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Abstract: The influence of the electrostatic precipitator ash “Zolest-bet” and silica fume on the 
sulfate resistance of Portland cement was studied. The evaluation criteria were the expansion, 
strength, density, and appearance of the samples, hardened in a 5% Na2SO4 solution starting from 
3 days of age for 192 days at a temperature of 20 °C and 148 days at 40 °C. The mixture with the 
silica fume additive had the minimum expansion under the Na2SO4 action, and the mixture with the 
fly ash “Zolest-bet” additive had the greatest expansion. Zolest-bet ash in pure water shrank the 
mixture by 0.19 mm/m by the end of the hardening period, and it gave a linear expansion of 0.23 
mm/m in a Na2SO4 solution after hardening. The mixture can be considered sulfate resistant at a 
given value of linear expansion. Despite the greatest expansion, the compressive strength of the 
samples with the Zolest-bet additive was found to be the highest at hardening in both environments. 
The flexural strength was found to be the highest after being in Na2SO4 solution. The sulfate 
resistance of the mixture with silica fume was higher than that of the mixture based on sulfate-
resistant cement. This mixture did not have expansion in comparison with the initial length, instead 
it shrank, while the expansion of sulfate-resistant cement was 0.006% over the control period. The 
compressive strength of the mixture with the silica fume additive was slightly inferior to the 
strength of the mixture with Zolest-bet ash. 

Keywords: concrete; cement; fly ash; strength; thermal expansion; shrinkage; concrete density; 
sulfate resistance; silica fume 

 

1. Introduction 

The article contains research on sulfate resistance as a critical aspect of durability. Several studies 
have confirmed that durability is critical for building materials [1–3]. Fly ash is used as a partial 
replacement for Portland cement to improve the strength and sulfate resistance of concrete [4–6], as 
well as to obtain artificial aggregates [7,8]. There is evidence of a significant decrease in the diffusion 
rate in places where fly ash is present, as well as stabilization of calcium aluminate hydrates, which 
leads to an increase in resistance to sulfate attack. The results are consistent for cements with a C3A 
content of 9 to 12% [9]. 

Fly ash is usually replaced by 15–35% of cement by weight. This range is acceptable for 
replacement without a significant negative impact on concrete performance. Fly ash is divided into 
low-calcium fly ash with a CaO content of no more than 18% (class F) and high-calcium fly ash with 
a CaO content of more than 18% (class C) according to ASTM C618 [10]. 
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In scientific publications, such as [11–13] and others, other additives are known that are used in 
lightweight concrete and affect their performance. The properties of structures made on the basis of 
concrete with similar additives were studied in [13,14]. 

Low-calcium fly ash permanently improved the sulfate resistance of mortar based on Portland 
cement with high C3A content, and generally met the criteria for high sulfate resistance when 
containing 2 to 25% fly ash as cement replacement by mass. Fly ash with a high calcium content (i.e., 
CaO > 20%) had very different properties. The authors showed that fly ash replacement of 20% to 
40% resulted in increased expansion when compared to high C3A cement used alone. Mortars with 
different levels of high-calcium fly ash content can be produced in accordance with the criteria for 
high sulfate resistance. This can be achieved by using low-C3A Portland cements or ternary cement 
mixtures containing low levels of silica fume. [15]. However, fly ash with a similar chemical 
composition could have different physical characteristics [16], depending on the type and source of 
fuel, boiler system, and cooling system. In [17], 15 types of class C fly ash and 11 types of class F fly 
ash were investigated. Fly ash of class C contained from 19.5 to 32.5% CaO with an average diameter 
D50 of 1.3 to 3.1 microns, and fly ash of class F contained from 2.1 to 17.1% CaO with D50 = 1.6–2.4 
microns. In [18], a high-strength self-compacting concrete mix with high-calcium (class C) fly ash was 
designed. The compressive strength of the concrete was 100 MPa. It was found that with an 
equivalent w/b ratio, high-strength self-compacting concrete develops considerably higher 
compressive strength (more than 15 MPa) compared to that of conventionally vibrated high-strength 
concrete. 

