. (12)
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By applying standard FE discretization to the linearized weak form (10) while considering (11),

the macroscopic element stiffness matrix k̂
e

and the element residuum vector r̂
e

are identified.
Here, the matrix representation of the moduli in index notation is used, where lowercase indices refer
to the spacial dimension ndm and uppercase indices to the total degrees of freedom of an element nedf.
This yields the definition of the full macroscopic element matrices as

k̂
e
PQ =

∫
Be

(
Be

ijPA
P,F
ijmnBe

mnQ +
1

β∆t2
Be

ijPA
P,u
ijk Ne

Qk

+Ne
PiA

f,F
imnBe

mnQ +
1

β∆t2
Ne

PiA
f,u
ik Ne

Qk

)
dV and (13)

r̂
e
P =

∫
Be

(
Be

ijPPij + Ne
Pi f

ρ
i

)
dV. (14)

By inserting the averaging equations into the definitions of the moduli and evaluating the
linearized weak form of the microscale at equilibrium, the four closed form expressions can
be identified in terms of the microscopic fields. This allows an efficient numerical algorithm.
The macroscopic tangent moduli have been presented in [25,32].

4. Micromechanical Material Models

To present the capability of the dynamic multiscale framework of analyzing microstructures
under impact loading, micromechanical models must be implemented that display the most important
characteristics. For SHCC, this involves the modeling of the matrix, including a possibility to include
cracks as well as the implementation of a fiber pullout mechanism.

4.1. SHCC Matrix

As the relevant loading considered within this work is tension, the complex behavior of the matrix
under compression can currently be neglected. Therefore the elastic Neo-Hooke material law is used
for the matrix material. The Neo-Hookean constitutive law yields a simple expression to model elastic
material behavior at large strains. The first Piola–Kirchhoff stress tensor is given as

P = (λ ln[det[F] ]− µ) F−T + µF, (15)

with the Lamé constants λ and µ. For more details, see, e.g., the work of Bonet and Wood [33]. In the
tensile regime, the crack development is the most important mechanical mechanism of the matrix. The
simulation of proper crack propagation is a highly complex field and not in the scope of the current
work. As an approximation, a simple erosion technique is implemented for the matrix. Once the
specified matrix material reaches a stress threshold σcr in loading direction, its stiffness is reduced to
a small value Ecr, resulting in an effective crack. As the threshold is evaluated at the local material
point, this method is mesh dependent. Therefore, only simulations using the same microscopic mesh
are directly compared. Due to the approximation of the fibers as truss elements directly connected
to the matrix nodes, this erosion method cannot be applied evenly to all matrix elements, as artificial
stress localization at the shared nodes would lead to a non-physical erosion of the fiber anchorages.
Consequently, the crack location needs to be defined before the computation.

4.2. Effective Fiber Pullout

The full fiber pullout is represented by a linear truss element. The effective material model
consists of a general 1D Neo-Hookean material law with two additional features. The model includes
a strain rate sensitivity, as observed in the micromechanical tests of the fiber material, and a damage
formulation to represent the pullout behavior (cf. Section 2). It is based on the simplified assumption
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that the fibers are engaged by a crack crossing it in the center, leading to the same pullout function for
all fibers. The standard 3D Neo-Hookean stress formulation can be simplified to 1D as

P =
1
2

E
(

F− 1
F

)
, (16)

where E is the Young’s modulus. This is then extended with a multiplicative approach to include a
damage and strain rate formulation as

P̂ = P (1 + Ω) (1− D) . (17)

Here, Ω denotes the dynamic increase, which takes on only positive values. It is defined using a
logarithmic function of the rate of the deformation gradient, as

Ω =

αI ln
[

Ḟ
αII

]
Ḟ ≥ αII

0 Ḟ < αII
. (18)

The two parameters αI and αII, respectively, determine the slope and zero value of the logarithmic
function. This allows an increase in stress for high deformation rates. The damage formulation is the
governing mechanism to represent the effective fiber pullout. The scalar parameter D takes on values
of 0 to 1, where 1 represents a fully damaged state, in this case a full fiber pullout. Applying the strain
equivalence principle, an exponential damage function has been chosen as

D = D∞

(
1− exp

(
−
(

ψD

Drate

)Dshape
))

. (19)

The damage value D is determined based on the internal variable ψD, representing the effective
energy considered for damage.

