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Abstract: We use gas phase deposition of well-defined nanoparticles (NPs) to fabricate closely-spaced
Pd NP arrays on flexible membranes prepatterned with interdigital electrodes (IDEs). The evolution of
the morphology and electron conductance of the NP arrays during deposition is analyzed. The growth
of two-dimensional percolation clusters of interconnected NPs, which correlate with the percolation
pathway for electron conduction in the NP deposits, is demonstrated. The percolative nature of
the NP arrays permits us to finely control the percolation geometries and conductance of the NP
film by controlling the NP deposition time so as to realize a precise and reproducible fabrication of
sensing materials. Electron transport measurements reveal that the electrical conductance of the NP
films is dominated by electron tunneling or hopping across the NP percolating networks. Based on
the percolative and quantum tunneling nature, the closely-spaced Pd NP films on PET membranes are
used as flexible strain sensors. The sensor demonstrates an excellent response ability to distinguish
tiny deformations down to 5×10−4 strain and a high sensitivity with a large gauge factor of 200 up to
4% applied strain.

Keywords: nanoparticle arrays; gas phase deposition; percolation; quantum conductance;
strain sensors

1. Introduction

Strain and pressure sensors are important micro-electro-mechanical system (MEMS) devices,
with applications in various areas such as industrial control, automotive and aerospace systems,
consumer electronics, environmental monitoring and wearable devices and electronic skins [1–4].
To achieve strain and pressure gauging, a number of transduction mechanisms including capacitive,
piezoelectric, piezoresistive, as well as transistor sensing have been utilized. Among them piezoresistive
sensing is the most frequently used transduction mechanism, owing to advantages such as low cost,
scalable, DC input and easy signal collection, as well as its simple structure and manufacturing
process [5–7].

However, conventional resistive strain sensors, mainly metallic foil or semiconductor strain gauges,
show significant limitations, such as the low gauge factor of the former or the fragile and high
temperature coefficient of the latter. Recently, conductive polymer composites incorporating conductive
fillers such as carbon blacks, nanoparticles (NPs), nanotubes, as well as graphene membranes in/on an
insulating polymer matrix have been used as strain/pressure sensing elements [8–16]. Strains applied
on these composites may cause a drastic fall in resistivity due to the formation of percolation paths [15].
However, the sensitivities of the devices based on such materials are moderate and susceptible to
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significant hysteresis. Furthermore, the uncontrollable, sudden drastic resistivity drop at the critical
volume fraction and the non-reliability (large variations) on the electric response induce many problems
regarding fabrication and assessment.

Recently, a new configuration of piezoresistive strain/pressure sensing elements fabricated
from percolation-based conductive closely-spaced metal NP arrays was proposed [17–19].
Electron conduction in the highly disordered NP arrays is dominated by a Coulomb blockade
and electron tunneling and hopping across the NP percolating networks [20–22]. The conductance of
the NP arrays deposited on the electrodes is correlated to the number of percolative paths they contain.
Since electron conduction by tunneling or hopping between closely-spaced NPs is extremely sensitive
to inter-particle spacing, breaking or regenerating of the percolative paths could be induced by tiny
changes in the NP array geometries. Differently from current piezoresistive strain sensors, the devices
based on the closely-spaced NP arrays transduce the deformation on the electrodes covered with NPs
to the change of the quantum conductance of the NP arrays [17,23]. They are characterized with high
sensitivities and resolutions, wide dynamic ranges, reduced thermal disturbances, as well as reduced
power consumptions.

In this paper, we fabricate closely-spaced metallic NP films via gas phase depositing of preformed
NPs with a controlled coverage. The evolution of the electron conductance and the geometry of the
NP percolating networks with the deposition process and the deformation of the flexible substrate
is analyzed. The closely-spaced metal NP films are employed to fabricate a strain sensor prototype,
and its strain sensing characteristic is demonstrated.

2. Materials and Methods

Closely-spaced metal NP films were prepared with gas phase NP deposition. Generally, NPs of
either metals could be used in the present piezoresistive sensing scheme. Here, we chose Pd NPs
since they hardly coalesce after depositing on the surface even at a very high NP density so that
prefect percolative NP arrays can be formed. This behavior is important to achieve a high stability in
sensor applications.