Estonian oil shale has a special place among the sources of fuel ash. It is characterized by a high 
content of carbonate minerals. Therefore, shale ash contains a lot of free lime. The properties of shale 
ash depend on the chemical and mineral composition, which in turn depend on the combustion 
temperature. A temperature of 800 °C is for low-temperature circulating fluidized bed firing 
technology and 1400 °C is for high-temperature powdered fuel combustion. The pulverized fuel ash 
from electrostatic precipitators of high-temperature boilers is used as an additional binder in cement 
materials [19]. This type includes the fly ash “Zolest-bet”. This ash of burnt oil shale is supplied by 
Narva to the entire European part of Russia and beyond the Urals. 

The research in [20] was done to compare two types of shale ashes from the Narva power plant. 
The first type was cyclone ash and the second one was electrostatic precipitator ash. Both types had 
almost the same chemical composition. The cyclone ash significantly reduced the mechanical strength 
of the material and the electrostatic precipitator ash showed little change in the compressive strength 
and flexural strength. This may be due to its high dispersion. The electrostatic precipitator ash 
reduces the resistance of the material to solutions of sulfate salts more than cyclonic ash. However, 
at the same time, both ashes do not affect the frost resistance of the material. 

The Jordan Natural Resources Authority considers oil shale as one of the most important 
promising energy sources, and shale ash as an alternative to other types of pozzolana. The authors 
compared the compressive strength of cement mortar cubes and mortar cubes with cement and fly 
ash. Replacement levels of fly ash were 10, 20, and 30% by weight. The replacement of cement by oil 
shale ash reduced the compressive strength of the cubes by 7.4, 11.7, and 23%, respectively. The 
setting time of cement paste increased by 20, 30, and 50 min, and the soundness also increased by 0, 
0.5, and 1.5 mm due 10, 20, and 30% replacement of cement by oil shale ash, respectively. The 
experimental results confirmed that use of oil shale ash up to 20%, as there was no significant effect 
on the cement properties [21]. 

The research in [22] showed that an increase in the dispersion of shale ash significantly improves 
the rheology of the mixture and the rate of strength growth. 

The study in [23] showed that free lime did not affect normal consistency and water demand, 
and free lime content up to 4.5% had little chemical effect on mixtures with cement and fly ash, i.e., 
faster setting, higher early age compressive strength, and higher autoclave expansion. However, the 
autoclave expansion values were still within the standard range. In terms of durability, high free lime 
fly ash mixtures resulted in higher expansion due to alkaline aggregate reactions. 
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In addition to the chemical composition, morphology, and crystallinity, particle size has a great 
influence on the change in the hydration, which, in turn, leads to a change in the mechanical 
properties and durability of fly ash concrete [24,25]. The paper [26] notes that the processing type, 
rather than the chemical composition, has a stronger effect on the compressive strength. The research 
in [27] shows that curing conditions are the most important factor affecting the durability of fly ash 
concrete. The effect of curing on cementitious concrete is of much lesser importance. 

Investigating the action of two types of superplasticizers, the authors of [28] established that 
both types of superplasticizers were significantly less effective with geopolymers, compared with 
Portland cement paste. Polycarboxylate-based superplasticizer was more effective with class C than 
with class F fly ash. The naphthalene-based superplasticizer did not show much difference when 
added to the two types of fly ash. 

There is conflicting information in the literature regarding the characteristics of fly ash, in 
particular concerning shrinkage, high-temperature curing, water requirements, toxicity [29], etc. Due 
to the high variability of characteristics observed for mortars and concretes containing fly ash with 
high calcium content, there is a need to test individual specific combinations of materials. 

The objective of the work is the determination of the impact of electrostatic precipitator ash 
“Zolest-bet” and micro silica on the sulfate resistance of Portland cement in comparison with the 
sulfate resistance of a solution based on sulfate-resistant cement. 