It is defined as the maximum value of the strain energy function ψ0 which has so far been
reached. Thus, the damage evolves only when ψ0 > ψD. This results in a discontinuous damage
approach. There are three material parameters associated with the damage formulation. D∞ defines
the maximum reachable damage value. The model parameter Drate > 0 influences the velocity of the
damage evolution, Dshape enables the modification of the overall shape of the function, where values
below 1 will increase the damage rate at the beginning, while decreasing it for larger deformations.

First, we analyze the strain rate effect without the damage formulation, modeling a simple
dynamic fiber tension test, as presented in Section 2. Figure 3a presents the stress strain curve of the
1D Neo-Hookean material for different strain rates. To compare the simulation to the experiment,
the secant modulus at maximum strain is plotted against the applied strain rate in Figure 3b. The linear
increase in stress plotted on a logarithmic scale is clearly visible.

Secondly, the damage formulation is activated and fitted to the presented single-fiber pullout
tests in Figure 2. The simulation uses two elements, one representing the free length of the fiber where
only the rate sensitivity is active, and the second element represents the embedded part of the fiber
where the pullout takes place. Here both the strain rate sensitivity as well as the damage is active.
The stress–strain curves for four different strain rates applied at the boundary are given in Figure 4.
Comparing this to the experimental results shows that the overall phases of debonding and pullout
are captured. The experiments under higher strain rates show a gradual shift from slip-softening to
slip-hardening (see Figure 2). This phenomenon has not been included in the model.
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Figure 3. Simulation of single-fiber tension tests with rate-dependent material properties: (a) stress–strain
diagram; and (b) the dynamic increase factor of the secant stiffness at fracture compared to experimental
results from [5]. Material parameters used: E = 50 kN/mm2, αI = 0.19 and αII = 1.8× 10−3.
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Figure 4. Simulation of single-fiber pullout tests for different strain rates. Material parameters for the
free length: E = 50 kN/mm2, αI = 0.19 and αII = 1.8× 10−3. Material parameters for the embedded
fiber: E = 300 kN/mm2, αI = 0.08, αII = 1.8× 10−3, D∞ = 0.998, Drate = 2.0 and Dshape = 0.2.

5. Numerical Examples

The last sections describe the multiscale framework as well as the material models created for
the microscale simulation. This section combines the two by using a well-known experimental
setup as example problem: the split Hopkinson tension bar. The present numerical study is
not intended as a validation of the framework. This has been conducted previously on other
structures (e.g., [25]). First, the experimental setup and results are discussed. Then, a quasi static
calculation is used to calibrate the numerical material parameters. Finally, the full split Hopkinson
bar simulation is presented and used to show the possibilities of the multiscale framework to perform
dynamic simulations.

5.1. Split Hopkinson Tension Bar Experiment

In the split Hopkinson tension bar setup [27], the specimen is sandwiched between two aluminum
bars having front and end surface contact, as visualized in Figure 5. The split Hopkinson tension
bar setup consists of an input bar of length 3 m and of an output bar 6 m long; both bars are made of
aluminum and have a diameter of 20 mm. A high-strength steel bar 6 m long having a diameter of
12 mm is used as a pre-tensioned bar for generating the loading pulse of trapezoidal shape of 2.4 ms
duration and with a rise-time of about 60µs (see Figure 6).
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Figure 5. Split Hopkinson tension bar setup, based on [5,27].
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Figure 6. The characteristic trapezoidal loading pulse of the modified split Hopkinson tension bar,
as measured in the in input bar, from [5,27]. Here, only the rise is depicted as the first crack occurs
before the plateau is reached.