A Pd NP beam was generated in a magnetron plasma gas aggregation cluster source [24,25].
The setup consisted of a DC magnetron discharge head equipped in an aggregation tube ended with
an orifice 3 mm in diameter, a differential pumping unit, as well as a high vacuum deposition chamber.
Figure 1 shows a schematic drawing of this setup. A planar Pd target of 99.999% purity was used for
magnetron sputtering. 140 sccm of argon flow (99.99% purity) was introduced into the aggregation
tube to maintain a stable pressure of 120 Pa. The magnetron discharge was operated by a 500 W
power supply (MDX500, Advanced Energy, Fort Collins, CO, USA). Pd atoms were sputtered from
the target and formed clusters through the aggregation process in the argon gas. By extracting the
clusters at the high vacuum differential pumping stage through the orifice, a collimated NP beam
was formed. The Pd NPs were deposited on the substrate in the high vacuum deposition chamber.
A stable deposition rate of 0.4 Å/s, monitored using a quartz crystal microbalance, was maintained by
regulating the discharge power. By controlling the deposition time with a shutter, the coverage of NPs
on the substrate could be precisely controlled.

To fabricate strain sensors and measure the conductance of the closely spaced NP arrays,
Pd NPs were deposited on interdigital electrodes (IDEs) prepatterned on the surface of polyethylene
terephthalate (PET) membrane. The PET membrane is a 6 × 20 mm2 slice with a thickness of
0.1 mm. The silver IDEs, with a 100 nm thickness and 15 µm electrode separation, were deposited
on the membrane via shadow mask vacuum evaporation. The electrodes covered an area of several
ten square millimeters, with an as-prepared resistance of about 1010 Ω. During NP deposition,
the conductance across the electrode gap was monitored in real time. The deposition was cut
immediately by operating a shutter when a predetermined conductance was approached.
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Figure 1. A schematic diagram depicting the cluster source and nanoparticles (NP) beam
deposition setup.

The morphologies of the Pd NP arrays were characterized with a transmission electron microscope
(TEM, FEI TECNAI F20s TWIN, Thermo Fisher Scientific, Hillsboro, OR, USA). For TEM characterization,
amorphous carbon films supported on copper grids were used as substrates. The TEM images were
digitalized by using a public domain Java image processing program, ImageJ (National Institutes
of Health). The sizes and locations of each nanoparticle were extracted. A Visual Basic program written
by ourselves was used to perform percolation analysis on the digitalized TEM images.

The conductance and current-voltage (I-V) characteristic of the NP arrays were measured with
a digital source meter (Keithley 2400). The data acquisition was carried out with a LabView coded
program through a USB interface. The temperature of the sample was constantly controlled in the
range of 10–300 K by thermally contacting the sample with the copper finger of an optical cryostat
system (Janis CCS-150, Janis Research, Wilmington, MA, USA).

The response characteristics of the fabricated strain sensors were evaluated by measuring the
conductance changes of the NP arrays deposited on the IDEs following the applied strains. The strains
were induced by subjecting the PET membranes to a series of bending cycles or pull-and-release cycles
driven with a micrometer. In the bending case, the PET membrane was deformed by adjusting the
micrometer getting in touch with the membrane surface near the location of the IDEs. The strain was
calculated from the deformation geometry of the membrane surface measured from a microscope.
In the pull-and-release case, one side of the PET slice was fastened on the fixed base of an optical
bench adjusting bracket, and the other side was pulled with the micrometer of the adjusting bracket.
The strain was calculated directly from the relative change of the length of the PET slice reading from
the micrometer. The conductance was measured by recording the current in the NP arrays, with a
constant bias voltage of 1 V applied to the IDEs.

3. Results and Discussion

Figure 2a shows a TEM microimage of a film of the deposited Pd NPs. The NPs are randomly
distributed and well isolated. The film contains numerous closely spaced NP assembling areas. The size
distribution histogram of the Pd NPs is counted from the TEM image and shown in Figure 2b. We can
see the NP assemblies are mainly composed of a group of NPs with diameters between 7.5 nm to 10 nm.
Their size distribution can be well fitted with a log-normal function with a mean diameter of 9 nm and
a standard deviation of about 1.4 nm. Meanwhile, a small number of smaller NPs can also be observed,
with a broad size distribution from 2.5 nm to 7.5 nm. In addition, a tiny number of larger NPs with
diameters around 12.5 nm can be distinguished. They may coalesce from smaller ones after depositing
on surface. From the high resolution TEM image shown in Figure 2c, flat facets can be frequently
identified from the individual Pd NPs, indicating that the NPs are polyhedron nanocrystals with
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random orientations. In the assembling region, although the adjacent NPs are in close proximity to
each other, it can be distinguished in the TEM image that the NPs are separate from each other with an
edge-to-edge distance of about 1 nm, sometimes 1.5 nm or more. The gaps separating the NPs might
be thin amorphous shells, most likely PdOx, developed on the NP surfaces due to oxidation [15].
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Figure 2. (a) A transmission electron microscope (TEM) microimage of the deposited Pd NP arrays
showing a closely spaced assembling morphology. (b) Size distribution histogram of Pd NPs measured
from the TEM image. (c) A high-resolution TEM image demonstrating polyhedron-shaped Pd NPs
arranged in close proximity.