2. Materials and Methods 

2.1. Testing Laboratory 

Concrete with fly ash was tested in the Polytech-SKiM-Test laboratory of Peter the Great St. 
Petersburg Polytechnic University (Saint Petersburg, Russia). 

2.2. Concrete Materials 

For the production of concrete, the following materials were used: 

1. Two types of Portland cement produced by OJSC Mordovcement (Mordovia, Russia). 

⎯ Portland cement CEM I 42.5 N. 
⎯ Sulfate-resistant Portland cement CEM I 32.5 SR5. 

The mineralogical composition of the cement is presented in Table 1. 

Table 1. Mineralogical composition of the cement. 

Cement 
Mineralogical Composition (%) Impurity Content (%) Specific Surface 

Area (cm2/g) C3S C2S C3A C4AF MgO SO3 Cl- R2O 
CEM I 42.5 N 60.1 18.3 5.27 13.4 1.12 2.73 0.005 0.77 3420 

CEM I 32.5 SR5 49.7 28.6 4.46 13.4 1.13 2.70 0.004 0.77 3440 

2. Natural sand from the Ostrovskoye deposit (Leningrad region, Russia). The fineness modulus 
is from 2 to 2.5. 

3. Silica fume MKU-85 produced by Yurga division of Kuznetskie Ferrosplavy (Yurga, Russia). 
4. The oil shale fly ash additive “Zolest-bet” is produced by Enefit Energiatootmine AS (Narva, 

Estonia) in two oil shale-fired thermal power plants, Eesti Power Plant (Eesti Elektrijaam) and 
Balti Power Plant (Balti Elektrijaam). This fly ash is a mineral residue from the combustion of oil 
shale at temperatures of about 1300–1400 °C. The average grain size is 12–25 microns. The bulk 
density is 1100 ± 50 kg/m3. The specific surface area is 300–350 m2/kg. The true density is 2850 ± 
50 kg/m3. The ash consists of C2S, CA, CaOfree, and CaSO4 predominantly in the form of glass 
with latent bonding properties. 

The chemical composition of the electrostatic precipitator ash “Zolest-bet” is presented in Table 2. 
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Table 2. Chemical composition of the fly ash (%). 

SiO2 CaO CaOfree MgO Fe2O3 Al2O3 SO3 K2O Na2O Loss on Ignition Chloride 
27.8 36.6 10.0 4.29 4.19 7.02 10.3 4.26 0.087 4.87 <0.1 

This fly ash is classified as class C (high CaO content) according to ASTM C618. 

2.3. Concrete Mix Proportion 

The mortar properties may vary slightly depending on the sequence of the addition of 
ingredients [30]. In this study, the standard mixing method was chosen. Concrete mixtures were 
produced using a standard concrete mixer for 90 s. The concrete mixer E093 manufactured by Matest 
(Arcore, Italy) was used in the test.Concrete mixtures are presented in Table 3. 

The prepared mixtures were used in the flow test with an initial diameter of 100 mm after 30 
shakes (see Table 3). 

Table 3. Concrete mixtures for sulfate durability test. 

Composition 
Name 

Type of Cement Type of 
Additive 

Material Content (g/L) Cone Flow Diameter after 30 
Shakes, mm CementSandAdditiveWater 

Control Mix CEM I 42.5 N - 500 116 - 250 116 
Mix No. 1 CEM I 42.5 N “Zolest-bet” 400 135 100 250 135 
Mix No. 2 CEM I 42.5 N Silica fume 400 102 100 250 102 
Mix No. 3 CEM I 32.5 N SR5 - 500 120 - 250 120 

From each mix, six beam samples with a size of 40 × 40 × 160 mm were made. Samples were 
made in special molds, making it possible to lay metal inserts at the ends of the samples for measuring 
shrinkage and thermal expansion. The samples were removed 1 day after production. The samples 
were stored in a normal hardening chamber for the first 3 days at a temperature of 20 ± 2 °C and a 
relative humidity of 95 ± 5%. After that, the initial length of the sample was measured using a device 
with a Mercer clock gauge with a scale division of 1 μm (Figure 1). 