The maximum displacement speed in the test was 6 m/s and the specimen length was 50 mm,
which ensured a peak strain rate of 120 s−1. The application of the elastic, uniaxial stress wave
propagation theory to the Hopkinson bar system [34] allows calculation of the forces and the
displacements acting on the two faces of the specimen in contact with the input and output bars,
respectively. From this, the stress at the two interfaces can be inferred, denoted as σ1 and σ2 within
this work. The specimen is assumed to reach dynamic stress equilibrium if the force-time responses
at both ends (derived in the input and output bar) approach each other. This condition imposes a
certain number of wave reverberations inside the specimen before damage initiation (cracking) and
it is essential for an accurate derivation of the stress–strain relationships. With a specimen length
of only 50 mm in the presented experiments, the dynamic stress equilibrium is reached before first
crack formation.

The resulting stress–strain curves are compared to quasi-static measurements in Figure 7.
Damage initiation in the matrix substantially reduces the stiffness of the specimen and the effective
strain rate in the matrix. This explains the high initial stress peak and the subsequent multiple cracking
occurring at lower stress levels. Moreover, the formation of cracks causes additional wave reflections
in the sample, leading to pronounced oscillations of the captured waves in both input and output bars
and resulting in an unsteadiness of the derived stress–strain curves, as shown in Figure 7.
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Figure 7. Experimental stress–strain curves for a split Hopkinson bar tension test with SHCC,
data from [5,27]. The quasi-static results are given in gray as a comparison.

Furthermore, the dynamic tensile curves in the split Hopkinson tension bar exhibit higher
stresses but lower strains at failure localization, this representing the characteristic rate sensitivity
of the high-strength SHCC. The rate-induced reduction of strain capacity can be traced back to a
considerably less pronounced multiple cracking compared to quasi-static conditions and is a result of
an exaggerated dynamic enhancement of the fiber–matrix bond compared to that of the fiber tensile
strength. Such unbalanced micromechanical rate sensitivities lead to a shift from fiber pullout to fiber
rupture at higher strain rates, which is disadvantageous with regard to strain-hardening and multiple
cracking. This phenomenon cannot be reproduced by the simplified numerical model presented in the
paper at hand.

5.2. Quasi-Static Simulation

Considering the simplified numerical models discussed in Section 4, there is no gain using a
complex microstructure. Processes that would benefit from a detailed microstructure with a realistic
distribution and number of fibers, e.g., crack evolution or a fiber pullout behavior depending on the
angle to the fracture face, are not within the scope of this paper. Therefore, it is sufficient to discretize
the microstructure as a single fiber intersected by a single crack embedded in a cubic RVE with an
edge length of 1 mm. The RVE is depicted in Figure 8a.

The mesh consists of three quadratic brick elements, two for the matrix and the one in the
center with the possibility for cracking. The embedded fiber is simulated by a single truss element
in loading direction. Unfortunately, the micromechanical measurements presented in the last section
cannot be directly extrapolated to the case of fully embedded fibers. Therefore, the two-scale
SHCC simulation is calibrated by using the results of a quasi-static tension test. To replicate
the quasi-static tension experiment, a multiscale simulation is used, which consists of five truss
elements at the macroscale. The bar is fixed at one end and a linear displacement load is applied
at the other. The stress is recorded at the boundary and the strain is computed as the boundary
displacement divided by the specimen length. The following material parameters are applied: for the
matrix, E = 29 kN/mm2 and ν = 0.3; for the crack, Ecr = 10−3 kN/mm2 and σcr = 5 N/mm2;
and, for the fiber, E = 40 kN/mm2, A = 0.18 mm2, D∞ = 0.9982, Dshape = 0.36 and Drate = 0.2.
The resulting stress–strain curve is compared to the experiment in Figure 8, including a zoomed-in
section up to the first crack. The overall fit is good; however, instead of a gradual strain-hardening
behavior, a sharp drop in stress is observed in the simulation once the first-crack stress σcr is reached.
The theoretical maximum value of σcr = 5 N/mm2 is not reached, mainly because of the local nature
of the applied erosion method. The phenomenon of the sharp drop in stress is due to the fact that
in a quasi-static setting a homogeneous stress state is obtained at the macroscale. Thus, as there is
no natural variation in material parameters, all RVEs fracture simultaneously. Nevertheless, after the
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cracking of the matrix, i.e., when the fibers are engaged, the general debonding behavior matches well
that observed in the experiment.
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Figure 8. Results of the quasi-static multiscale simulation compared to the experimental data
from [5,27]: (a) the loading up to 6% strain and the selected RVE; and (b) a zoomed-in detail of
(a), focusing on the cracking of the matrix in the RVEs.