The evolution of the morphology and electron conductance of the NP films during NP deposition
is examined. Figure 3 shows the conductance evolution of the Pd NP film measured simultaneously
with the deposition process. At the earlier stage of the deposition, the coverage of the NPs on the surface
is too low to generate any electron conduction across the electrodes, therefore, no conductance can
be measured. After 185 s of deposition, with an equivalent 7.4 nm Pd being deposited, a conductance
which is distinguishable with the leakage conductance of the substrate starts is observed. This means
the NP coverage is sufficiently high to generate electron conduction paths in the NP film distributed
across the electrodes. Between 200 and 350 s, the conductance displays a dramatic increase by two
orders of magnitude, growing approximately exponentially with the deposition time. After that,
the rising of the conductance becomes slow and finally tends to plateaus, generating another two
orders of magnitude increase within the next 360 s deposition. When a total deposition time of 690 s
is reached, the deposition is stopped by operating a shutter. The conductance then remains stable at
about 100 nS, which is four orders of magnitude larger than the leakage conductance of the substrate.

Four specimens for TEM characterization are collected during the NP deposition stage either
before or after a measurable electron conductance can be observed. The deposition time of these
specimens is 100 s, 175 s, 350 s and 650 s, respectively. TEM microimages of these specimens are
shown in Figure 4. The surface coverages of the Pd NPs measured from Figure 4a–d are 28%, 40%,
62% and 79%, respectively.

Considering there is a direct correspondence between the NP coverage and the deposition time,
the time-dependent conductivity curve shown in Figure 3 is indicative of the percolation character in NP
films [26,27]. The NP deposited film can be simply described with a two-dimensional network, where a
random fraction of the interconnections is occupied. The number, size and shape of the connected
structures can be explained using percolation theory [28]. At a defined coverage the percolation
threshold is approached and the NP network becomes conducting over the length scale defined by
the separation of the electrodes. On the other hand, it has been shown in previous studies that the
electron conduction in metal NP arrays is proceeded by tunneling or hopping between neighboring
NPs [29,30]. The tunneling conductance between adjacent nanoparticles depends exponentially on the
separation gap between them. We thus set a critical separation gap permitting electron conduction
and used the percolation approach to analyze the development of the electron conductance of the
NP films during the deposition process. Assuming a critical separation gap of 1.2 nm, we searched
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the percolation clusters from the digitalized TEM images by mapping the NPs onto two-dimensional
networks composed of electrically interconnected NPs. The arrangements of the percolation clusters
in the NP films are shown in Figure 4e–h. In the figure, each percolation cluster is indicated with
different colors.
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From Figure 4, we can find that when the NP coverage is low, such as that in Figure 4a with
a coverage of 28%, the NP arrays are mainly composed of electrically separated particles. Only a
few percolation clusters of very small size, containing less than 10 NPs, can be identified, as shown
in Figure 4e. Obviously, there is no percolation pathway for electron conduction across the upper
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edge and the bottom edge of the image. With the increase of the NP coverage, the size and the
density of the percolation clusters increases significantly, as shown in Figure 4f. In Figure 4c, the NP
coverage becomes sufficiently larger (62%), a few large percolation clusters connecting the upper
edge and the bottom edge of the image appear, as shown in Figure 4g. An NP film with sufficient
electron conductivity is thus formed. However, there still remains a number of relatively smaller
percolation clusters, which can potentially grow into percolation pathways for electron conduction.
Therefore, the conductance displays a dramatic increase with further NP deposition. In Figure 4d,
the NP coverage becomes so high (79%) that most of the NPs are composed in a huge percolation cluster
expanding over the whole image (Figure 4h). Although a few small percolation clusters embedded in
the huge percolation cluster can still be identified, they will merge into the existing huge one rather
than grow into a separate percolation pathway under further NP deposition and therefore contribute
little to the increase of the electron conductance. As a result, the conductance increases slowly and
approaches plateaus under further NP deposition.