 
Figure 1. Device for measuring sample deformation. 

Then, three samples of each mixture were stored in distilled water, and the other three samples 
were stored in a 5% Na2SO4 solution. Distilled water and sodium sulfate solution were periodically 
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replaced. Undistilled water was also available for the test. However, it would have reduced the 
leaching rate. In addition, the composition of undistilled water may have differed from case to case. 
Therefore, distilled water was chosen for experiments as a reference for comparison. 

During hardening, the increment in the length of the samples was measured at certain time 
intervals according to Russian State Standard GOST R 56687-2015 “Protection of concrete and 
reinforced-concrete constructions from corrosion. Test method of sulfate resistance of concrete”. 
After holding for 6 months, the compression strength and flexural strength of the samples were 
determined according to Russian State Standard GOST “Cements. Methods of bending and 
compression strength determination”. 

3. Results and Discussion 

3.1. Shrinkage and Expansion Test Results 

The hardening of all cement mixtures in water was accompanied by shrinkage (see Figure 2). An 
exception was the Control Mix, which had a short-term expansion to 0.11 mm/m on the seventh day 
of hardening. The hardening of the mixtures based on Portland cement CEM I 42.5 N (Control Mix, 
Mix No. 1, Mix No. 2) in 5% Na2SO4 solution showed at first a slight expansion (no more than 0.1 
mm/m), which then changed to shrinkage. After about 25–30 days from the moment of mixing, the 
expansion of all samples, which hardened both in water and in a Na2SO4 solution, began. This 
expansion of mixtures in water reached its maximum value by 120–140 days, after which shrinkage 
began again. A similar maximum on the deformation curve among the compositions in sodium 
sulfate solution took place only for the mixture with the addition of silica fume (Mix No. 2). Other 
mixtures expanded until the end of the test. The compositions of Control Mix and Mix No. 2 had 
curves No. 2, which remained in the negative region (Figure 2a,c). This means that the samples, both 
in water and in Na2SO4 solution, showed shrinkage deformation at the end of the test period (Control 
Mix and Mix No. 2). The other two compositions, Mix No. 1 and Mix No. 3, underwent shrinkage in 
water and expansion in the Na2SO4 solution. 

A small step on the deformation curves, and even expansion in the case of Control Mix and Mix 
No. 1, were observed in the initial section of shrinkage development. This circumstance and the 
subsequent wavelike nature of deformation indicated competition between contraction shrinkage 
and expansion under the action of the formed compounds and ordinary swelling in water. 

The extent of the effect of Na2SO4 on expansion in comparison with pure water can be seen in 
the area between curves 1 and 2, the values of which for 180 days are given in Table 4. 

Table 4 shows that the mixture with silica fume additive (Mix No. 2) has the smallest discrepancy 
between deformation in Na2SO4 solution and deformation in water, and, therefore, this mixture has 
the highest sulfate resistance. The mixture with the Zolest-bet additive (Mix No. 1) has the largest 
discrepancy between curves 1 and 2. The mixture based on sulfate-resistant cement (Mix No. 3) has, 
as expected, less expansion than the Control Mix based on Portland cement, but this expansion is 2.3 
times greater than the expansion of the mixture with silica fume additive (Mix No. 2). 

Table 4. Values of areas between deformation curves of samples in Na2SO4 solution and in water. 

Mixture Control Mix Mix No. 1 Mix No. 2 Mix No. 3 
Area (d·mm/m) 40.3 118.5 10.4 24.4 
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Figure 2. Shrinkage and expansion of compositions in time: (a) Control Mix; (b) mix with Zolest-bet 
additive (Mix No. 1); (c) mix with silica fume additive (Mix No. 2); (d) sulfate-resistant Portland 
cement (Mix No. 3); 1—at water hardening; 2—at 5% Na2SO4 solution hardening. 

