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Abstract: The main purpose of this paper is to propose, based on the literature review, a new
multiaxial fatigue strain criterion, analogous to the Dang Van stress criterion, considering the
maximum amplitude of the shear strain and volumetric strain. The proposed strain criterion was
successfully verified by fatigue tests in cyclic bending with torsion of specimens made of 2017A-T4
and 6082-T6 aluminum alloy. The scatter of test results for cyclic bending and the combination of
cyclic bending and torsion is included in the scatter of tests for the cyclic torsion of the analyzed
materials. Fracture surfaces for respective bending and torsion in the 6082-T6 aluminum test with
strain control showed that, in the case of bending, cracks can be observed that develop from the
surface of the specimen towards the bending plane. They are inclined from the fatigue crack at an
angle of 45◦ in relation to the crack surface and the remaining cracks come from the static fracture.
In the case of torsion, however, a conical fracture at 45◦ and a static torsion zone can be observed.
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1. Introduction

From the analysis of the literature data [1], it can be seen that there is no single system to compare
fatigue characteristics for tension-compression and torsion. This applies to both stress and strain
characteristics; differences also exist between individual groups of materials, i.e., high- and low-alloy
steels, aluminum alloys, non-ferrous metals etc. An additional problem is the consideration of stress
and strain gradients in case of bending and torsion. It is noteworthy that, in this case, the authors
usually do not take into account plastic strain and treat the material as elastic-brittle.

This paper presents the result of fatigue tests of 2017A-T4 and 6082-T6 aluminum alloys under
different load conditions, namely alternating bending and bilateral torsion and combinations of these
load conditions. The phenomenon of tension and bending occurs in virtually every industry [2], so it is
not surprising that these two load states are also considered in relation to material fatigue [3,4]. Most of
today’s fatigue characteristics are performed under tensile and compressive conditions. Unfortunately,
such a loading state very rarely occurs in real mechanical structures subjected to fatigue loads [5]. More
often it is oscillatory bending [6]. Such a situation makes the relation between the tension-compression
and alternating bending fatigue characteristics an interesting and current topic of considerations [7].
It should be noted here that in the case of bending, these characteristics are most often constructed
with the adoption of an ideally elastic body model. As already mentioned, for the analyzed materials,
within a large fatigue strength range, the tested materials behave as ideally elastic [8]. In order to
perform such an analysis, it is necessary to assume a linear distribution of strains across the section,
the Ramberg–Osgood relationship at each point and the condition that the integral of stresses across
the section balances the given bending moment. On the basis of previous tests of aluminum alloy
6082-T6 [8], it was possible to conclude that the stress and strain gradient remains unaffected by

Materials 2020, 13, 4850; doi:10.3390/ma13214850 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-2815-3311
https://orcid.org/0000-0003-4442-7287
https://orcid.org/0000-0001-7316-1858
http://dx.doi.org/10.3390/ma13214850
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/21/4850?type=check_update&version=2


Materials 2020, 13, 4850 2 of 21

the fatigue life of the tested material because the fatigue characteristics for alternating bending and
tension-compression were practically identical. Earlier analyses of these alloys also showed that plastic
deformations are virtually non-existent and the material behaves like an elastic-brittle material in
a wide range [8].

In the literature on fatigue life assessment, three types of multiaxial fatigue criteria (due to their
components) reducing complex states to a suitable uniaxial one can be noticed. These are the best
known and popular stress models, less common strain models and the so-called energy models
(otherwise stress–strain models). Recently, the most popular are those criteria that are defined in
the critical plane. Then, the equivalent stress value is usually a sum of shear and normal stress with
weighting factors. Another proposal is to add shear and hydrostatic stress with successive weighting
factors. In this respect, the best known and developed model is the Dang Van’s proposal.

The Dang Van criterion [9,10] is distinguished by a mesoscopic (grain level) scale of stress
observation. The Dang Van criterion assumes that fatigue does not occur if all grains reach the
elastic shakedown state. This means that after the initial loading period, the material will be
isotropically hardened and the further relation between stress and strain will take place the elastic
range. On a macroscopic scale, the material may be in the elastic state and in this case two states may
be distinguished:

1. All grains have reached the elastic deformation state, which means unlimited fatigue life;
2. Some grains have preferential slip planes oriented in a way that they do not reach the stable state

of elastic deformation, but they change to the stable plastic deformation (plastic shakedown)
state or the unstable plastic deformation (ratcheting) state, which means damage cumulation and
limited fatigue life.

