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Abstract: The surface crack of ballastless track slab can seriously reduce the serviceability and
durability of high-speed railway (HSR). Aiming at accurately and efficiently detecting the slab cracks,
this research proposes an infrared thermography (IRT)-based method for the surface crack, which is
the most serious and common crack type in track slab. A three dimensional finite element (FE)
model of IRT detection of concrete slab with surface cracks is established. The relation between the
width of detectable cracks and the ambient temperature can be thereby obtained by inputting the
measured thermodynamic parameters in the model. Parametric study shows that with ambient
temperature higher than 15 ◦C, cracks with a width of no less than 0.2 mm can be well detected.
Scale model test and field test are conducted, IRT method can effectively locate the slab surface cracks
with width as small as 0.14 mm when ambient temperature is no less than 20 ◦C.

Keywords: infrared thermography (IRT); high-speed railway (HSR) track slab; surface crack;
finite element (FE) simulation; field test

1. Introduction

Longitudinally coupled prefabricated slab tracks (LCPSTs) are widely used in the new high-speed
railway (HSR) lines in many countries, such as Germany, Japan, and China. In China, for instance,
it accounts for about 35% of the total length of the national HSR network. LCPST is a multi-layer
structure composed by concrete track slab, cement asphalt (CA) mortar layer and concrete base.
The concrete slab is prefabricated and dummy joints are adopted to prevent concrete crack and its
expansion, as shown in Figure 1 [1,2]. However, the practical experience of HSR operation in various
countries shows that with the increase of the service time of the rail line, the performance of the track
slab deteriorates significantly, and structural defects such as cracks and deformation of track slab can
inevitably appear gradually [3]. Under the combined effect of temperature, rainwater, and dynamic
load of reciprocating train, these cracks can aggravate the concrete looseness and water seepage near
the cracks, lead to the corrosion of the internal reinforcing bars, and significantly reduce the service
durability and stability of track slab structure [4,5]. With the continuous increase, expansion and
penetration of the cracks, the integrity of track slab can be damaged, which directly affects the dynamic
response characteristics of track structure, and even becomes the main hidden danger seriously
threatening the operation safety of HSR [6]. How to detect the crack of track slab timely and effectively
has become an important problem to be solved in the maintenance of HSR ballastless track.
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Figure 1. Longitudinally coupled prefabricated slab track (LCPST). 

Most of the railway departments around the world adopt manual inspection to detect the cracks 
of track slabs. However, manual inspection is characterised with low efficiency and great reliance on 
personal experience [7]. In addition, the maintenance time of HSR lasts only 1 to 2 h, which implicates 
massive employees for the track maintenance of hundreds and thousands kilometers. That can also 
be serious interference to route safety management [8]. To tackle this problem, extensive studies 
focused on the issues of track slab crack. 

Considering that ballastless track slab is a typical prestressed concrete structure, many previous 
studies adopt the regular contactless nondestructive testing (NDT) methods for track defect 
detection, including impact echo testing [9–11], ultrasonic testing [12,13], ground penetrating radar 
[14–16], acoustic emission testing [17–19], etc. Combined with relevant mechanical theoretical 
calculations, track defect can be analysed qualitatively and quantitatively. However, these efforts 
mainly focus on track slab inter-layer defects, rather than slab surface cracks which is a critical 
problem for LCPSTs. Current research on slab crack is generally based on fixed-point local detection. 
The characteristics of the test data are relatively complex, which requires more experience. Apart 
from the above NDT methods, computer vision techniques with artificial intelligence methods are 
also adopted in track inspection [8,20,21]. Certainly there are also studies focused on the material 
scale degradation subjected to extreme condition [22–24]. However, for such a complex inspection 
environment as slab ballastless track structure, lighting factors and noise factors such as rails, 
fasteners and other components will make it very difficult to accurately identify the cracks in the 
track slab on site. There is no accurate model to describe the mode of crack damage. These factors 
become the great obstacles. 

Infrared thermography (IRT), as a novel NDT method, has been more and more widely used in 
civil engineering. This method explores the surface infrared radiation and surface temperature field, 
to test surface or interior damage with thermal imaging camera [25]. Currently, IRT has been used in 
crack detection of building structures [26–28] and bridges [29–31], but it is relatively new in track 
crack inspection [32]. Thermography is suitable for crack detection with width as small as 0.5 mm 
with flash thermography [27]. 