5.3. Split Hopkinson Tension Bar Simulation

To properly capture the essential details, first the experimental setup needs to be replicated.
A sketch of the macroscopic BVP is given in Figure 9. It consists of a row of truss elements discretized
in 10-mm sections.

u(t)

2000 mm 50 mm 4000 mm

20
m

m

(a) (b)

Macroscale Microscale

single scale multiscale single scale

input bar specimen output bar

1 mm ×1 mm ×1 mm

Figure 9. Schematic visualization of the boundary value problem representing the split Hopkinson
tension test: (a) the macroscopic problem; and (b) the discretization of the SHCC microstructure applied
in the multiscale simulation of the test specimen.

The input and output bars are simulated with standard single scale elements, whereas the
two-scale homogenization framework is used for the SHCC specimen to include the simplified RVEs
at the microscale. The next step is the choice of the input load, which is applied via a displacement
boundary. Using the recorded signal from the experiments, a piece-wise polynomial function was
formulated to represent the loading conditions. It consists of three parts
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The transitions between the respective functions are at uI(0.592 tvc) = uII(0.592 tvc) and
uII(tvc) = uIII(tvc), so that the loading function is defined as

uBC(t) =


uI(t) 0 ≤ t ≤ 0.592 tvc

uII(t) 0.592 tvc < t ≤ tvc

uIII(t) t > tvc

. (23)

Figure 10 compares the chosen displacement function uBC and the time derivatives,
velocity and acceleration, to two experimental measurements.
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Figure 10. Loading function uBC (23) in (a), its first time derivative (b) and its second time derivative (c),
compared to the two experiments from [5], with tvc = 60µs and vc = 3540 mm/s.

Here, the significance of the two loading parameters is visible. The first parameter tvc defines the
time when the transition from the acceleration phase to the phase of constant velocity is completed.
The second parameter vc sets the constant velocity. These parameters are easily identified from the
experimental data. Even though the experimental data could directly be used as an input at the
boundary, the function has the advantage that parameter studies can be easily conducted to analyze
the influence of the loading conditions on the specimen’s response. In addition to the adjusted material
parameters used in the quasi-static calculation, further parameters accounting for the dynamics must
be selected. The same dynamic material parameters as identified for the fiber pullout experiments are
assumed: for the matrix and the crack, ρ0 = 2100 kg/m3 and, for the fiber, ρ0 = 980 kg/m3, αI = 0.08
and αII = 0.51. However, the values of αI and αII should only be viewed as a rough approximation,
as the experiments do not represent the same conditions as in the fully embedded fibers. In addition,
the applied strain rate during the split Hopkinson bar experiment is significantly higher than during
the single-fiber tension and fiber pullout tests. Therefore, the simulation does not lend itself to a
quantitative comparison with the experimental data, but enables a qualitative parameter study.