The Dang Van criterion deletes the crack initiation condition and does not allow the fatigue
life calculation. The condition of exceeding the stabilized elastic deformation state is dependent on
mesoscopic shear and volumetric stresses. These stresses are related by a linear function in the form of

τ(t) + aσh(t) ≤ b. (1)

In amplitudes this criterion can be formulated as

τa,max + aσh ≤ b (2)

where a, b are constants determined from uniaxial fatigue tests

a =
(
τa f − 0.5σa f

)
/
(
σa f /3

)
(3)

b = τa f ,

τa,max—the value of the maximum mesoscopic shear stress is calculated from the mesoscopic
principal stresses according to the Tresca hypothesis, and the hydrostatic stress is calculated as

σh =
σ1 + σ2 + σ3

3
. (4)

This criterion is very popular in French research centers, with the vast majority of researchers
using this criterion, assuming that the stresses determined by standard macroscopic scale methods
are proportional to those on the mesoscopic scale, which allows the use of the Dang Van criterion in
engineering calculations [11].

The main reason of this paper is proposes, a new multiaxial fatigue strain criterion, analogous to
the Dang Van stress criterion, considering the maximum amplitude of the shear strain and volumetric
strain-based 2017A-T4 and 6082-T6 aluminum alloys under different load conditions.
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2. Fatigue Strain Fracture Criteria

When analyzing the issue of tension-compression, the Manson–Coffin–Basquin (MCB) model
must be mentioned [12–15]:

εa,t = εa,e + εa,p =
σ′ f

E

(
2N f

)b
+ ε′ f

(
2N f

)c
(5)

where:
εa,t—total strain amplitude expressed as the sum of amplitudes of elastic strain εa,e and plastic

strain, εa,p

2N f —number of load recurrence (semi-cycles),
E—Young’s modulus,
σ′ f , b—coefficient and exponent of fatigue strength,
ε′ f , c—coefficient and exponent of fatigue plastic deformation.
The original MCB characteristic was designed for tension-compression analysis of strain, stress

and number of cycles to failure.
Equation (5) is used only if it is possible to determine separately both the elastic εae and plastic εap

total strain component εat [16,17].
Then for cyclical loads we obtain:

εa,e =
σa

E
(6)

and
εa,p = εa,t − εa,e (7)

This relationship is described in the Ramberg–Osgood equation [18]:

εa,t = εa,e + εa,p =
σa

E
+

(
σa

K′

) 1
n′

(8)

where:
σa —stress amplitude,
K′ —cyclic strength factor,
n′ —exponent of cyclic hardening.
Similar to the Manson–Coffin–Basquin (MCB) Equation (5), a similar shearing model can be

proposed for tension-compression [19].

γa,t = γa,e + γa,p =
τ′ f

G

(
2N f

)b0
+ γ′ f

(
2N f

)c0 (9)

where:
γa,t —total non-dilatational strain amplitude expressed as the sum of the amplitudes of the pure

elastic strain γa,e and plastic strain γa,p,
2N f —number of load recurrence (semi-cycles),
G —shear modulus,
τ′ f , b0 —coefficient and exponent of shear fatigue strength,
γ′ f , c0 —coefficient and exponent of fatigue plastic deformation for shear.
Equation (9) as well as Equation (8) for tension-compression is only applied if it is possible to

determine separately both the elastic γa,e and the plastic γa,p component of the total strain γa,t.
Then for cyclical loads we obtain:

γa,e =
τa

G
(10)

and
γa,p = γa,t − γa,e (11)
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Most structural analyses are carried out using stress and strain tensors. An exception to this rule
is the model based on the maximum shear stress amplitude and hydrostatic stress—Equation (2). What
is interesting is whether the same approach can be applied to the strain model.

Therefore, a mean value can be determined; in other words, the hydrostatic strain, on the basis of
the normal components of the strain tensor given in the general formula

Tε =


εxx γxy/2 γxz/2

γyx/2 εyy γyz/2

γzy/2 γzy/2 εzz

 (12)

i.e., by analogy to Equation (4) we get

εh =
εxx + εyy + εzz

3
(13)

For further analysis, let us consider simple load conditions. For pure torsion at a given moment of
time we have a strain tensor

Tε =


0 γxy/2 0

γyx/2 0 0
0 0 0

 (14)

In this case, the deviator is equal to the tensor because in this system, the hydrostatic deformation
is equal to 0.

In such a case, the maximum amplitude of both the deviator and tensor of shear strain is

(γa/2)max = γyxa/2 (15)

Another simple case of load to consider is pure tension (compression), then in a given moment of
time we have a strain tensor

Tε =


εxx 0 0
0 −ϑεxx 0
0 0 −ϑεxx

 (16)

and the mean value (hydrostatic strain) according to Equation (13) is expressed as

εh =
εxx − ϑεxx − ϑεxx

3
=

1− 2ϑ
3

εxx (17)

Here, it is worth noting that in the case of a strain tensor for uniaxial tension-compression we have

(γa/2)max (18)

As mentioned earlier in the literature, we most often deal with multiaxial fatigue criteria formulated
in terms of stress. However, in practice, we measure strain because strains are measurable, while the
stress criteria fail when plastic deformations occur, and it is worth remembering that the strain criteria
are more universal in the full range of fatigue life, although they are more difficult in formulation.
Therefore, below you will find the strain criteria that are most commonly used in practice.