A comparison of the mixtures by the deformation value in the same medium gives a slightly 
different picture (Figure 3). Typically, cementitious compositions swell when hardened in water. 
However, in this case, the samples were placed in water 3 days after production, when a sufficiently 
rigid skeleton of the material was formed. In this case, the penetration of moisture inside is difficult. 
At this age, the most intense contraction shrinkage of the material, which overlaps the swelling, 
occurs. After about 30 days of hardening, the shrinkage rate decreases and the expansion process 
begins to prevail. Despite this, the deformation values of all mixtures remain in the negative region 
(shrinkage region) (see Figure 3a). Under these conditions, sulfate-resistant Portland cement CEM I 
32.5 N SR5 has the lowest shrinkage, and the Control Mix based on Portland cement CEM I 42.5 N 
has the highest shrinkage. At the same time, replacing 20% of the cement in the Control Mix by Zolest-
bet additive (Mix No. 1) reduced the final shrinkage by almost 40%. A similar replacement of cement 
by silica fume reduces shrinkage by more than three times. 
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Figure 3. Shrinkage and expansion of compositions in time: (a) at water hardening; (b) at 5% Na2SO4 
solution hardening. 

The mix with Zolest-bet additive (Mix No. 1) in 5% Na2SO4 solution showed the highest 
expansion value (0.227 mm/m) at 180 days. Throughout this period, the deformation values of the 
mix with Zolest-bet additive were positive. The mix based on sulfate-resistant Portland cement 
remained in the shrinkage area until 70 days, and after that, it began to exceed the initial sample size. 
The final expansion of this mix was 0.06 mm/m. The best results were obtained for the mix with silica 
fume additive (Mix No. 2), the expansion of which did not go beyond the negative region. 
Additionally, in the area of shrinkage, the deformation of the Control Mix remained, but its shrinkage 
turned out to be higher than that of the mix with silica fume additive. 

Along with measuring the deformation, the mass increment of the samples was determined by 
weighing them on an electronic balance with a scale division of 0.01 g in the same periods. It was 
obvious that the increase in the mass of the samples occurred due to the absorption of either water 
or a Na2SO4 solution. The reverse process (weight reduction) could have occurred because of Ca(OH)2 
leaching. A definite relationship between the expansion and the amount of absorbed water or 
solution must have existed. However, the experiments did not show a stable correlation between 
these values, but there was something in common in the form of all curves in the form of a “pit” or a 
loop in the middle of the graph (Figure 4). 

The falling part of the loop indicates that shrinkage occurs despite the increase in the mass of 
the samples. Additionally, there is some similarity between curves 1 and 2 for each mixture. This 
suggests a possible correlation between the deformation values or mass increments for the same 
mixtures at the same time points. This correlation in the form of direct proportionality is obtained 
with a high degree of reliability (R2 = 0.992–0.998) for mass increments in water solution and in the 
salt solution (Figure 5, Table 5). There is little correlation between the deformation values in water 
and in solution (R2 = 0.133–0.980). 
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Figure 4. Deformation of compositions depending on the amount of absorbed substance: (a) Control 
Mix; (b) mix with Zolest-bet additive (Mix No. 1); (c) mix with silica fume additive (Mix No. 2); (d) 
sulfate-resistant Portland cement (Mix No. 3); 1—at water hardening; 2—at 5% Na2SO4 solution 
hardening. 

 
Figure 5. Mass increment of samples in Na2SO4 solution as a function of the mass increment in water 
at the same times. 
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Table 5 shows the values of the slope coefficients and the R-squared value of the relationship 
between the mass increment of the samples and the values of their deformations in solution and in 
water at the same time points. 

Table 5. Approximation parameters. 