This research, based on the field investigation into the characteristics of surface crack on track 
slab, proposes an IRT-based crack detection method for LCPST, with the combination of theoretical 
analysis and experiment. The remainder of this paper is organised as follows: the distribution of 
ballastless track crack is discussed in Section 2; the theory of thermography and the calculation of 
track slab thermodynamics is presented in Section 3; finite element (FE) analysis of concrete track 
slab is given in Section 4, followed by laboratory test and the field test results, as presented in Section 
5; the last section gives the brief conclusions. 

2. Field Investigation of Slab Crack 

The actual defect characteristics are fundamental to the application of the IRT-based detection 
method for slab tracks. However, there is little study dedicated to carrying out field investigation 
into the cracks on the in-service track slabs. With the assistance of China Railway Shanghai Group, 

Figure 1. Longitudinally coupled prefabricated slab track (LCPST).

Most of the railway departments around the world adopt manual inspection to detect the cracks
of track slabs. However, manual inspection is characterised with low efficiency and great reliance on
personal experience [7]. In addition, the maintenance time of HSR lasts only 1 to 2 h, which implicates
massive employees for the track maintenance of hundreds and thousands kilometers. That can also be
serious interference to route safety management [8]. To tackle this problem, extensive studies focused
on the issues of track slab crack.

Considering that ballastless track slab is a typical prestressed concrete structure, many previous
studies adopt the regular contactless nondestructive testing (NDT) methods for track defect detection,
including impact echo testing [9–11], ultrasonic testing [12,13], ground penetrating radar [14–16],
acoustic emission testing [17–19], etc. Combined with relevant mechanical theoretical calculations,
track defect can be analysed qualitatively and quantitatively. However, these efforts mainly focus on
track slab inter-layer defects, rather than slab surface cracks which is a critical problem for LCPSTs.
Current research on slab crack is generally based on fixed-point local detection. The characteristics
of the test data are relatively complex, which requires more experience. Apart from the above NDT
methods, computer vision techniques with artificial intelligence methods are also adopted in track
inspection [8,20,21]. Certainly there are also studies focused on the material scale degradation subjected
to extreme condition [22–24]. However, for such a complex inspection environment as slab ballastless
track structure, lighting factors and noise factors such as rails, fasteners and other components will
make it very difficult to accurately identify the cracks in the track slab on site. There is no accurate
model to describe the mode of crack damage. These factors become the great obstacles.

Infrared thermography (IRT), as a novel NDT method, has been more and more widely used in
civil engineering. This method explores the surface infrared radiation and surface temperature field,
to test surface or interior damage with thermal imaging camera [25]. Currently, IRT has been used
in crack detection of building structures [26–28] and bridges [29–31], but it is relatively new in track
crack inspection [32]. Thermography is suitable for crack detection with width as small as 0.5 mm with
flash thermography [27].

This research, based on the field investigation into the characteristics of surface crack on track
slab, proposes an IRT-based crack detection method for LCPST, with the combination of theoretical
analysis and experiment. The remainder of this paper is organised as follows: the distribution of
ballastless track crack is discussed in Section 2; the theory of thermography and the calculation of
track slab thermodynamics is presented in Section 3; finite element (FE) analysis of concrete track slab
is given in Section 4, followed by laboratory test and the field test results, as presented in Section 5;
the last section gives the brief conclusions.

2. Field Investigation of Slab Crack

The actual defect characteristics are fundamental to the application of the IRT-based detection
method for slab tracks. However, there is little study dedicated to carrying out field investigation
into the cracks on the in-service track slabs. With the assistance of China Railway Shanghai Group,
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this research conducts field investigation on a 158 km-long HSR line in East China. This line was built
in 2010 with CRTS-II slab track. The operation speed of the line is 300 km/h and the main types of
foundation are subgrade and simply supported beam bridge.