There are few literature reviews of strain criteria with particular emphasis on those defined in the
critical plane. One of the exceptions is the work of Karolczuk [20,21].

Brown and Miller [22] proposed the criterion of multiaxial material fatigue, which assumes that
fatigue life is a non-linear function of the strain state. The contour with a constant strength is presented
in the general equation as

ε1 − ε3

2
= f

[
ε1 + ε3

2

]
or
γ13

2
= f [εn]. (19)
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The criterion was proposed as a result of observation of initiation and propagation of fatigue
cracks. It was observed that in many metals, the crack initiation process occurs on crystallographic slip
planes and is controlled by shear strain. In the first stage (Stage I), cracks propagate at the maximum
shear planes as a process of slip and decohesion. For most materials, the second stage of propagation
(Stage II) is a continuation of slip and decohesion processes. However, cracks may propagate through
voids (defects), especially in brittle materials (grey cast iron). The second but important effect is the
effect of normal strain acting in the plane of the maximum shear strain. This strain affects the mobility
of dislocation and decohesion associated with slip processes. Considering both effects, Brown and
Miller came to the conclusion that the maximum shear and normal strain in the plane of maximum
non-dilatational strain are the parameters that determine fatigue life. The critical plane is the plane
with the greatest shear strain γ13. Brown and Miller have introduced two types of cracks: type A
and B. For the case A, the crack develops along the surface of the material. For the case B, the crack
develops inside the material. Cases A and B occur for both stage I and II. For pure torsion the case A
applies, while the case B is for biaxial tension-compression (e.g., cross specimens). For a tension-torsion
combination, there is always the case A. This criterion, formulated in its general Equation (19), was
reduced to a linear function by Kandil–Brown–Miller [23].

∆γ13

2
+ S∆εn = C, (20)

where S is an experimentally determined constant called the effect factor of normal strain. It should
be noted here that the use of deformation ranges in Equation (20) is justified only in the case of
proportional loads. In order to take into account the effects of disproportionality and varying amplitude
of strains, Wang and Brown [24] proposed modifications to Criterion (20) in the form of

∆γns

2
+ S∆ε∗n = (1 + νe + (1− νe)S)

σ f ′

E
(2N f )

b +
(
1 + νp +

(
1− νp

)
S
)
ε f ′(2N f )

c. (21)

The difference between Equations (20) and (21) lies in the different definitions of the range of
normal strain. Normal strain ε∗n (normal strain excursion) is calculated on the plane of the maximum
range of the shear strain in the cycle with the greatest range ∆γns. The range of non-dilatational strain
is calculated along the direction s in the plane with normal n:

ε∗n = max
tA<t<tB

{
εn(t)

}
− min

tA<t<tB

{
εn(t)

}
= εn, max − εn, min, (22)

where: tA and tB are the beginning and the end of the load cycle. The value ε∗n is always taken as
a positive value even in compression, because for a range with a small number of cycles (LCF) the
influence of the mean strain value is small (according to the authors [24]). The critical plane is one of
the planes with the maximum range of the non-dilatational strain, for which ∆ε∗n it assumes a higher
value. The authors signal the usefulness of the proposed criterion for a range of high number of cycles
(HCF) provided the influence of the average load value in Equation (20) is considered. Equation (21)
covers both A and B cracking cases:

γeq,a =
∆γns

2
+ S∆εn − case A, (23)

γeq,a =
∆γns

2
− case B. (24)

For case B, no impact of load disproportionality is assumed (S = 0). In case B, the plane of
maximum shear strain is at an angle of 45◦ to the surface of the material.

Socie et al. [25,26] and Liu et al. [27] observed fatigue cracks in the field of deformation. According
to them, the normal strain εn in the plane of maximum shear strain γns accelerates the material
degradation process by opening the fatigue gap, thus reducing the friction forces between the slip
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planes. The criterion also takes the effect of the mean normal stress value σn,m in the plane with
maximum amplitude of non-dilatational strain γns,a into account. Equivalent strain amplitude γeq,a is
calculated from the relationship

γeq,a = γns,a + εn,a +
σn,m

E
(25)

The material will not be subject to failure before the number of cycles N satisfy the following condition:

γeq,a ≤ γkr(N), (26)

where γkr(N) is a critical strain dependent on the number of cycles N = N f . Based on the fatigue
analysis of various materials, Fatemi and Socie [28] noted that the Equation (25) does not take into
account the hardening of the material occurring during non-proportional loading. In order to take this
phenomenon into account, they modified Equation (25), replacing the normal strain value εn,a in the
critical plane, with the maximum value of normal stress σn, max. The critical plane is the plane with
the maximum amplitude of shear strain γns,a. For a given number of cycles up to the failure N f , the
aforementioned strain and stress form the function

γns,a

(
1 + n

σn, max

Re

)
= const, (27)

where n is an experimentally selected constant. For the low cycle load range (LCF), the relation (4.53)
is expressed as a function of the number of cycles to failure as [28]

γns,a
(
1 + nσn,max

Re

)
= (1 + νe)

σ f ′

E

(
2N f

)b
+ n

2 (1 + νe)
σ2

f ′

ERe

(
2N f

)2b
+(

1 + νp
)
ε f ′

(
2N f

)c n
2

(
1 + νp

) ε f ′σ f ′

Re

(
2N f

)b+c (28)

Macha, similarly to the stress criterion [29], made a generalization of some of the strain criteria.
The detailed assumptions of this criterion are as follows:

- Fatigue cracking occurs under normal strain εn(t) and shear strain εns(t) occurring in the direction
s on the critical plane of normal n;

- The direction s in the plane of normal n coincides with the mean direction of the maximum
non-dilatational strain;

- For a given fatigue life, the maximum value of the linear strain combination εn(t) and εns(t) under
multiaxial random load conditions satisfies the equation

max
t

{
bεns(t) + kεn(t)

}
= q (29)

where b, k, q are constants to choose the specific version of the criterion.
Ogonowski and Łagoda [30] detailed Macha’s general criterion [29], giving the formula for

determining the b and k coefficients. For the plane of maximum non-dilatational strains, the equivalent
strain is determined from the following general equation

εeq(t) = max
ns

{
bεns(t)

}
+ kεn(t) (30)

where ns is the critical plane with maximum shear strain. In order to apply the criterion to the low
number of cycles (LCF) range, Karolczuk, Łagoda, Ogonowski proposed the division of strain into
elastic and plastic [31]. This procedure allowed to derive the equations into the form of coefficients b
and k based on uniaxial fatigue tests. Therefore, Equation (30) takes the form of

εeq(t) = max
ns

{
bεns(t)

}
+ kεn(t) (31)
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where
b = 2εa

(
2N f

)
/γa

(
2N f

)
(32)

is the coefficient depending on the number of cycles to failure, N f ; ke, kp are the coefficients depending
on the number of cycles N f for the elastic and the plastic parts, respectively, derived from the cyclic
torsion test; εe

n, εp
n is the adequately elastic and plastic part of the normal strain in the plane of normal

n. The ke, kp factors are determined as follows:

ke =
2

1− νe

1− εe
a

(
2N f

)
γe

a

(
2N f

) (1 + νe)

 (33)

kp =
2

1− νp

1− ε
p
a

(
2N f

)
γ

p
a

(
2N f

) (1 + νp
) (34)

where νe, νp are Poisson’s ratios for elastic and plastic strain respectively (νp = 0.5 and νp = 0.5); γe
a, γp

a
is the correspondingly elastic and plastic part of the shear strain in the cyclic torsion test. Factors b and
ke, kp depend on the number of cycles to failure N f , which requires the method of finding a solution
to a non-linear equation with one unknown (N f ). This equation results from the calculation of the
equivalent strain amplitude εeq,a in the critical plane (pre-determined plane of maximum strain) and
comparison of this value with the strain amplitude of the Manson–Coffin–Basquin equation.

Shang De-Guang and Wang De-Jun [32,33] proposed a criterion for a small number of cycles in
a non-linear form based on Huber–Mises–Hencky’s (H–M–H) proposal. The equivalent form of strain
amplitude is calculated from the formula

εeq,a =

√
(ε∗n)

2 +
1
3
γ2

ns,a (35)

where ε∗n is the normal strain in the critical plane calculated similar to Brown–Miller–Kandil’s
proposal [23] Equation (20). The normal and shear strains are determined in the critical plane with
the maximum shear strain. In the case of several planes with the same maximum shear strain value,
the critical plane is the plane with the greater value of normal strain ε∗n. The number of cycles to
failure is determined from the Manson–Coffin–Basquin fatigue characteristics. The direct transfer of
the mathematical formula of the H–M–H hypothesis to calculate the equivalent strain amplitude in the
critical plane has no physical justification and raises a number of doubts concerning the correctness of
such a transfer. There is no connection between the energy of the non-dilatational strain, which is the
basis of the H–M–H hypothesis, and the proposed solution.

3. Materials and Methods

In the present study, the tension-compression and alternating bending characteristics and bilateral
torsion characteristic with the assumption of an ideally elastic body model were compared using stress
and strain characterization models [34–36]. The analysis was carried out on the basis of fatigue tests of
aluminum alloy 2017A and 6082 in the two load states under consideration. Moreover, the analysis
was carried out on the basis of experimental studies with a proportional combination of cyclic bending
with torsion.