Composition 
Name 

Correlation of Mass Increments Correlation of Deformations 
Slope 

Coefficient 
R-Squared 

Value 
Slope 

Coefficient 
R-Squared 

Value 
Control Mix 0.90 0.992 0.52 0.832 

Mix No. 1 1.08 0.999 −0.51 0.554 
Mix No. 2 1.03 0.995 0.69 0.980 
Mix No. 3 1.12 0.998 0.47 0.133 

All compositions 1.06 0.995 - - 

The presence of a correlation between the mass increment of the samples in water and in a 
Na2SO4 solution and the absence of such a relationship between changes in volume shows that these 
two processes are little related to each other. The mass increment is mainly determined by water 
consumption for cement hydration and absorption by the gel and contraction pores. The volume 
change is mainly due to contraction shrinkage, gel swelling, and the formation of expandable 
compounds. Direct proportionality here indicates that the Na2SO4 present in the solution, without 
practically affecting the hydration and associated processes, causes an additional water demand for 
the formation of hydrating compounds (gypsum and ettringite). In this case, the mass increment of 
the samples in the Na2SO4 solution in comparison with the mass increment in water increases with 
time in a constant percentage: for Mix No. 1 by 8%; for Mix No. 2 by 3%; for Mix No. 3 by 12%. In the 
case of the Control Mix, an inverse ratio of 10% is obtained. It is not possible to explain this 
circumstance within the framework of this article. 

3.2. Strength Test Results 

Another criterion for evaluating sulfate resistance, in addition to the expansion, is the strength 
of samples exposed to long-term aggressive environments. 

After the end of the shrinkage–expansion experiments, after 192 days, the test beams with 
dimensions of 40 × 40 × 160 mm were left in the corresponding media for another 138 days, but at a 
higher temperature of 40 °C. Thus, some samples were hardened in water and other ones in 5% 
Na2SO4 solution for 6 months at a temperature of 20 °C and 4.6 months at a temperature of 40 °C. 

Thereafter, the beams were tested for flexural strength at the age of 340 days. The halves of the 
beams were tested for compressive strength using standard 25 cm2 plates after the flexural strength 
test. 

The strength test results are shown in Figure 6. 

 
Figure 6. Sample strength after holding in water and in Na2SO4 solution for 340 days: (a) flexural 
strength; (b) compressive strength. 
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The mixture with the Zolest-bet additive (Mix No. 1) has the highest compressive strength after 
hardening both in water and in a Na2SO4 solution. The compressive strength of Mix No. 1 was 4% 
lower and the flexural strength 8% higher after hardened in Na2SO4 solution than after hardened in 
water. The strength of Mix No. 1 exceeded the compressive strength of the Control Mix by 24% (in 
water) and by 14% (in Na2SO4 solution). 

The compressive strength of the mixture with silica fume additive (Mix No. 2) turned out to be 
slightly lower than that of the mixture with the Zolest-bet additive (Mix No. 1). This decrease was 2.5 
and 1.0% in a water medium and in Na2SO4 solution, respectively. The flexural strength of Mix No. 
2, hardened in solution, was significantly lower than when hardened in water. Mix No. 2 had the 
lowest value among the samples that had a positive effect on strength from the Na2SO4 solution. 
However, the compressive strength when exposed to Na2SO4 decreased for all mixtures, except for 
samples based on sulfate-resistant cement (Mix No. 3). The strength of Mix No. 3 in an aggressive 
environment increased both in the flexural strength and in the compressive strength. 

3.3. Density Test Results 

The density of the samples was calculated from the results of periodic weighing. Before the start 
of the experiment, the dimensions of the samples were determined with an accuracy of 0.1 mm. The 
change in the sample due to shrinkage or expansion was taken into account when determining the 
volume. The volume correction was calculated from the measured relative change in the sample 
length and the proportional change in the other two dimensions. However, this correction turned out 
to be negligible. 

Table 6 shows the density values at the beginning of the experiment and after a 340-day 
immersion in water and in a 5% Na2SO4 solution. 

Table 6. Density test results. 