Figure 2 shows the typical slab cracks found by field investigation. The surface cracks can occur
at dummy joints and other locations on the slabs. The cracks at dummy joints are mainly short cracks
perpendicular to the side of the dummy joints and some through cracks expand through the surface and
from side to bottom. The cracks at other locations on the slab are mainly short splayed diagonal cracks
along the sleeper’s direction and transverse through cracks along the side of the sleepers. When the
tensile stress of the track slab is greater than its tensile strength, the crack will occur at the weak location.
Meanwhile, under the impact of periodic temperature load, the expansion and deformation of the
track slab can happen continuously, which leads to the expansion of the crack along the transverse
direction until it develops into a through crack.
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Figure 2. Track surface crack in the field: (a) Surface through crack; (b) Crack at sleeper; (c) Crack at
dummy joints.

Table 1 lists the statistical analysis results of the field investigation. A total of 73 slab cracks are
identified. Among them, the proportions of cracks at dummy joints and other locations in bridge
section are 52.5% and 47.5%, respectively, while the proportions in subgrade section are 51.6% and
48.4%, respectively. In both bridge section and subgrade section, the average values of width and
length of the cracks at dummy joints are slightly larger than those of cracks at other locations, which is
consistent with the design theory of ballastless track [33]. A total of 11 through cracks are found in
subgrade and bridge sections, and the average width of through cracks is significantly larger than
that of non-through cracks, with the maximum width of 0.82 mm. Compared with the non-through
cracks whose average width is only about 0.13 mm, the damage state of through cracks is more serious.
Referring to the management rule for China HSR [34], when surface crack width is larger than 0.2 mm,
immediate repair is required.

Table 1. Statistics of the investigated track cracks.

Section Location Type Count
Length/cm Width/mm

Max Min Avg Max Min Avg

Bridge
Dummy joint Through cracks 2 / / / 0.36 0.14 0.27

Others 19 16 12.11 15.26 0.19 0.1 0.16

Others
Through cracks 3 / / / 0.32 0.11 0.24

Others 16 18.8 2.89 14.94 0.13 0.02 0.10

Roadbed
Dummy joint Through cracks 2 / / / 0.28 0.12 0.23

Others 15 14.22 4 11.51 0.19 0.08 0.15

Others
Through cracks 4 / / / 0.82 0.09 0.29

Others 12 15.33 2.56 9 0.16 0.01 0.11

3. IRT Testing for Slab Crack Detection

Any object with a temperature higher than absolute zero will continuously radiate infrared light
to the external environment. Because the surface temperature and thermal physical parameters of the
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objects are different, the ability of the objects to radiate infrared light to the external environment is
also different. The higher the temperature of the object, the stronger the ability of infrared radiation to
the external environment. IRT, as a novel NDT technique, can detect the different intensity infrared
thermal waves emitted by object surface and convert them into infrared thermal images with different
colours [25]. For track slab, when a crack appears on its surface, a significant difference between the
thermal conductivity of air medium in cracks and that of concrete materials will generate. When the
heat flow enters the crack, the heat will accumulate in the crack area; when the heat flow exits, the air
medium in cracks slows down the heat dissipation, resulting in the temperature difference of crack
area and non-crack area, which generates temperature gradient field (see Figure 3). With IRT, we can
detect the surface crack of track slab by collecting such temperature difference.
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Figure 3. Mechanism of infrared imagery technology.

For the concrete track slab, in the actual heat transfer process, due to the uneven distribution of
the internal temperature field, the following assumptions are made for the convenience of presenting
the principle of heat sensor detection:

A. Due to the low thermal conductivity of concrete, it is considered that there is no coupling between
temperature and structural deformation.

B. Track slab is assumed to be homogeneous and isotropic.
C. The thermal parameters of track slab materials are all constant and do not change with the change

of temperature.

The heat transfer process inside an object can be expressed by the following formula [25] as

∂
∂x

(
λ
∂T
∂x

)
+

∂
∂y

(
λ
∂T
∂y

)
+
∂
∂z

(
λ
∂T
∂z

)
= ρc

∂T
∂t

(1)

where λ is the conductivity (W·m−1
·
◦C−1), ρ is the density (kg·m−3), c is the specific heat capacity

(J·kg−1
·
◦C−1), t is time (s), T is temperature inside the slab (C), and x, y, and z are axis directions.