The chemical composition of the material is summarized in Table 1. While the basic mechanical
properties of the materials under consideration are presented in Table 2. The main difference between
these materials is that 2017A aluminum is rich in copper, and 6082 aluminum has an increased silicon
content compared to 2017A.

Basic research within a small number of tension-compression cycles was carried out for 2017A-T4
at the Opole University of Technology [37], and for 6082-T6 in cooperation with the Institute Laboratory
for Materials and Construction Research at the University of Science and Technology in Bydgoszcz [38].
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Fatigue tests for alternating bending, bilateral torsion and combinations of cyclic proportional
bending and torsion were carried out on the fatigue machines, which in the equipment of the laboratory
of the Department of Mechanics and Machine Design of the Opole University of Technology [39].

Table 1. Chemical composition of aluminum alloys (in %) (Al—the rest).

Aluminum Cu Mg Mn Si Fe Zr + Ti Zn Cr

2017(A) 3.5–4.5 0.4–1.0 0.4–1.0 0.6 <0.7 <0.25 <0.25 <0.25
6082 <0.1 0.6–1.2 0.4–1.0 0.7–1.3 <0.5 <0.1 <0.2 <0.25

Table 2. Basic mechanical parameters of analyzed aluminum alloys.

Aluminum E, GPa σy, MPa σu, MPa A5 % ν

2017(A)-T4 72 395 545 21 0.32
6082-T6 77 365 385 27.2 0.32

3.1. Tension and Compression Tests

The aim of the tests was to determine the basic fatigue characteristics of aluminum alloy specimens
at ambient temperature.

After the analysis of the results of the static tension test, it was proposed to carry out the low cycle
tests for aluminum 2017A-T4 at six levels of total strain amplitude εac: 0.3%, 0.4%, 0.5%, 0.6%, 0.65%,
0.7% with strain ratio R = −1.13 samples were used for the tests.

For 6082-T6 aluminum, on the other hand, there are five levels of total strain amplitude εac: 0.35%,
0.5%, 0.8%, 1.0%, 2.0% with strain ratio R = −1.16 samples were used.

The specimens were made according to the Polish standard PN-84/H-04334 [40].
In order to determine the levels of strain under low-cycle test conditions, they were preceded by a

static tensile test. During the test, specimens of 2017A and 6082 alloys were used for fatigue test, the
forms of which are shown in Figure 1a,b, respectively.
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Figure 1. Uniaxial tension/compression specimens (a) 2017A, (b) 6082, (dimensions are in mm).

Based on the results of the uniaxial tension-compression fatigue tests, the material constants found
in the Manson–Coffin–Basquin Equation (5) and Ramberg–Osgood Equation (8) characteristics are
listed in Table 3.
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Table 3. Cyclic parameters of analyzed aluminum alloys.

Aluminum K’, MPa n’ σ’f, MPa ε’f b c

2017(A)-T4 617 0.066 643 1.879 −0.065 −0.988
6082-T6 616 0.099 533 0.185 −0.066 −0.634

3.2. Cyclic Proportional Torsion and Bending Tests

Cylindrical “diabolo” type specimens without geometric notch were used in fatigue tests.
The geometry of the specimens used results from the facilitated location of the site with the highest
stress. Fatigue tests were carried out on “diabolo” specimens (Figure 2) at the test stands belonging to
the Faculty of Mechanical Engineering of the Opole University of Technology. The starting material
was a circular bar with a diameter of ϕ16 mm. The tests for both materials were performed for a
combination of bending and torsion at controlled torque. In addition, for aluminum 6082, controlled
strain tests were performed for alternating bending and bilateral torsion.
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Figure 2. Shape and dimensions of fatigue test specimen, (dimensions are in mm).

Fatigue tests at the controlled moment were performed on the stand shown in Figure 3, the strain
tests were performed on the new stand shown in Figure 4. In this case, the amplitude of lever deflection
was controlled, which, in effect, gives control of the strain on the specimen. A detailed description of
the operation of these stands can be found in numerous works of the Opole University of Technology
employees, especially in [39].
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Using both the torque control station and strain control station, and by means of an appropriate head
positioning (Figure 5), various combinations of proportional cyclic bending and torsion were achieved.
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Figure 5. Interpretation of lever angle β.