The first results of the split Hopkinson bar simulation are presented in Figure 11. It compares the
dynamic stress–strain curve to the quasi static results. The increase in stress level due to the dynamic
conditions is evident. In addition, a shift is observed from the instantaneous fracture of all RVEs in
the quasi-static case to a successive multiple cracking behavior, as also observed in the experiments.
A comparison of failure patterns in the quasi-static and dynamic computation, as conducted in
experimental tests, is not possible as such. With the applied homogenization technique the cracks
only appear at the microscale. Due to the embedded fibers, they act structurally not as macroscopic
cracks. The drop in stress at the end of the curve does not represent structural failure, which is further
discussed in Section 5.3.3. To further understand the results and showcase the utility of the numerical
framework, four parameter studies are conducted. Firstly, the two loading parameters are varied to
understand the general influence of the loading conditions. Secondly, the influence of the strain rate
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sensitivity of the effective fiber pullout model is studied. Finally, the effect of the microscale inertia
on the macroscopic measurements is presented. When comparing the dynamic numerical results in
Figure 11 to the experimental results in Figure 7, it is evident that the dynamic increase does not agree
accurately, as the simulated stress level is considerably higher. In addition to that, the experimental
results show an earlier structural failure, which was not achieved in the simulations. This is due to the
simplified fiber model in combination with the approximated microstructure.
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Figure 11. Results of the split Hopkinson tension bar simulation. The average of the stress–strain
signals at both interfaces (σ) compared to the quasi-static computation (QS). The zoom shows the initial
cracking of the matrix.

5.3.1. Parameter Study—tcv

To study the influence of the applied loading function, the parameter tvc is varied. A smaller
value tvc represents a faster rise time. This entails a higher acceleration. Therefore, this parameter
allows visualizing the influence of the initial acceleration on the measured signal. To better understand
the effects, the two signals σ1 and σ2 are each analyzed in a separate plot (see Figure 12).

With increasing acceleration, i.e., a shorter rise time tvc, the initial peak at the input face increases,
as well as the subsequent macroscopic stress fluctuations. The only noticeable difference at the output
face is a slight delay in stress increase for faster applied loads. This apparent delay is a simple result of
the analyzed properties, as for a constant wave speed through the specimen the wave front will reach
the output face at larger overall strains when the load is applied faster.
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Figure 12. Analysis of the variation in rise time tcv from 5× 10−4 s to 10−6 s, with vc = 3540 mm/s:
(a) the signal σ1 at the input face; and (b) the respective signal σ2 at the output face.
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5.3.2. Parameter Study—vcv

The other loading parameter is vc. It controls the constant velocity during the impact wave.
Increasing the velocity leads to a higher stress level during the loading pulse.

In addition to an increase in strain rate, the maximum acceleration during the initial phase
increases, as the elevated speed is reached in the same time frame. The resulting stress–strain curves
are depicted in Figure 13. The two effects discussed in the previous parameter study on tcv are
again observed. However, varying vc changes not only the initial loading phase but also the overall
stress–strain curve at the loading face. Therefore, the first stress peak observed in Figure 13a is a
combined result of the strain-rate sensitivity of the fibers and the macroscopic inertia. In addition,
with increasing vc, the stress equilibrium is reached only at higher strains. Another effect concerns the
drop in stress at the end of the curves. This is not a global failure but rather the result of a decrease in
strain rate, as is visible in the subsequent analysis. This parameter study demonstrates that, with a
reduction in the rise time of the loading wave, the condition of dynamic stress equilibrium in the sample
is violated and an experimental derivation of the material response based on the one-dimensional
wave theory is not accurate.
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Figure 13. Analysis of the variation of vc from 2000 to 14,160 mm/s, with tcv = 6× 10−5 s: (a) the signal
σ1 at the input face; and (b) the respective signal σ2 at the output face.

5.3.3. Parameter Study—Strain-Rate Sensitivity of the Fiber

After investigating the influence of the loading conditions on the obtained stress–strain curves,
the dynamic influence of the microscale simulation on the macroscopic response is analyzed.
First, the strain-rate sensitivity of the fiber is regarded. The results of the variation of αI are given in
Figure 14.

0 1 2 3 4 5
0

10

20

30

40

50

Strain in %

St
re

ss
σ

in
N

m
m

2

αI = 0.08 αI = 0.01
αI = 0.12 αI = 0.0

Figure 14. Analysis of the variation of the parameter αI from 0 to 0.12.
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Here, the stress average σ of the two recorded stress signals is shown. As expected, with increasing
strain-rate sensitivity of the fibers, the macroscopic stress level increases as well. From this analysis,
it is evident that the previously observed drop in stress is due to a reduction in strain rate. This effect
is due to a phase of a quasi-rigid translation of the specimen within the system, where the overall
deformation does not change, but at the same time the strain rate decreases. For higher values of
αI, the fibers are effectively stiffer, resulting in a higher wave speed though the specimen. Therefore,
the phase of quasi-rigid translation is reached earlier.