Since the window time HSR maintenance is always at night, the temperature field of track slab is
mainly affected by the ambient temperature because of the continuous radiation and convection heat
exchange between track slab and external environment. As a continuous concrete structure, the vertical
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dimension of track slab is far smaller than its transverse and longitudinal dimensions, so it can be
treated as an infinite flat wall structure, and Equation (1) can be rewritten as

∂
∂x

(
λ
∂T
∂x

)
= ρc

∂T
∂t

(2)

To solve Equation (2), boundary conditions of temperature and heat transfer is established as

s.t.


T = T0 , t = 0

∂T/∂x = 0 , x = 0

−λ·∂T/∂x = h(T− Ta) , x = d

(3)

where T is slab internal temperature (◦C), λ is track slab conductivity (W/(m·°C)), ρ is slab density
(kg/m3), c is specific heat (J/(kg·°C)), x is axis for thickness, d is track thickness (m), T0 is the
initial temperature (◦C), Ta is ambient temperature (◦C), h is the integrated heat transfer coefficient
(i.e., the sum of radiative coefficient hr and convective heat transfer coefficient hw) (W/(m2

·°C)).
For dimensionless representation, let 

θ = T− Ta

F = θ/θ0

X = x/d
(4)

Substitute Equation (4) to Equations (2) and (3) yield

∂F/∂(at/d2) = ∂2F/∂X2

s.t.


F = F0 = 1 , t = 0

∂F/∂X = 0 , X = 0

∂F/∂X = hd·F/λ , X = 1

(5)

where a is diffusivity coefficient (i.e., a = λ/ρc).
Use Fourier number Fo to represent the time of unsteady heat conduction, and Bivot Bi for the

ratio of heat resistance between interior and surface of slab, dimensionless temperature can be given by
Fo = at/d2

Bi = hd/λ
F = g(Fo, Bi, X)

(6)

With slab surface crack, temperature difference between crack and non-crack area is given by

∆T = Tl − Th (7)

where Tl and Th refer to crack and non-crack temperature.
Combined with the influence of crack length (l) and width (w), the following equation is established

∆T = g(θ0, t, a, d, λ, h, l, w) (8)

According to π theorem and dimension harmony theorem, we select four basic parameters
(i.e., ∆T, t, λ, and d), so that the dimensionless equation is given by

F
(
θ0

∆T
,

at

d2 ,
hd
λ

,
l
d

,
w
d

)
= 0 (9)
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So ∆T can be expressed as

∆T = f
(

at

d2 ,
hd
λ

,
l
d

,
w
d

)
× θ0 = Θ ×C×R (10)

where Θ is temperature coefficient mainly determined by ambient temperature, C is scale coefficient
which is mainly determined by crack width, and R is the constant thermal coefficient.

Solving the temperature difference in Equation (10) is fundamental to the application of IRT in slab
surface cracks detection. To determine the mapping relationship between the ambient temperature,
crack width and temperature difference. Because of the irregular shape of the cracks on the surface of
the slab and the randomness of the ambient temperature, it is impossible to express them with explicit
analytical formula, which leads to the inaccuracy of the analytical solution of the temperature field.

4. Finite Element Analysis

4.1. Modeling

To effectively detect track slab cracks by IRT, parameters such as resolution, detection window
length of the camera, ambient temperature, etc. need to be set. However, the field test of such
parameters are very expensive and time-consuming [35]. Therefore, as an efficient and economic way,
the FE method is widely used in the optimal design of IRT test parameters [35,36].

Based on the actual slab scale, a three-dimensional FE model of IRT detection of track slab with
surface through cracks is established, in which Solid 70 element is used to simulate track slab, sleepers,
CA mortar layer, and concrete base. The slab is 20 cm thick, 6.45 m long, and 2.55 m wide, supported by
10 sleepers (0.8 m × 0.3 m × 0.07 m), with V-shape dummy joints equally spaced between each
sleeper at 0.65 m interval. The size of CA mortar layer and concrete base are 6.45 m × 2.55 m × 0.03 m
and 6.45 m × 2.95 m × 0.3 m, respectively. Bonding treatment is adopted between layers to ensure
connection. According to the investigation results in Table 1, through crack is set at the 5th sleeper.
With Boolean operation, the actual irregular cracks are simplified as regular cracks with rectangular
cross-section, and mesh refinement is adopted for crack area, as shown in Figure 4. The main calculating
parameters are summarised in Table 2.
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Table 2. The main parameters of track modeling.