The value of the torsion Ms(t) and bending Mg(t) moments is linked to the relationship

tgβ =
Ms(t)
Mg(t)

. (36)

If β = 0 the specimen is bent, at β = π/2 the specimen is twisted.
In intermediate positions 0 < β < π/2, both moments occur simultaneously according to

dependencies:
Mgα(t) = (Masinωt)cosβ, (37)
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Msα(t) = (Masinωt)sinβ. (38)

The result of both moments is a stress state in which the stresses σ(t) and τ(t) change their values
according to phase and frequency (proportional loads):

σβa(t) = σaαsinωt, (39)

τβa(t) = τaαsinωt, (40)

The values of normal stresses σβa(t) and shear stresses τβa(t) within the elastic range can
be determined

σβ(t) =
Mgα(t)

Wx
, (41)

τβ(t) =
Msα(t)

W0
, (42)

where

Wx =
πd3

32
(43)

is the cross-section bending modulus, and

W0 =
πd3

16
(44)

is the cross-section twisting modulus.
For both materials, tests were carried out with the following head settings, i.e., angle
β = 0◦ (bending), β = 22.5◦, β = 45◦, β = 67.5◦ and β = 90◦ (torsion). The intermediate angle

setting gives the ratio of amplitudes for non-dilatational strain

kstrain =
γa/2
εa

(45)

The result is a combination of bending and torsion kstrain: 0.318, 0.660 and 1.352.
For both controlled moment and controlled strain fatigue tests, the fatigue life was assumed to

be the point when the crack was visible to the naked eye, i.e., about 1 mm. In the case of controlled
strain, the course of the moment amplitude was recorded simultaneously, which, at the same time,
fell rapidly. In these tests, the strain in bending at the most stressed point and the shear strain for
torsion were controlled accordingly. The pattern of moment was recorded in parallel. The moment of
initiation of the fatigue crack, and thus the fatigue life, was assumed to be the moment of rapid (15%)
decrease, which was equivalent to the appearance of a crack visible to the naked eye on the surface of
the tested specimen.

4. Results

Figures 6 and 7 show microscopic images of fracture surfaces for bending and torsion for 6082-T6
aluminum tests, respectively. These tests were carried out with controlled strain, which resulted
in a very stable operation of the new stand while maintaining the structure of the fracture during
its cracking. In the case of bending, cracks can be observed which develop from the surface of the
specimen towards the bending plane. They are inclined at 45◦ to the crack surface. The development
of such cracks has already been pointed out in [41]. The cross-section photographs and 3D scans of
fatigue cracks were taken on two different optical scanning microscopes; for Figures 6 and 7, we used
Huvitz HRM-300 and for 8 and 9 Sensofar S neox3D optical profiler with focus variation method.

In case of aluminum, a neutral plain also passes through, approximately, the geometrical center
of the specimen; however, it is not as clear as in case of the analyzed steel. Yet, in this case, there are
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clear pits oriented at the angle of 45◦ towards the breakthrough surface. Such a cracking manner is
described by, inter alia, Schijve in [42].

However, in case of the tests analyzed, these pits are of a slightly different nature. The pits visible
in Figure 8 are in the shape of double shear lips and they run from the external surface to approximately
2/3 length along the line perpendicular to the bending plane. This cracking manner was anticipated
and described in the study [43]. These pits are better visible in a microscopic image.

Additionally, a typical cross-section of the sample for alternating bending is shown in Figure 8
and for torsion in Figure 9. These images clearly show the point of initiation and the neutral plane
with respect to which the bending took place, as well as the part of the static fracture and, in the case of
torsion, the conical crack at an angle of 45◦ and the zone of static torsion.
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5. Discussion of Comparison of Strain Fatigue Characteristics

The comparison of strain fatigue characteristics is presented in more detail, among others, in [44].
As it has been shown, the relationship between the characteristics, and in particular between individual
constants occurring in the tension-compression (oscillatory bending) and shear (bilateral torsion)
characteristics, varies and depends largely on the type of material. Sometimes fatigue is determined by
normal strain, sometimes by shear strain and sometimes by a combination of these two. As mentioned
earlier, the full fatigue characteristics according to Equations (5) and (9) will not be used in this
work because the aluminum alloys analyzed behave like practically elastic bodies in a wide range.
Previous [45,46] analyses for these materials show that even at maximum loads in the analyzed tests
the assumption of an elastic-plastic body significantly hinders the modelling of fatigue strength and
the decrease in stress amplitude is only 2 MPa, which corresponds to very slight plastic strain and,
consequently, a minimal increase in total strain. Therefore, simplified formulas analogous to Basquin’s
model were used for normal strain for oscillatory pendulum bending:

εa = ε′′ f ·N
bε
f (46)
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where
ε′′ f = σ′ f /E· (47)

and the shear strain for bilateral torsion:

γa = γ′′ f /2·Nbγ
f (48)

where

γ′′ f =
τ′ f

G
. (49)

The results of the calculations of fatigue characteristics as a function of the number of cycles
according to Equations (46) and (47) are presented in Table 4, and graphically in Figures 10a and 11a for
aluminum 2017A and 6082, respectively. Such a procedure could be performed because, in a very large
range of fatigue lifetime, the analyzed materials behave as perfectly elastic materials. The necessary
constants were determined from the tension-compression and torsion relationships for the durability
in the middle durability range, i.e., 105 cycles. This could be done this way because although these
characteristics are not parallel, they do not differ significantly from this parallelism (0.118/1.208 and
0.213/0.188 for 2017A and 6082, respectively). The oscillatory bending characteristics and bilateral
torsion are almost parallel, which is very important [46], but the individual calculations in the last two
columns of the table mentioned above were made for fatigue strength from about the middle part of
the determined characteristics, that is, for 105 cycles.