Composition 
Name Type of Cement 

Type of 
Additive 

Density (kg/m3) 
Water Hardening Na2SO4 Hardening  

before 
Experiment 

after 
Experiment 

before 
Experiment 

after 
Experiment 

Control Mix 
CEM I 42.5 N 

- 2220 2249 2220 2248 
Mix No. 1 “Zolest-bet” 2205 2254 2224 2276 
Mix No. 2 Silica fume 2144 2189 2166 2217 
Mix No. 3 CEM I 32.5 N SR5 - 2198 2242 2199 2247 

The density of the samples before the experiment did not depend on the hardening environment, 
because in the first three days, the samples of both series were in the same conditions. As a result of 
staying in the appropriate environment for 340 days, the density of the Control Mix increased in 
comparison with the initial one by 1.3%. The density of the other mixtures increased in comparison 
with the initial one by 2.0–2.4%, regardless of the environment. The density after the experiment of 
the mixtures without additives (Control Mix and Mix No. 3), both in the water and in the Na2SO4 
solution, turned out to be practically the same. The hardening conditions did not affect the density of 
mixtures with additives (Mix No. 1 and Mix No. 2). The density of these mixtures after being in the 
Na2SO4 solution turned out to be higher than the density after water hardening by 1.0 and 1.3%, 
respectively. 

3.4. Assessment of the Appearance of Samples 

The samples hardened in Na2SO4 solution, in contrast to the samples in water, have a lighter 
uneven color due to white efflorescence (see Figure 7). 

Structural damage in the form of cracks, delamination, and peeling of the surface were not found 
as a result of visual analysis of the samples. 
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Figure 7. Photo of samples after 340 days in water and in Na2SO4 solution. 

4. Conclusions 

1. The influence of the electrostatic precipitator ash “Zolest-bet” and silica fume on the sulfate 
resistance of Portland cement was studied. The evaluation criteria were the expansion, strength, 
density, and appearance of the samples, hardened in a 5% Na2SO4 solution starting from three days 
of age for 192 days at a temperature of 20 °C and 148 days at 40 °C. The test results were compared 
with the results of the mixture based on Portland cement without additives and a sulfate-resistant 
cement mixture. 

2. A variable character of sample deformation was established, both in pure water and in a 
Na2SO4 solution. This consisted of a change in the periods of shrinkage and expansion, which may 
indicate competition between contraction shrinkage and expansion under the action of the formed 
compounds and the swelling gel. The degree of influence of Na2SO4 on expansion was estimated from 
the area between the deformation curves of the samples in a Na2SO4 solution and in pure water for 
180 days. The mixture with the silica fume additive had the minimum expansion under the Na2SO4 

action, and the mixture with the fly ash “Zolest-bet” additive had the greatest expansion according 
to this indicator. 

3. A stable correlation between the expansion and the mass increment of the samples was not 
found in the experiments. A decrease in volume was observed when there was a mass increment. A 
directly proportional correlation between the values of mass increments in water and in Na2SO4 
solution for the same mixtures at the same time points was established. There is no correlation 
between the values of the corresponding deformations in water and in solution. 

4. Zolest-bet ash in pure water shrank the mixture by 0.19 mm/m by the end of the hardening 
period (180 days), and it gave a linear expansion of 0.23 mm/m (0.023%) in a Na2SO4 solution after 
hardening. The mixture can be considered sulfate resistant at a given value of linear expansion (norm 
≤ 0.1%). All the more sulfate-resistant mixtures should be considered, as the remaining ones had less 
expansion than the fly ash mixture. Despite the greatest expansion, the compressive strength of the 
samples with the Zolest-bet additive was found to be the highest after hardening in both 
environments. The flexural strength was found to be the highest after being in Na2SO4 solution. 

5. The sulfate resistance of the mixture with silica fume additive was higher than that of the 
mixture based on sulfate-resistant cement. This mixture did not expand in comparison with the initial 
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length, but, on the contrary, it shrank, while the expansion of sulfate-resistant cement was 0.006% 
over the control period. The compressive strength of the mixture with the silica fume additive was 
slightly inferior to the strength of the mixture with Zolest-bet ash. 
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