Parameters Slab Sleeper CA Mortar Layer Concrete Base

Specific heat(J.kg−1
·
◦C−1) 925 925 1350 925

Density(kg·m−3) 2500 2500 1800 2300
Conductivity(W.m−1

·
◦C−1) 3.23 3.23 0.261 3.23

4.2. Setting of Thermal Parameters

From Equation (10), the initial slab temperature field and environmental meteorological parameters
(solar radiation, ambient temperature and wind speed) need to be input in the simulation process.
Based on the field investigation [37], thermal parameters (i.e., slab temperature) along the investigated
line is collected at slab depth 0 mm, 100 mm, and 200 mm with sampling interval of 30 min for an
entire year.

During the maintenance time of HSR line (i.e., 0:00 am–3:00 am), the ambient temperature range
is between −3.6 and 28.3 ◦C, and it changes periodically with the seasons. With recognition of this,
the ambient temperatures in simulation is set as −5, 0, 5, 10, 15, 20, 25, and 30 ◦C. Because the initial
temperature field of the track slab is not evenly distributed and presents strong time-varying features,
it is more suitable to use the measured average temperature of the track slab during the maintenance
time as the initial temperature field. This is reasonable because there is no solar radiation effect, and the
temperature difference between the track slab and the external environment is relatively small during
this period.

Under the actual conditions, complex heat transfer process, including heat conduction,
heat radiation, and heat convection can occur between the track slab and external environment.
To simplify the model, all the heat effects generated by radiation heat transfer including solar radiation
are considered to be converted into convective heat flow density, which is applied to the upper surface
of the model as the boundary condition, and the side and bottom surfaces are assumed to be adiabatic.
According to the management rules for Chinese HSR [34], crack width is set to be 0.1 mm, 0.2 mm,
and 0.3 mm for parametric analysis.

4.3. Model Validation

Because the detection model established by the FE method is essentially a heat transfer model,
this paper uses the measured data and the simulation results for comparative analysis to verify the
model. The meteorological parameters and the initial temperature field parameters of the track slab,
as listed in Table 3, are input into the model for calculation. Figure 5 shows the comparison of the
actual measurement and simulation results of the internal temperature field of the track slab.

Table 3. Meteorological parameters and the initial temperature field parameters.

Meteorological Parameters
Max solar irradiation (w/m2) 1136

Max wind speed (m/s) 1.32

Meteorological Parameters
Depth/0 mm (◦C) 32.49

Depth/100 mm (◦C) 34.77

Depth/200 mm (◦C) 35.49
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Figure 5. Comparison between the actual and simulated temperatures at varying slab depth.

From Figure 5 that there is an error between the measured and the simulated value, especially at
the slab surface (0 mm), and the maximum difference is 4.14 ◦C. This is due to the simplification of the
boundary conditions in the FE model, in which the thermal effect caused by the direct solar radiation on
the slab surface is ignored. During the period of window time for maintenance, the overall difference
between the measured value and the calculated value in different depths is small, among which,
the maximum difference between the two is only 0.25 ◦C on the slab surface and 0.58 ◦C at the depth
of 200 mm, the boundary between track slab and mortar layer. The explanation for the difference at
200 mm is that the detection model simplifies the actual three-dimensional heat conduction process
into one-dimensional and that the conductivity is different between slab and CA mortar layer.

4.4. Result Analysis

The ambient temperatures (8 conditions) and crack widths (3 conditions), as mentioned in
Section 4.2, are considered, and the results under 24 conditions are shown in Figure 6.
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Figure 6. Crack-area temperature difference with varying crack width and ambient temperature.

As ambient temperature and crack width increases, the temperature difference between crack
and non-crack area shows a growing trend; the wider the crack width is, the greater the increase of
the temperature difference will be. The larger the crack width is, the more air medium is filled in
the crack. Under the influence of different thermal conductivity, the temperature effect of concrete
and air medium is more obvious, and the temperature difference between crack area and non crack
area is more prominent. When the ambient temperature is lower than 10 ◦C, due to the low thermal
conductivity of the concrete, the overall temperature of the track slab is low, and the heat conduction
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effect between the crack area and the non crack area is slow. Even if the ambient temperature rises,
the change of the temperature difference is not obvious, which is below 0.1 ◦C, and the temperature
rise is relatively gentle, so in this range crack detection can be difficult and inefficient. When the
ambient temperature is between 10 and 15 ◦C, through crack with width of no less than 0.2 mm can be
detected. When the ambient temperature is higher than 15 ◦C, the temperature difference begins to
rise obviously with the increase of temperature. At 30 ◦C, the temperature difference of 0.3 mm and
0.1 mm cracks reaches 0.45 ◦C and 0.23 ◦C, respectively, which means the performance of detection
would be enhanced.