In Figure 5, the size distributions of the percolation clusters are compared for the NP films with
different deposition times. In every coverage, the number of the percolation clusters decreases rapidly
with the cluster size. With the increase of the coverage, both the total number of percolation clusters
and the number of smaller clusters sufficiently decrease, accompanied with the formation of a small
number of larger clusters. This indicates that more and more smaller percolation clusters are merged
into larger ones with the ongoing cluster deposition. The largest size of the percolation clusters
increases significantly with the NP coverage, however, their number always remains low. Therefore,
in a network system formed by random deposition of particles, there is no way to generate large
size percolation clusters in high density. This means the electron conductance of the NP arrays is
contributed to by a limited number of percolation pathways for electron conduction.
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In Figure 6, the arrangements of the percolation clusters in the NP films with 62% coverage,
mapped by assigning a critical separation gap for electron conduction of 0.8 nm, 1.0 nm and 1.2 nm,
are shown, together with the size distributions of the percolation clusters. By using a smaller critical
separation gap, the larger percolation clusters split into a number of smaller ones, and the size
distribution curve shifts to a smaller size region. Meanwhile, the size of the largest percolation cluster
decreases significantly. This means the number of percolation pathways for electron conduction
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reduces if the critical separation gap for electron conduction becomes smaller. Reducing the critical
separation gap in the percolation analysis is equivalent to the effect of expanding the NP arrays,
therefore, the number of percolation pathways for electron conduction can be sufficiently changed via
a strain applied on the NP arrays.Materials 2020, 13, x FOR PEER REVIEW 8 of 12 
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In the above image analyses, the length scale of the percolation system is about 100, as normalized
to the NP size. Although this length is smaller than the separation between the electrodes used
for conductance measurement (with a normalized length of 1500), it is sufficiently large enough to
ensure that there is not significant difference on the percolation threshold between the two systems,
since according to the percolation theory of finite system [31], the percolation threshold changes little
with the system size when the normalized system size is larger than 100. Therefore, it is reasonable
to assume that the above percolation nature analyzed from the TEM images is applicable to the real
system used in the electron conduction measurements.

In order to understand the electron transport characteristics in the Pd NP films, the current–voltage
(I–V) curves are measured from 20 K to room temperature. The measurement is carried out on a
pair of IDEs deposited with Pd NPs with a coverage of 62%. As shown in Figure 7a, at cryogenic
temperatures the I–V curves display a current plateau with low applied bias voltages, demonstrating
Coulomb blockade behavior. The I–V curve at 20 K can be well fitted by the Nordheim-Fowler
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equation [32], indicating tunnel emission is the dominate transport mechanism at this temperature.
With the increase of the temperature, the I–V characteristic becomes more and more linear, displaying a
smooth transition from the blocked regime to the unblocked regime. At room temperature, no current
plateau is observable, but the I–V curve is still distinctly nonlinear. The I–V curves could be well fitted
by a sinh function, suggesting electron hopping becomes the dominate transport mechanism [33].
To get a deeper insight into the charge transport mechanism, we deduced zero bias conductance (G)
from the I-V curves measured at different temperatures. Figure 7b shows the temperature dependence
of the conductance. A significant conductance increase is observed with the increase of temperature,
indicating that the electron transport in the NP film is strongly different from the normal metallic films.
In fact, the positive temperature coefficient of conductance is indicative of thermally activated transport.
In Figure 7b, from room temperature to ∼200 K, ln(G) scales as 1/T, indicating that thermally activated
hopping dominates the transport in this temperature regime [22]; electron transfer occurs between
spatially adjacent NPs. At lower temperature, deviation from the 1/T scaling occurs, ln(G) scales as T1/2,
indicating that variable range hopping becomes the dominant electron transport mechanism [21];
electron transfer occurs between the energetically closest NP states. For temperatures lower than 50 K,
the conductance can be fitted neither with 1/T scaling nor with T1/2 scaling, indicating that thermally
activated hopping no longer dominates the electron transport. In this regime, electrons are tunneling
when the applied bias voltage is sufficient to overcome the charging energies of the NPs. The electron
transport behavior observed above is analogous to previous studies on two-dimensional NP arrays
with well-defined inter-particle separation gaps [20,22,34], suggesting that the electron conductance in
the fabricated NP films is proceeded by quantum transport dominated by tunneling and/or hopping
and is subject to a Coulomb blockade at moderate voltages.
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Figure 7. (a) The I-V curves of the 62% coverage Pd NP film measured at different temperatures.
The solid curve and dashed curve fit the experimental data with a Nordheim-Fowler equation and
sinh function, respectively. The inset shows a magnified view to illustrate the blockade characteristics
at cryogenic temperatures. (b) Temperature dependences of the zero bias conductance. The solid curve
and dashed curve fit the experimental data with lnG ~ 1/T scaling and lnG ~ 1/T1/2 scaling, respectively.