Table 4. Cyclic parameters of analyzed aluminum alloys.

Aluminum ε”f bε γ”f/2 bγ
γaf/2
εaf

(105) aε(105)

2017A-T4 0.0128 −0.118 0.0112 −0.126 1.208 1.14
6082-T6 0.0403 −0.213 0.0202 −0.188 0.968 −0.18

Earlier analyses [47] showed that the ratio τ′ f /σ′ f theoretically fits in the range of

1
√

3
<
τ′ f

σ′ f
<

1
1 + ϑ

(50)

but for different materials, the ratio often goes beyond that.
With the assumption of elasticity, Equation (50) a can be presented in the strain-related form as:

1 + ϑ
√

3
<
γa f /2

εa f
< 1 (51)

Using data in Table 4, the relation from the equation can also be determined for 105 cycles. As a
result, it turns out that this ratio is within the range given in Equation (50) for aluminum 6082-T6 and
is slightly higher than 1 for 2017A. However, it can be seen that if the ratio of the newly introduced

values
γ′′ f /2
ε′′ f

was used, we would have a perfect match of results with the theory.
Further analysis shows that these characteristics are almost parallel and their coefficients are very

similar. Unfortunately, the lower fatigue strength range for which pure twisting tests were performed
limits the possibility of a full analysis of these relationships. However, it can be clearly seen that for a
smaller fatigue strength, the scatter of test results is small, and for larger ones it is relatively high.

It can be noted that many models (19)–(21), (23)–(25), (27), (28), (30), (31), (35) are based on the
amplitude of the maximum shear strain. Therefore, such amplitudes were determined for alternating
bending tests and compared with the shear strain amplitudes for aluminum 2017A and 6082 respectively
in Figures 10b and 11b. A simple analysis shows that for aluminum 6082, the maximum amplitude of
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the shear strain is a sufficient damage parameter, and
γa f /2
εa f

(105) is around 1. This cannot be said for
the second aluminum 2017A.
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Figure 11. Fatigue characteristics for oscillatory bending and symmetrical torsion (a) according to the
set strain amplitudes (b) according to the maximum shear strain amplitude for bending and torsion of
aluminum 6082-T6.

Therefore, a new form of strain criterion was proposed, based on maximum amplitude of the
shear and hydrostatic strain, analogous to the stress Equation (2). This criterion is as follows

γa,max/2 + aεεh ≤ bε (52)
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Therefore, the expression for equivalent strain amplitude can be formulated as

γa,eq/2 = γa,max/2 + aεεh (53)

Taking into account simple load conditions and using the data presented in Table 4, the specific
form of this criterion is obtained from the calculations for the number of cycles to destruction 105,

i.e., for
γa f /2
εa f

aε =
3

1− 2ϑ

(
γa f/2

εa f

)
−

3(1 + ϑ)

2(1− 2ϑ)
(54)

bε =
γa f

2
(55)

where εa f and γa f concern the amplitudes of the relevant normal strain and shear strain from the
strain fatigue characteristics for the specified fatigue strength. In the case under consideration, this is
assumed for a life of 105 cycles.

Graphic interpretation of this criterion is shown in Figure 12. This figure shows the general

position of the characteristic Equation (53). Basically, the ratio
γa f /2
εa f

must not be less than 1 and the
corresponding k-factor less than 0. If that were the case, the characteristics would increase and it would
mean that hydrostatic strain increases the fatigue strength. Therefore, in Table 4 for aluminum 6082-T6
extreme values of 1 and 0, respectively, are adopted. This discrepancy must result from the scattering
of the fatigue life and, therefore, the inaccurate determination of these coefficients.
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Figure 12. Graphical interpretation takes the amplitude of the maximum shear and hydrostatic strain
into consideration.