Taking crack with 0.2 mm width as an example, Figure 7 shows the colour map of through crack
under different temperatures. As ambient temperature increases, the temperature of the crack edge
increases, and it spreads to the non crack area, resulting in a larger zone of detectable temperature area.
Besides, under the influence of sleeper’s conductivity, the temperature difference zone along the crack
direction becomes unstable on the side of the sleepers, while on the other side it is uniform.
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Figure 7. Temperature colour map for through crack with 0.2 mm width under different
ambient temperatures.

To sum up, when the ambient temperature is more than 15 ◦C, the through cracks with a width of
more than 0.2 mm can be detected.

5. Lab and Field Experiment

5.1. Laboratory Test

To further determine the key parameters needed for IRT-based crack detection, samples with
1:5 scale are made in the laboratory for analysis. This is based on the similarity theory [38,39],
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which only needs to meet the conditions that the geometric size of track slab and crack is
proportional, the number of Bivot is equal and the Fourier number is equal. The model size is
1290 mm (L) × 510 mm (W) × 200 mm (H), in which the size of the sleeper is 100 mm (L) × 60 mm
(W) × 20 mm (H), and the dummy joint size is 1290 mm (L) × 14 mm (W) × 8 mm (d). The model
material is determined according to the China railway design code [33]. The design strength grade of
concrete is C55 and the cement is P·O42.5 ordinary Portland cement. The fine aggregate is natural
river sand and the coarse aggregate composes of 80% natural gravel with diameter of 10–20 mm and
20% natural gravel with the diameter of 5–10 mm. The additive is hydroxy-acid water reducing agent,
the admixture is fly ash, and the production water is ordinary tap water. An artificial through crack
with a maximum width of 0.22 mm is prefabricated on the surface of the track slab. The test model is
shown in Figure 8.Materials 2020, 13, x FOR PEER REVIEW 10 of 15 
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Figure 8. Scaled down sample of railway track.

To ensure that the thermal imager has the same focal length and viewing angle during shooting,
a metal bracket with height of 75 cm is fixed at the crack area, and the width of the upper structure of
the metal bracket is suitable for the outer diameter of the lens of the thermal imager, with a length of
50 cm, to ensure that the thermal imager can cover the whole crack area during shooting. The thermal
imager is inverted on the metal bracket, and the standard lens is used. The shooting range is about
6/10 of the surface area of the test model, the measurement temperature range is set to 15–35 ◦C,
the focusing mode is set as auto focusing, and the thermal image display mode is set to rainbow mode
for real-time storage.

The type of infrared camera is TIX620 by Fluke (Figure 9) with a heat sensitivity of 0.04 ◦C,
spectral range of 7.5–14 µm, temperature measurement range of −40–600 ◦C, and display resolution
of 1280 × 800. Generally, IRT can be passive and active. Passive detection relies on an external heat
source while active detection relies on the ambient temperature [29]. To simulate the actual detection
environment on HSR, this study uses the passive detection to carry out experiments. First, the test
model is placed in an outdoor open space exposed to sunlight to simulate the heat transfer at daytime.
The model is fully excited by active heat to ensure that the surface temperature field of the model
produces a certain temperature gradient. During the test, the outdoor ambient temperature is 20.2 ◦C,
the maximum solar radiation is 533 w/m2, and the average wind speed is 0.12 M/s. Two hours later,
the model is moved indoor to simulate the passive surface crack detection under the condition of no
heat radiation at night, as shown in Figure 9.
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Figure 9. Infrared camera installed on the lab model.