5.3.4. Parameter Study—Microinertia

Finally, the simulation is run without considering the inertia at the microscale compared to
the full dynamic simulation, as presented in Figure 11. The average of the measured stress at the
specimen interfaces is given in Figure 15, including a zoomed section to highlight the difference.
For the presented microstructure, the overall macroscopic behavior does not appear to be significantly
influenced by microscale inertia effects. This is not surprising, as the chosen RVE combined with
the microscopic material models only allows for moderate dynamic activity. High frequency stress
oscillations arising at the microscale once the crack has been formed are the results of the microcracks
being able to freely open and close, as the fiber is anchored at the RVE boundary.
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Figure 15. Analysis of the influence of microinertia on the macroscopic response.

6. Conclusions and Outlook

This paper presents a numerical study involving a multiscale simulation of a split Hopkinson
tension test on an SHCC specimen. The experimental loading conditions were replicated by
approximating the loading pulse with a piece-wise polynomial function. To analyze the dynamic
influence of various microscopic sources on the macroscale, such as the loading function, the strain-rate
sensitivity of the embedded fiber, or inertia, a parameter study was conducted. The first observation
is a substantial increase in specimen strength under impact. Compared to the experimental data,
the stress increase as well as the ultimate strain exceeded the expected values. However, the simulation
was able to replicate the phenomenon of multiple cracking, which could not be observed under
quasi-static conditions due to the combination of a homogeneous stress state and the lack of
variation in material properties. As expected, the variation of the loading wave, both for the
increased rise time and the changed plateau values, show a significant influence on the measured
signal. This showcases the need for numerical simulations accompanying dynamic experimental
tests, to properly quantify the influence of inertia and achieve a better understanding of the pure
material behavior. By changing the strain-rate sensitivity of the fiber, the extent of the influence
on the overall stress was clearly visible. In addition to that, it allows inferring that the observed
drop in stress is not a simulated failure of the specimen, but rather a phase of rigid translation,
which results in a decreased strain rate. This effect has so far not been observed in the experiments
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as structural failure occurs before. The analysis of the influence of the microscale inertia showed
for the chosen microstructure a negligible influence on the overall composite behavior. This does
not necessarily indicate that microscopic inertia is irrelevant for SHCC under dynamic loading.
It rather implies that more advanced micromechanical models need to be implemented before a
final statement regarding the influence of microscopic inertia can be made. It is expected that a
proper representation of crack propagation, combined with an improved fiber pullout simulation,
will show a changing behavior under high strain rates. This will indirectly influence the macroscopic
stress of the composite. Furthermore, there is the possibility that, for microstructures allowing for
multiple cracks, the direct effect of microinertia will increase. More research is needed to give a
definite answer. Nevertheless, the main insights from this numerical example are that this type of
analysis is only possible by using a two-scale framework that includes the full inertia effects at the
microscale. In conclusion, the utility of the multiscale homogenization framework for analyzing
dynamic conditions is shown. However, improvements of the micromechanical models and further
dynamic micromechanical experiments with fully embedded fibers are required to improve the
prediction capacity of the SHCC simulation.

For future investigations, the micromechanical testing configurations could be adapted for
higher displacement rates, such as presented in [35]. In addition, further micromechanical tests
with fully embedded fibers could be conducted. This would allow for a more realistic assessment of
the dynamic fiber tensile strength and fiber–matrix bond strength. More experimental data will enable
an improved calibration of the developed material models. Moreover, the constitutive morphology,
i.e., fiber distribution and orientation and flaw size distribution of SHCC, could be modeled based
on statistical measures obtained by microtomography scans [36]. This would allow a more realistic
simulation of the micromechanical and statistical influences on the multiple cracking process.
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