Then, using the individual test results for alternating bending, bilateral torsion and a combination
of these loads at a different kstrain ratio Equation (45) of the bending and torsion combination for the two
aluminum alloys under analysis. A new form of criterion Equation (53) was used for the calculations,
and the results are shown in Figures 13 and 14 against the background of the fatigue characteristics for
pure cyclic torsion, extending these characteristics with a dashed line over the range of lower fatigue
strength. From the analysis of these figures, it can be seen that the strain criterion was successfully
verified by fatigue tests in cyclic bending with torsion of samples made of alluvium alloy 2017A-T4
and 6082-T6. It can be seen that the scatter of the test results for cyclic bending and the combination of
cyclic bending and torsion is included in the scatter of the cyclic torsion tests on the materials analyzed.
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6. Conclusions

1. The paper proposes a new strain criterion of multiaxial fatigue analogous to the Dang Van stress
criterion, taking into account the maximum amplitude of the shear strain and hydrostatic strain.

2. The proposed strain criterion was successfully verified by fatigue tests in cyclic bending with
torsion of specimens made of 2017A-T4 and 6082-T6 aluminum alloy.

3. The scatter of test results for cyclic bending and the combination of cyclic bending and torsion are
included in the scatter of tests for cyclic torsion of the analyzed materials.

4. The fracture surfaces for bending and torsion, respectively, in 6082-T6 aluminum test with strain
control showed that in bending, cracks can be observed which develop from the surface of the
test piece towards the bending plane. They are inclined from the fatigue crack at an angle of 45◦

in relation to the crack surface and then part of the static fracture. In the case of torsion, a conical
fracture at 45◦ and a static fracture zone can be observed.
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List of Symbols

2N f number of cycles (semi-cycles)
E Young’s modulus
G shear modulus
K′ cyclic strength factor
n′ exponent of cyclic hardening
t time
ε′ f , c coefficient and exponent of fatigue plastic deformation
εa,t total strain amplitude
εa,e, εa,p elastic and plastic strain amplitude respectively
εh hydrostatic strain
γa,t total shear strain amplitude
γa,max maximum of shear strain amplitude
γ′ f , c0 coefficient and exponent of fatigue plastic deformation for shear
νe, νp Poisson’s ratios for elastic and plastic strain respectively
σa normal stress amplitude
σ′ f , b coefficient and exponent of fatigue strength
γa,e, γa,p pure elastic and plastic strain respectively
τ′ f , b0 coefficient and exponent of shear fatigue strength
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Normalizacji, Miar i Jakości: Warszawa, Poland, 1984.

41. Kurek, A.; Łagoda, T. Fracture of elastic-brittle and elastic-plastic material in cantilever cyclic bending. Frat.
Integrita Strutt. 2019, 13, 42–49. [CrossRef]

42. Schijve, J. Fatigue of structures and materials in the 20th century and the state of the art. Int. J. Fatigue
2003, 25, 679–702. [CrossRef]

43. De Oliveira, J.A.; Kowal, J.; Gungor, S.; Fitzpatrick, M. Determination of normal and shear residual stresses
from fracture surface mismatch. Mater. Des. 2015, 83, 176–184. [CrossRef]

44. Kurek, A.; Kurek, M.; Łagoda, T. Stress-life curve for high and low cycle fatigue. J. Theor. Appl. Mech.
2019, 57, 677–684. [CrossRef]

45. Kurek, A.; Koziarska, J.; Łagoda, T. Strain characteristics of non-ferrous metals obtained on the basic of
different loads. MATEC Web Conf. 2018, 165, 15005. [CrossRef]

46. Kurek, M. Including the normal to shear stresses ratio in fatigue life estimation for cyclic loadings. MATEC
Web Conf. 2019, 300, 15005. [CrossRef]

47. Łagoda, T.; Kulesa, A.; Kurek, A.; Koziarska, J. Correlation of uniaxial cyclic torsion and tension-compression
for low-cycle fatigue. Mater. Sci. 2018, 53, 522–531. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijfatigue.2006.12.005
http://dx.doi.org/10.1016/S0142-1123(97)00123-0
http://dx.doi.org/10.1002/mawe.201400203
http://dx.doi.org/10.1111/j.1460-2695.1990.tb00607.x
http://dx.doi.org/10.1016/j.ijfatigue.2011.04.001
http://dx.doi.org/10.1063/1.5066463
http://dx.doi.org/10.3221/IGF-ESIS.48.06
http://dx.doi.org/10.1016/S0142-1123(03)00051-3
http://dx.doi.org/10.1016/j.matdes.2015.06.014
http://dx.doi.org/10.15632/jtam-pl/110126
http://dx.doi.org/10.1051/matecconf/201816515005
http://dx.doi.org/10.1051/matecconf/201930015005
http://dx.doi.org/10.1007/s11003-018-0105-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fatigue Strain Fracture Criteria 
	Materials and Methods 
	Tension and Compression Tests 
	Cyclic Proportional Torsion and Bending Tests 

	Results 
	Discussion of Comparison of Strain Fatigue Characteristics 
	Conclusions 
	References