The test results are shown in Figure 10. The temperature field on the surface of the track slab
presents an obvious non-uniform distribution among different structural components. The temperature
field of surface crack area and non crack area is relatively uniform in their respective areas, but there
are also some local hot spots and block areas. The heat transfer process of the track plate satisfies
the three-dimensional heat transfer condition and the conduction rate is quite different under the
actual conditions, and it is also affected by certain environmental noise and boundary convection.
In the thermal image, heat concentrates along the crack direction, and expands to the surround areas,
making the crack edge fuzzy. Correspondingly, on the thermography of the crack area (right panel
figure), it also presents obvious fluctuation of the amplitude. The crack area shows discontinuous
pattern with much more heat at the upper part while the lower part is similar to other areas. The actual
size of the upper crack is larger than the design size, so that the temperature effect is strengthened,
while the width of the lower crack is small, and the thermal effect is not obvious. Besides, in the
heat transfer process, the lower crack is affected by local environment and concrete boundary, so that
the heat balance speed is faster. The actual temperature difference in Figure 10 is far less than that
in Figure 7, the result of FE simulation. To realise effective detection of track slab cracks under the
complex effect of lab radiation and convection, the ambient temperature is not recommended to be less
than 20 ◦C.
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Figure 10. Thermography of lab experiment.

To extract the feature of the surface crack area in Figure 10, we use the temperature field isotherm
method [40] and the result is shown in Figure 11. At the surface crack area and the dummy joint
area, there is a long high temperature envelope area in the isotherm diagram. The isotherm trend
of the same dummy joint is roughly the same, only different in amplitude and background noise.
By using the relative position relation and calculating the crack area according to the isotherm diagram,
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we can identify that the maximum crack width is 0.32 mm and the minimum crack width is 0.1 mm.
Through the multi-point sum calculation, we can obtain the area value of 61.15 mm2, compared to the
actual value of 66 mm2, with error of 7.35%. The performance is validated by applying IRT to crack
detection with respect to crack area and width.
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Under the complex conditions of lab experiment, the adoption of IRT for crack detection requires
ambient temperature no less than 20 ◦C, instead the 10 ◦C from FE simulation. The applicability of IRT
needs to be further discussed and analysed in the actual complex environment.

5.2. Field Test

The field test is carried out in an HSR (Sifang Ltd, Qingdao, China) section to detect the potential
slab cracks using the same IRT equipment as in the laboratory test. During the test, the ambient
temperature is 25.1 ◦C, the wind speed is 0.1 m/s, and the surface temperature of track slab is 32.78 ◦C.

Figure 12 shows a typical through crack on the surface of track slab. The maximum, minimum and
average crack width are 0.36 mm, 0.14 mm, and 0.27 mm, respectively. They are measured by a portable
crack detector. The temperature range of the IRT equipment is set as 15–36.5 ◦C, and the shooting
range is set as 3/10 of the track slab. Figure 13 shows the thermal image.
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Figure 13. Typical thermography of track slab crack.

In Figure 13, different components of the track structure present different thermal images, and at
dummy joints the image presents significant highlights, especially in the middle of the joint. With equal
spacing, the effect of dummy joints can be easily removed before further identification of the surface
cracks. In the actual crack area, the location is obvious, especially in the large-scale area, where the
crack temperature and edge clearance are clear, and the characteristics are prominent.

Figure 14 shows the temperature field isotherm. Figure 15 shows that the maximum, minimum and
average values of crack width are 0.36 mm, 0.14 mm, and 0.267 mm, respectively, which is consistent
with the actual crack width. Crack area is 521.88 mm2, 3.5% smaller than the actual value, which is
540 mm2. At high ambient temperature, it is feasible for the maintenance-of-way department to detect
the slab cracks using IRT method.Materials 2020, 13, x FOR PEER REVIEW 13 of 15 
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6. Conclusions

This paper proposes an method for detecting the crack in the slab surface cracks in HSR with
IRT detection. The mapping relation between the ambient temperature, crack width, and temperature
difference is determined. A three-dimensional crack FE model for thermographing concrete slab track
is established and is validated by the actual temperature field tests.

Through the scale-down model test in the laboratory and field test in HSR line, IRT method can
effectively locate the slab surface cracks when ambient temperature is higher than 20 ◦C. FE parameter
setting provides good reference to IRT actual application, but needs further validation in the field.
Finally, a field test of IRT can detect the crack with width as small as 0.14 mm.

Although the width of the cracks on the surface of the slab track has been successfully detected,
the depth of the cracks and the threshold of the detection temperature need further studies.
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