The Pd NP-coated PET membranes are used as strain sensors and their strain sensing responses are
studied at room temperature. In Figure 8a, the measured conductance response in the pull-and-release
cycles of the PET membrane is given as the relative resistance variation ∆R/R (where ∆R is the resistance
change induced by deformation and R is the resistance without strain). The specimen under testing is
a 62% coverage Pd NP film deposited on an IDE patterned PET membrane with 0.1 mm thickness.
The curve shows that for each pull-and-release cycle the resistance increases quickly, which corresponds
to the decrease of the conductance of the NP film, once the device is stretched, and returns to the
original value instantly once the applied stress is released. The strain sensing response is rapid,
reversible and reproducible. The stretching of the PET membrane induces a strain on the surface where
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the NPs deposit. The inter-particle separation gaps in the NP film thus increase, which results in an
increase on the resistance of the NP film.Materials 2020, 13, x FOR PEER REVIEW 10 of 12 
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Figure 8b shows the sensor response plotted as a function of the applied strains. The response
is taken as the peak resistance variation ∆R/R, after the PET membrane is pulled to a stable state.
In the inset of Figure 8b, the sensor response curve is magnified to illustrate the response behavior
to very small applied strains. Such small strains are generated by subjecting the PET membrane to
bending cycles, which induce stretching strains on the surface where the NPs deposit. In either case,
the resistance increases with the applied strain sensitively. As can be seen from the figure, the sensor can
distinguish tiny strain changes down to 5 × 10−4. In the small applied strain region (<0.5%), the strain
sensor displays a constant sensitivity, which is characterized with the gauge factor g = (∆R/R)/ε.
The gauge factor is calculated to be ~55 in this strain region. The constant gauge factor enables a
linear response of the relative resistance changes to the applied strains. In the moderate strain region,
from 1.0% to 4.0%, a high gauge factor is maintained, between 100 to 200, and increases gently with the
applied strains. The sensor can reversibly respond to applied strains up to 4.0%. However, this upper
limitation comes from the elastic limit of the PET membrane. It is possibly extended significantly if
other more elastic materials, such as PDMS (polydimethylsiloxane), are used.

The behavior of the NP film-based strain sensor can be understood by considering the percolative
and quantum tunneling nature of the closely-spaced NP arrays. The IDEs we used have a huge aspect
ratio of total electrode length versus electrode separation. With a moderate NP coverage above the
percolation threshold corresponding to the finite length of the electrode separation [31], a large number
of percolative paths are contained in the NP arrays. Since the tunneling conductance between adjacent
NPs depends exponentially on the inter-particle separation gap, the number of percolative paths
for electron conduction could be changed by a tiny deformation in the geometries of the NP arrays,
which induces breaking or regenerating of the percolation clusters. Furthermore, the deformation also
induces a change on the distribution of inter-particle gaps along the conductive percolation pathways,
which also influence the tunneling conductance sensitively. As a result, the conductance of percolative
NP arrays is sensitively related to the deformation of the substrate on which the NPs deposit.

4. Conclusions

Gas phase NP beam deposition, as a low-cost and semiconductor device-compatible process, is used
to fabricate closely spaced NP arrays on flexible membranes patterned with IDEs. The evolution of the
morphology and electron conductance of the NP films during deposition is examined by performing
real-time conductance measurement, TEM characterization and image analysis. It is shown that the
NP film is composed of two-dimensional percolation clusters of interconnected NPs. The conductance
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of the NP film is contributed to by a limited number of percolation pathways for electron conduction.
Both the percolation geometries and conductance of the NP film are determined by the NP coverage,
which is finely controlled by the deposition time under a constant deposition rate. This permits
us to finely control the NP deposition process to realize a precise and reproducible fabrication of
sensing materials for strain and deformation gauging. Electron transport measurement reveals that the
electrical conductance of the NP films is dominated by electron tunneling and hopping across the NP
percolating networks. Since the tunneling conductance between adjacent NPs depends exponentially
on the inter-particle separation gap, the number of percolative paths for electron conduction and
the distribution of inter-particle gaps along the conductive percolation pathway could be changed
by a tiny deformation in the geometries of the NP arrays, resulting in a sensitive influence on the
tunneling conductance. Based on the percolative and quantum tunneling nature, the closely-spaced Pd
NP films on PET membranes are used as sensing materials for flexible strain sensors, which demonstrate
an excellent ability to distinguish tiny strain changes down to 5 × 10−4 and a high sensitivity with a
large gauge factor of 200 up to 4% applied strain.
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